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Abstract—Cloud computing is a technology for providing 

services over the Internet. It gives approach to renting IT 

infrastructures on a short-term pay- per-usage basis. One of the 

service provider’s goals is to use the resources efficiently and 

gain maximum profit. Cloud processes a huge amount of data, so 

tasks scheduling is a vital role in the cloud computing. The 

purpose of this paper is to propose a method based on chaos 

theory and bat algorithm for task scheduling in Cloud 

computing. Task scheduling is a core and challenging issue in 

cloud computing. The nature of the scheduling issue is as an NP-

Hard problem and because of the success of heuristic algorithms 

in optimization and NP-Hard problems, the authors use a newly 

inspired bat algorithm and chaos theory to scheduling the tasks 

in the cloud. In this method, bat or candidate solutions are 

represented by a one-dimensional array. The fitness function is 

calculated based on makespan and energy consumption. The 

results show that the proposed method can schedule the received 

tasks in proper time than other compared heuristic algorithms, 

also the proposed method has better performance in term of 

makespan and energy consumption than compared methods. 

Keywords—Cloud computing; scheduling; chaos theory; bat 

algorithm 

I. INTRODUCTION 

Cloud computing (a recent computing model) comes from 
distributed computing, parallel computing and grid computing. 
The dynamism and heterogeneity are properties of cloud 
computing resources. In cloud computing, resources such as 
storage, memory, processors, and applications are provision as 
services. Cloud computing environment is a commercial 
platform. Currently, there exist many commercial clouds, such 
as Amazon, which provide virtualized computational and 
storage hardware. Virtual Machine (VM) is a critical 
component of software stacks in the cloud computing, for 
example, Amazon Elastic Computing Cloud (Amazon EC2) 
[1] is a cloud platform that provides infrastructure as service 
in the form of VMs. The cloud computing greatly decreases 
the financial cost of acquiring hardware and software for 
application deployment, as well as maintenance costs [2]. So, 
how to use efficiently and effectively cloud computing 
resources becomes more important. Cloud computing provides 
a pool of resources in a self-service, dynamically scalable and 
metered method with guaranteed quality of service to users. 
To achieve guaranteed Quality of Service (QoS) to users, that 
is important the tasks be assigned efficiently to defined 
resources by providing multiple VMs for executing the tasks 
included in a program. Cloud computing also offers pay-per-

use metered service. There are motivational research results 
for efficient task scheduling in cloud computing, but task 
scheduling problems are still considering as an NP-complete 
issue. There are some objective functions and optimization 
criteria while tasks scheduling in the cloud environment, such 
as makespan, cost, flow time, tardiness, waiting time, 
turnaround time [3], and energy consumption [4]. In our 
proposed work, we propose  QoS-based task scheduling 
algorithm called the Chaotic Bat Algorithm for task 
scheduling on cloud computing, which aims to create a 
schedule to minimize the total makespan and energy 
consumption of tasks executions. Bat algorithm, first proposed 
by Xing-She Yang [5], is a new meta-heuristic algorithm 
inspired by the echolocation of micro-bats to sense distances 
while detecting their prey. Micro-bats using this technique can 
find their prey and recognizes prey even in complete darkness 
Echolocation is the main specification of bats behavior. This 
means that the bat gives out sound pulses and listens to echoes 
to find preys and avoid collisions obstacles while flying. The 
Bat algorithm can have superiority performance than 
optimization algorithms and can solve many problems, 
including real world and practical engineering optimization 
problems [6]. So one aim of this paper is to introduce chaos 
into the standard bat algorithm. 

The rest of the paper is classified as follows: Section 2 is 
talking about related work for scheduling in cloud computing; 
Section 3 includes the background, classical Bat Algorithm 
and Chaos Theory; Section 4 describes the problem; Section 5 
discusses the main idea and how the new Bat Algorithm and 
Chaos Theory are integrated; Section 6 contains the 
simulations and results obtained; and Section 7 tells about the 
future scope and conclusion of this paper. 

II. RELATED WORKS 

Task scheduling is a critical issue in cloud computing, so a 
lot of researches have been done in this scope. This problem is 
of a known Np-Hard type issue [2],  [4], [7]-[9]. They belong 
Np-Hard including thousands of different issues with many 
applications. So far, no solution has been found for these 
issues in a reasonable time, and may not be found in the future 
at all. These also prove that there is no quick solution for 
them. If a solution found only for any of these issues, this 
solution would solve the most parts of such this issues. 
Solution based techniques on full search are not feasible for 
this kind of problems. The cost of schedules is very high. 
Metaheuristic-based techniques can overcome these problems 
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by providing near optimal solutions in reasonable time. For 
example, ACO algorithm is useful for solving separate 
optimization problems which requiring one path to reach a 
goal. It has been successfully for solving multidimensional 
knapsack problem, traveling salesman problem, job shop 
scheduling, and quadratic assignment problem, task 
scheduling in grid and cloud computing, and much more [3]. 
In [10], they have considered minimization of makespan as the 
objective function. Their objective function based on 
execution time and transfer time of tasks on VMs. The 
algorithm simulated with the number of tasks changing from 
100 to 1000 in the cloudsim simulation environment. ACO has 
been compared with RR and FCFS algorithms and 
experimental results show that when the number of tasks 
increased, ACO   execution gets a short time compared with 
RR and FCFS. For 1000 tasks, the algorithm able to decrease 
makespan in comparison with RR and FCFS. Recently, the 
genetic algorithm is useful metaheuristic for taking high-
quality solutions for combinatorial optimization problems, 
including the task scheduling problem [11]. Another 
competency of genetics is that its inherent parallelism can  
activate to reduce running time [12]. 

III. BACKGRPOUND 

A. Bat Algorithm 

The bat algorithm has been a recently proposed 
metaheuristic algorithm by Xin-She Yang [5], based on the 
echolocation of micro bats. In the real world, echolocation can 
diffuse within only a few thousandths of a second with a 
changing frequency. Micro bats use echolocation to search 
preys. All micro bats are insectivores and they use a type of 
sonar, called echolocation, to find preys and avoid obstacles. 
Now, we remind the standard bat algorithm according to the 
following rules: 

All bats use echolocation to sense distance and find prey, 
also they know the difference of food and obstacles with some 
magical method. 

Bats fly randomly with velocity Vi at location Xi with a 
permanent frequency Fmin, Fmax changing loudness A0 and 
wave length λ to search prey. They can intelligently tune the 
wavelength (or frequency) of their emitted pulses and tune the 
rate of pulse emission r ∈ [0, 1], relevant on the proximity of 
their aim. 

Although the loudness can change in many ways, we 
consider that the loudness changes from positive A0 to a 
minimum fixed value Amin. 

Initialize solutions: the virtual bats (solutions) have the 
positions Xi, and velocities Vi in a D-dimensional search 
space. They are randomly distributed in the possible search 
space. 

Generate  new  solutions: the  values  of  the  frequency  
Fmin  and  Fmax  is dependent on the dimensions of the issue. 
The positions and velocities of bats in every temporal interval 
are defined as follows: 

fi = fmin + ( fmax - fmin )   ,        (1) 

vi
t+1 

= vi
t 

+ ( xi
t 

- x* )   ,        (2) 

xi
t+1 = 

xi
t 

+ vi
t+1         

(3) 

Where β∈ [0,1] is a random vector and X* is the current 
global best solution. 

Local search: create a random number. If it is bigger than 
the i

th
 bat pulse emission rate (ri), then create the new bat. A 

new solution is generated around the current best solution 

If rand >ri         (4) 

  Xnew= Xold+  Amean
t
. 

Where  ∈ [-1, 1] is a random vector and At is the average 
loudness of all bats at time step t. ri is the i

th
 solution pulse 

emotion rate. 

Updating solutions by flying randomly: loudness is 
reduced and pulse emission rate is increased by using the 
equations as follows: 

If rand () <Ai  && f (xi) <f(x*), 

  F(x) =f (xi),       (5) 

  Ai
t+1= Ai

t
 

  ri
t+1=

ri (1-exp (-γt)) 

Where α and γ  [0, 1], Ai is the i
th

 bat loudness (xi) is the 
fitness value of i

th
 bat and f(x*) is fitness value of the best 

bat.Update the current global best solution by described the 
formulas until reached the termination condition. 

B. Chaos Theory 

In this world numbers are essential for seeing most natural 
phenomena, our surrounding world isn‟t a static system and 
this system change with the dynamism of time. When system 
change, the numbers represent system state in a temporal step. 
The dynamic systems have not a lawful period for 
representing the system states with numbers. The system can 
change in discrete time. For example, all animals and most of 
the insects have a one-year life cycle, and study of them 
requires that only we look on their life system once in a year. 
These systems are known as non-linear systems. In such 
systems, the system output is not proportional to the input. If 
variables changes in an initial time result may change of the 
same or another variable time. Therefore, the system changes 
are not proportional with the systems input. The non-linear 
systems could not be divided into smaller sections and be 
solved separately. They possess complete complexities. In 
non-linear sciences, non-linear dynamic systems are studied. 
Nature is a non-linear system. The non-linear systems are 
employed in studying various fields, such as Mathematics, 
Biology, Physics, Chemistry, and Computer sciences. 
Furthermore, the chaotic systems are very sensitive to initial 
values, and a small change in the initial values will have great 
changes in the output. The changes of dynamic systems in the 
discrete time called a map. In another discussion, the 
convergence of evolutional algorithms is mainly dependent on 
the initialization of its parameters. When the random 
parameters are used for initialization, different results are seen 
in various executions of this algorithm. For this reason, the 
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random variables are a key which may lead the algorithm to 
escape from local optimum to better results.  Some chaotic 
maps are well known and we can use them in the algorithm 
parameters initialization, such as Gauss Map, Tent map, Circle 
map, Iterative map, logistic map, Sinusoidal map. 

IV. PROBLEM DEFINITION 

A. System Model 

Cloud computing environment is used virtualization to 
map the resources to the virtual machines. The tasks classify 
according to QoS requirement, such as bandwidth, cost, 
resource distance, credibility  Finally, schedule the tasks to 
physical resources. This paper intends that when virtual 
resources meet tasks QoS requirement, using makespan and 
energy-aware algorithm schedule tasks to physical resources. 

B. Resources and Tasks 

R= {R1, R2… Rn} represents a set of resources, where Ri is 
the ith resource. Each resource implemented with a Dynamic 
Voltage scaling module [4]. If supply voltage and frequency 
decrease, it causes to reduce the energy consumption 
consumed by the resource.  Resource Ri represented as Ri 
{rcc, svs} where rcc is the resource computing capacity 
parameter of Ri, svs is the supply voltage strategy of ri. In svs, 
there is a relational vector between its supply power and 
frequency. That is Vi=[{vs1(i),fs1(i)};{vs2(i), 
fs2(i)};...;{vsl(max)(i),fsl(max)(i)}], where vsl(i) supplies 
power of resource Ri at DVS level sl, fsl(i) is the relative 
frequency coefficient within the range of [0,1]. In this paper, 
we represent 3 power supply strategies (voltage and relative 
frequency pairs), and 16 DVS levels which is shown in 
Table 1. 

T= {T1, T2... Tn} represents a set of independent tasks, 
where Tj is the jth task, W= {wj, 1<j<n} represents set of task 
computational workload and EXT= EXT [i, j] m×n is the 
matrix of task execution times in each resource. EXT [i, j] 
denotes an expected time for the execution of task Ti on 
resource Rj. 

C. Energy Consumption 

According to task computational workload and resource 
computing capacity, the execution time needed for executing 
task Ti on resource Rj defined as: 

EXT [i, j] = W (ti)/rcc (rj)      (6) 

Supply power and frequency decrease while tasks 
execution time increase, when task Ti execute on resource Rj 
at DVS level si, EXT matrix can be defined as follows: 

    [   ]  [
 

   ( )
    [   ] 

 

   ( )
    [   ]   

 

      ( )
    [   ] (7) 

Where EXT [i, j] can be calculated according to the 
Equation (7), {fs1(i), fs2(i),... , fsl(max)(i)} denotes the relative 
frequency insufficient, specified for strategy si at 
{s1,s2,...,sl(max)} DVS levels. The energy consumption model 
is derived from the power consumption module in 
complementary metal-oxide-semiconductor (CMOS) logic 
circuits. The power consumption of the CMOS-based 
processor defined to be the summation of capacitive, short-
circuit and leakage power. The capacitive power (dynamic 

power consumption) is the most significant factor of the 
power consumption [13]. It can be calculated in the following 
way: 

  P  . .  .        (8) 

Where A is the number of switches per clock cycle, C is 
the total capacitance load, v is the supply voltage, and f is the 
frequency. The energy consumed by resource Rj for the 
execution task Ti at DVS level sl can be defined as follows: 

 [i,j]   [(vs )(i)]
  [(fs )(j)] f    T  i,j,s    (9) 

Where    *  assumed constant for a given resource, 
vsl(i) is a voltage supply value for strategy si, Ri at DVS level 
sl for computing task ti, fsl(j) is the relative frequency, and 
ETC' [i, j, sl] is the lth coordinate of ETC' [i, j] vector. 

 i ∑
j∈T(i)

i∈L j)
{Eijl} +   [vsmin (i)]

 2
. [fsmin   (i)].f. Idle (i)]   

=    . { ∑
j∈T(i)

i∈L j)
  [vsmin (i)]

2
.[fsmin(i)] . f . Idle (i) (10) 

Where T (i) is the set of tasks assigned to resource Rj, L (j) 
is the set of DVS level used for these tasks on resource Ri, 
vsmin (i), fsmin (i) represents the minimum supply voltage and 
relative frequency in the idle time that resource turn into sleep 
mode and Idle (i) is an idle time of resource Ri. The idle time 
for resource Ri can be calculated in following way: 

Idle i= Makespan – completion (i)    (11) 

For the resource with makespan, the idle time is equal to 
zero. So total energy consumption is as follows [4]: 

 E_total=∑  i ∈       (12) 

TABLE I. DVS LEVELS AND PAIRS 

Pair3 Pair 2 Pair 1  

Rel.f 

(fs1) 

Vol 

(Vs1) 

Rel.f 

(fs1) 

Vol 

(Vs1) 

Rel.f 

(fs1) 

Vol 

(Vs1) 
Level 

1.0 1.75 1.0 2.2 1.0 1.5 0 

0.8 1.4 0.85 1.9 0.9 1.4 1 

0.6 1.2 0.65 1.6 0.8 1.3 2 

0.4 0.9 0.50 1.3 0.7 1.2 3 

  0.35 1.0 0.6 1.1 4 

    0.5 1.0 5 

D. Makespan 

In this paper the scheduling aim is to minimize makespan 
and total energy consumption. Generally, there are two 
solutions: 

1) Scheduling aims to find the smallest energy 

consumption when execution time is limited. That is 

E_opt=min(E_total),while 

makespan_opt<=makespan_expected. 

Where E_opt is the minimum energy consumption, 
makespan_opt is the minimum makespan that can have. 
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2) Scheduling aims to find the smallest energy 

consumption when the cumulative energy consumption 

limited, that is makespan_opt=min (makespan), while E_opt 

<= E_expected. Makespan can be described as follows: 

  Minimize f (cs) =   F max (s)          (13) 

Where f (cs) is a candidate solution and F define the 
completion time of task Ti on resource Rj. For example, the 
scheduler has eight independent tasks scheduled on two 
resources and the sequence of tasks is T6-T5-T2-T1-T7-T4-T3-
T0, Fig. 1 explains calculation method of makespan: 

 
Fig. 1. Makespan definition. 

We consider the scheduling as a bi-objective problem 
which aiming to find the right compromise between makespan 
and E_total. 

The obtained results of the considered functions have not 
same unit. For this purpose, we use normalization. The used 
normalization formula is as follows: 

Normalization(Q
c
) {

Q
c
-Q

i
 max)

Q
i
 max)-Qi min)

     Q
i
 max) Q

i
 min)

1                              Q
i
 max) Q

i
 min)

 

(14) 

Where Qc is the obtained result, Qi (max) is the maximum 
obtainable value, and Qi (min) is the minimum value can be 
obtained. We are used minimum makespan and minimum 
energy consumption equal to zero and maximum makespan 
and energy consumption obtained by sends all the tasks to the 
weakest resource. There are two parameters in the total fitness 
function, any changes in the parameters show the user‟s 
demands from the scheduler. In other words, these two 
parameters used as coefficients. The sum of the parameters 
should be equal to one so the fitness function of the bi-
objective scheduling is as follows: 

(  ) (normal-makespan)+(  )  (             )                (15) 

Table 2 shows the examples of possible states: 

TABLE II. FITNESS FUNCTION PARAMETERS 

Energy Makespan       

   1 0 

   0 1 

    0.5 0.5 

V. PROPOSED ALGORITHM 

A. Chaotic Bat Algorithm 

We describe a chaotic heuristic algorithm to send tasks to 
the makespan and energy aware resources, and we call it bi-
objective chaotic bat Algorithm for task scheduling. CBA use 
the execution time, the execution energy to improve the task 
scheduling. All bats have properties that explained in related 
works (Bat algorithm) in five sections. The initial population 
mainly aims to find the food/prey and a faster convergence, as 
well as improvement in the best global solution. Each bat has 
some other parameters as follows: 

α: is a loudness decay factor. It is also used as a cooling 
factor in the traditional simulated annealing algorithm. 

γ: is the pulse enhancement factor that used for adjustment 
of the pulse frequency. 

ri: which makes the local search is done further and with 
more accuracy. 

Ai: is loudness, which makes the algorithm explore the 
search space globally. 

In this section, we are used chaotic maps in different ways 
to tune the BA parameters and improve the performance. In 
chaotic sequences, the numbers are well distributed. Iterative 
map and sinusoidal map has had good performance in the 
initialization process. This specification can be effective in an 
evolutionary algorithm. This feature can get a better 
exploration in the evolutionary algorithm. So, for each bat, we 
used the sinusoidal map to initialize pulse emission rate and 
the iterative map for loudness frequency initialization[6]. 
Descriptions of the two maps are as follows: 

Iterative map: The iterative chaotic map with infinite 
collapses can be written as [6]. 

Xk+1=Sin(
  

  
)       (16)  

Sinusoidal map: we can define Sinusoidal map by the 
following equation: 

 Xk+1=   2 sin ( xk)     (17) 

Tasks randomly distributed between resources. If we 
consider „n‟ as an initial population, so we have  n  solutions 
(bats).We used the chaotic value distributions of 100 iterations 
for two maps with random initial values. 

VI. SIMULATION AND RESULTS 

Simulations were carried out to compare the optimization 
ability of the proposed algorithm (CBA) [14] in scheduling 
problem with the classical BA [5], GA [4], PSO with dynamic 

T6 

T1 

T7 

T3 

T0 

0 

3 
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20 
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inertia weight [15], [16] and Symbiotic organism [2]. We use 
chaotic maps for Performance improvements. The simulation 
carried out using Matlab (R2014a) and Table 3 shows 
parameter settings of the algorithms for task scheduling. We 
are considered the maximum algorithm iterations equal to 500, 
and in energy consumption and total fitness function we are 
used 1500 iteration to obtain convergence which is also 
considered as a condition for termination, and a fixed 
population n = 100 is used for all simulations. 

TABLE III. ALGORITHMS PARAMETERS 

BA 
[r=random initialize]  [fmin=0,fmax=number of resource] [α= 

0.9] [γ=0.9] [ A= random initialize] 

CBA 
[r= initialize using Sinusoidal map][fmin=0,fmax=number of 

resource][α=0.9][γ=0.9]    [A=initialize using Iterative map] 

PSO [w=0.4-0.9] [c1,c2=2] 

GA [cross over rate=0.9] [mutation rate=0.01] 

DSOS [number of organism=100] 

  

Web applications such as web services are usually run for 
a long time and their CPU requests are variable. Moreover, 
High-Performance Computing (HPC) applications have short 
life span and place a high demand on CPU. Furthermore, 
chosen statistical models for task sizes represents different 
scenarios of concurrently scheduling HPC and web 
applications. Uniform distribution depicts tasks where HPC 
and web applications have the same value. The left-skewed 
distribution represents a state where HPC applications to be 
scheduled more than web applications and right skewed 
distribution represents the Reverse this state. The normal 
distribution represents a tasks where a single type of 
application is scheduled. To test the ability of the algorithms, 
we randomly generated five types of scenarios (tasks) which 
shown in Table 4. We use 15 resources and random numbers 
(1000 to 10000) for processing capacity of each resource 
(million instructions per second)  and a number of machine 
instructions for each task generated using normal, uniform, 
right-skewed and left skewed distribution. The normal 
distribution contains more medium size tasks and fewer small 
and large size tasks. Left-skewed represents a few small size 
tasks and rather a large size tasks while right skewed is the 
opposite. Uniform distribution depicts an equal number of 
large, medium, and small size tasks. For each distribution, 20, 
30, 50, 100, 200, 300 tasks were generated which they have 
been named as scenarios. 

TABLE IV. SCENARIOS 

Scenarios  Number of tasks Number of resources 

Scenario1 20 15 

Scenario2 50 15 

Scenario3 100 15 

Scenario4 200 15 

Scenario5 300 15 

A. Scheduling Scenarios by Considering Makespan 

The following experiments and analysis are based on the 
makespan including CBA, BA, GA, DSOS and PSO  
algorithm with dynamic inertia weight for normal, uniform, 
right and left skewed generated tasks. 

 
Fig. 2. Average of makespan in 10 repetition (normal). 

 

Fig. 3. Average of makespan in 10 repetition (uniform). 

 
Fig. 4. Average of makespan in 10 repetition (Right-Skewed). 
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Fig. 5. Average makespan in 10 repetition (left skewed). 

B. Scheduling Scenarios by Considering Energy 

Consumption  

In this section, we test GA [4] and proposed algorithm by 
considering the energy consumption in four different 
distributions tasks. 

 

Fig. 6. Average energy in 10 repetition (normal). 

 
Fig. 7. Average energy in 10 repetition (uniform). 

 
Fig. 8. An example of convergency (right-skewed). 

 
Fig. 9. Average energy in 10 repetition (left-skewed). 

C. Scheduling Scenarios by Considering Total Fitness 

In this section, experimental results show the Bi-Objective 
results of running each algorithm. In this results,   value is 
equal to 0.5. Results shows that, by increasing the number 
tasks amount of energy consumption and makespan increases 
and proposed algorithm can obtain the better result than other 
algorithms. 

 
Fig. 10. Average total fitness in 10 repetition (normal). 
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Fig. 11. Average total fitness in 10 repetition (uniform). 

 
Fig. 12. Average total fitness in 10 repetition (right-skewed). 

 

Fig. 13. Average total fitness in 10 repetition (left-skewed). 

In Section VI-A, Fig. 2 to 5 show the average makespan of 
each algorithm by run 10 times in 5 scenarios with 5 type of 
tasks. It shows that the makespan will increase when the 
number of tasks increased. Also according to these figures, the 
proposed algorithm has achieved lower makespan than the 
other algorithms. It is noteworthy that when the number of 
incoming tasks are increased proposed algorithm has gained 
better results than GA but when the number of tasks is much, 

sometimes the CBA converged later than GA but obtained 
results are better than it. In section B As indicated, energy 
consumption is considered. Fig. 6 to 9 show the average 
energy consumption of each algorithm by run 10 times in 5 
scenarios with 5 type of tasks. In the last part (total fitness), 
Fig. 10 to 13 represent obtained results by considering the 
energy consumption and makespan. Results shows the sum of 
the normalized energy consumption and makespan multiplied 
by Theta coefficient. It is obvious the proposed algorithm can 
obtain better total fitness than another algorithm. It is 
noteworthy that in some scenarios, especially when the 
number of tasks is less both algorithm results are very near but 
with the increasing number of tasks proposed algorithm has 
overtaken from genetic algorithm. 

VII. CONCLUSION AND FEATURE SCOPE 

We have studied scheduling problem in cloud computing 
environments. This paper explained an advanced task 
scheduling algorithm based on chaos and the effect of using 
chaotic sequences for improvement of results. In this paper, 
the chaos maps have used to improve the performance of Bat 
Algorithm, as well as the global search by using a good 
distribution of numbers in order to escape the local optimum.  
The use of chaos is one of the techniques to tune some of the 
parameters in algorithms. In the recent optimization literature, 
chaos has become an active research topic and researchers 
paid special attention to it. By comparing obtained results by 
Chaotic Bat Algorithm and other algorithms, the results 
showed that the improvement of the makespan and energy 
consumption, due  to use of deterministic chaotic signals in 
part of constant parameters. Experimental results of the CBA 
proposed that the tuned algorithms can clearly improve the 
reliability and the convergence of the global optimality, and 
they also enhanced the quality of the results. When we use a 
CBA, running time of chaos maps leads to increase the total 
running time of the algorithm However, this time is minimal. 
Second, the algorithm late converged by taking energy 
Criterion when the number of tasks was much. An interesting 
question arises how some chaotic maps can improve the 
performance of an algorithm, while others do not. It is still not 
clear why the use of chaos in an algorithm to replace some 
parameters can change the performance. Experimental results 
show that the proposed algorithm in this problem is superior to 
other heuristics algorithms. 
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