
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

288 | P a g e

www.ijacsa.thesai.org

Word-Based Grammars for PPM

Nojood O. Aljehane

College of Computers & Information Technology

University of Tabuk,

Tabuk, Saudi Arabia

William J. Teahan

Department of Computer Science

Bangor University

Bangor, United Kingdom

Abstract—The Prediction by Partial Matching (PPM)

compression algorithm is considered one of the most efficient

methods for compressing natural language text. Despite the

advances of the PPM method for the English language to predict

upcoming symbols or words, more research is required to devise

better compression methods for other languages, such as Arabic

due, for example, to the rich morphological nature of the Arabic

text, where a word can take many different forms. In this paper,

we propose a new method that achieves the best compression

rates not only for Arabic text but also for other languages that

use Arabic script in their writing system such as Persian. Our

word-based method constructs a context-free grammar (CFG)

for the text and this grammar is then encoded using PPM to

achieve excellent compression rates.

Keywords—Component; context-free grammar (CFG);

grammar-base; word-based; Preprocessing; Prediction by Partial

Matching (PPM); encoding

I. INTRODUCTION

The Prediction by Partial Matching (PPM) compression
algorithm is one of the most effective kinds of statistical
compression. First described by Cleary and Witten in 1984 [1],
there are many variants of the basic algorithm, such as PPMA
and PPMB [1], PPMC [2], PPMD [3], PPM [4], PPMZ [5] and
PPMii [6]. Prediction in PPM depends on a bounded number of
previous characters or symbols, effectively using a Markov-
based approach. Despite the cost in terms of memory and the
speed of execution, PPM usually attains better compression
rates compared with other well-known compression methods.

In PPM, to predict the next character or symbol, different
orders of models are used, starting from the highest order down
to the lowest orders. An escape probability estimates if a new
symbol appears in the context [1], [2] and if an escape is
encoded, the algorithm will back-off to a lower order model.
The „full exclusions‟ mechanism [1] is used to significantly
improve compression by excluding the prediction of higher
order symbols when an escape has occurred since these
characters were not encoded [17]. Experimental results show
that not using full exclusions speeds up the execution time of
programs but compression is reduced.

However, when a PPM approach is applied to words rather
than characters, it is not clear what the most effective method
for encoding the text is. This is because there are issues of how
to encode the spaces and punctuation along with the text, how
to deal with capitalized words, whether to treat digit sequences
differently, how to deal with the much larger alphabet when
using full exclusions, and so on. This is compounded further
when considering certain languages, such as Arabic, which has
a rich morphological structure which potentially presents

further types of difficulties for word-based compression
compared to languages, such as English since the same word
can take many different forms.

As an illustration, the lists below in Table 1 show the most
common words in each of the examined texts. They are based
on an analysis of the Brown Corpus for American English [9],
the LOB Corpus for British English [10], the BACC [11] and
CCA [12] Corpora for Arabic text, the Hamshahri corpus for
Persian text [13] and the CEG corpus for Welsh text [16].

Substitution of these words using our context-free grammar
scheme and standard PPM can significantly improve overall
compression as shown below. For example, natural languages
contain common sequences of words that often repeat in the
same order, such as in English “the” , “of” and “and”, and for
the Arabic language in the BACC corpus , such as “فٖ “ ,”هي”
and so on. From Table 1, the most common word “the” for
both the American and British English is found to be “the”.
However, for these corpora if one treats capitalized words as
being distinct (that is, “the” is treated as distinct from “The”),
we find that the word “The” also appears in the top 20 ranked
words, but at different ranks (12 for the Brown Corpus versus
16 for the LOB Corpus). In contrast, the word “had” appears
with the same rank for both corpora. Certain words, such as
“from” and “at” appear in the list for one corpus but not for the
other.

 THE TOP COMMON 20 WORDS FOR THE BROWN, LOB, BACC, TABLE I.
CCA AND HAMSHAHRI TEXT CORPORA

Rank
Brown

Corpus

LOB

Corpus

BACC

Corpus

CCA

Corpus
Hamshahri

1 the the بسّزش فٖ هي

2 of of دستْز هي بي

3 and and سوتٔ علٔ قال

4 to a اٗي اى الله

5 a in حو٘د إلٔ ها

6 in that دز التٖ بالله

7 that is ٖاعلام عي ف

8 is was ْبٌ٘ادٓ ها أب

9 was for اظِازات لا محمد

10 for it َ٘صف ُرا عل

11 with to ٔكٌد ُرٍ عل

12 The be ٔافزّد الرٕ إل

13 as his بسآ أّ أى

14 he as ٖبس ّ عل

15 it on آّل كاى عبد

16 his The ٌَكسدًد هع ع

17 on his َكجا لن ل

18 be at كَ كل ثن

19 from as كرشتَ ذلك لك

20 had had ٕادازٍ ب٘ي الر

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

289 | P a g e

www.ijacsa.thesai.org

For Arabic text, the most common word for both the BACC
and ACC Corpora is found to be “ٖف” (in). Nevertheless, we
find that the word “اى” (that) also appears in the top 20 ranked
words, but at different ranks (4 for the ACC Corpus versus 6
for the BACC Corpus). In contrast, the word “هي” (from)
appears with the same rank for both corpora. Certain words
such as “ ٖالت” (which) and “َل” (for him) appear in the list for
one corpus but not for the other. For Persian text in the
Hamshahri Corpus, even if it uses Arabic script, the top 20
ranked words are noticeably different due to the difference
between these two languages.

From these lists, it is clear even just from examining the top
20 ranking words that there are important differences, and
therefore word-based compression schemes have to adapt
directly to the text being compressed in an online manner (as
PPM does) rather than use dictionaries created from general
sources. Another factor is that since the most frequent words
represent a significant proportion of the text, adaptive word-
based schemes can often lead to improved compression for
many languages. An added advantage of such schemes is that
much less symbols need to be encoded (for example, for
English, there is on average approximately five times less word
symbols than there are character symbols). However, finding
the most effective word-based compression is still an open
problem with word-based schemes under-researched compared
to character-based schemes. The comparison between the
effectiveness of word-based schemes with character-based and
parts-of-speech (tags) based ones also provides an interesting
tool for performing further linguistic analysis [8]. The main
contribution of the work described in this paper is the
improved word-based compression method for PPM. This is
due to parsing of the text to construct a word-based context
free grammar (CFG) which is then compressed using PPM.

The rest of the paper is organized as follows. Previous work
is discussed first. Then our new approach is discussed in the
next section. We discuss experimental results for various
natural language texts in order to evaluate how well the new
scheme performs compared to other well-known methods. The
summary and conclusions are presented in the final section.

II. PREVIOUS WORK

As stated, standard PPM word-based models predicts the
forthcoming symbol, starting from the highest order context;
but when the upcoming symbol has not appeared in this
context then a lower context is used and an escape symbol is
encoded. There have been a number of methods that have been
used to estimate the probability for these escape symbols [7],
[8].

Experiments indicate that the X1 method is the best
performing for English text in the most cases [8]. This method
is given by the formula:

Here, t1 denotes the number of symbols seen previously
only once in the context and Td is the frequency with which the
symbol occurs in the context. Therefore, this method estimates
the escape symbol probability proportionate to the number of
words that have appeared only once in the text.

 SOME MODELS FOR PREDICTING CHARACTERS AND WORDS TABLE II.
(TEAHAN, 1998)

C|C5 Model W|W Model

p(ci | ci-1 ci-2 ci-3 ci-4 ci-5) p(wi | wi-1)

 p(ci | ci-1 ci-2 ci-3 ci-4) p(wi)

 p(ci | ci-1 ci-2 ci-3) Character model

 p(ci | ci-1 ci-2)

 p(ci | ci-1)

 p(ci)

 pe q(ci)

Experiments for the English language show that word
based models in Table 2 presents the best performance among
other models [8].

Model C|C
5
 is a PPM character model of order five that

predicts the probability of character symbols and used as a
compression baseline. In this model, the formula for the
probability of text string S of m characters is given by:

 ∏ |

Where, the preceding five characters in the text is used to
estimate the probability of the forthcoming symbol.

This estimate of the probability for the previous formula

depends on the escape method (in Table 2, the symbol →

denotes an escape). In character based models, if the highest
order fails to predict forthcoming symbol, the probability of
escape is encoded using the next highest order.

The second model W|W, is a PPM order one word-based
model that predicts the probability of word symbols. In this
model, the estimation of the probability for the forthcoming
word depends on the previous word in the text as represented
by the following formula for the probability of text string S of n
words:

 ∏ |

Where, p denotes the probability of the symbols in the
sequence of the text S based on words. If the word is not
predicted by this model, then an escape is encoded down to the
order 0 model. If the word still has not been seen in this
context, then a further escape is encoded followed by each
character in the word being encoded separately using the
standard PPM character-based model.

III. WORD-BASED GRAMMARS FOR PPM (GRW-PPM)

A new approach based on word-based context free
grammars (CFGs) for compressing text files is presented here.
This algorithm, which we call GRW-PPM (which is short for
grammar word-based pre-processing for PPM) uses both CFGs
and PPM as the basis of a universal general-purpose adaptive
compression method for text files.

In our approach, we essentially parse words, digits, spaces
and punctuation in the source file to first generate a grammar
with rules and terminal and non-terminal symbols representing
each of these text elements. We then substitute every time

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

290 | P a g e

www.ijacsa.thesai.org

when one of these text elements occurs in the source text with
the single unique non-terminal symbol as specified by its rule
in the grammar. This is done during the pre-processing phase
prior to the PPM compression phase which is applied to the
sequences of non-terminal symbols for words, digits and
spaces and punctuation separately.

Our method replaces sequences of words (n-grams) in the
text as they are processed from beginning to end in a single
pre-processing pass. The PPM algorithm is used as the encoder
once the sequences have been replaced. Unlike PPM, our
method is off-line during the phase which generates the
grammar.

Our approach adapts the W|W word-based method and the
character n-graph replacement pre-processing approach of
Teahan [8] by using an off-line technique to generate the list of
word n-grams first from the source file being compressed.
However, our approach is considered within a grammar-based
context instead. The main difference with the prior word-based
schemes (such as W|W) is the use of PPM to encode the
sequence of word symbols directly without the need to escape
to a separate character-level encoding and also treatment of
digits as word symbols (see below).

The grammar in GRW-PPM shares the same characteristic
as Sequitur by Neville-Manning and Witten [14] and GR-PPM
[15] which is that no pair of symbols appears in the grammar
more than once. This property ensures that every n-gram in the
grammar is unique, a property called non-terminal uniqueness
using the same terminology proposed by Neville-Manning and
Witten. To make sure that each rule in the grammar is useful,
the second property, referred to as rule utility, is that every rule
in the grammar is used more than once in the corrected text
sequence.

Fig. 1 shows the whole process of GRW-PPM. First, the
original text will be parsed and word, digit and
space/punctuation tokens will be extracted then the CFG will
be generated by replacing them in the text wherever they occur
with the non-terminal symbols as defined by their rules in the
grammar. After the rules have been produced, the grammar is
encoded by using PPMD, and the resulting compressed text is
then sent to the receiver. The receiver then decodes the
grammar by using PPMD to decompress the compressed file
that was sent. The reverse mapping is then facilitated by using
the decoded grammar to regenerate the original source text.

Table 3 illustrates the process of GRW-PPM using a
sentence referring to the song by Manfred Mann: “The song
‘Do Wah Diddy Diddy Dum Diddy Do’ was recorded on 11
June 1964 and released on 10 July”. First, the original text
will be parsed from left to right and new non-terminal word
and digit symbols (S1 S2 S3 S4 S5 S5 S6 S5 … S12 S9 D3 S13) will
be substituted for each unique n-gram (defined as being
separated by the intervening space and punctuation symbols).
For this example (and for the experiments described below),
we use single words (unigrams), although the method works in
a similar way for word bigrams and trigrams. Referring to
Table 3, we replace the unigram “The” with non-terminal
symbol S1, unigram “song” with non-terminal symbol S2,
unigram “Do” with non-terminal symbol S3 and so on. We use
bullet points for spaces to make them visible. Spaces (white-

space) and punctuation define the word boundaries (i.e. each
word is made up of sequences of anything that is not white-
space or punctuation).

Fig. 1. The complete compression and decompression process of GRW-

PPM.

Fig. 2. Example of Arabic text.

 AN EXAMPLE OF HOW GRW-PPM WORKS FOR A SAMPLE TABLE III.
ENGLISH TEXT

Sequence:

The•song•“Do•Wah•Diddy•Diddy•Dum•Diddy•Do”•was•recorded•on•11•June

•1964•and•released•on•10•July.

Grammar:

S → S1 S2 S3 S4 S5 S5 S6 S5 S3 S7 S8 S9 SD

S10 SD S11 S12 S9 SD S13

V → S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

S13

D → D1 D2 D3

P → P1 P2 P1 P1 P1 P1 P1 P1 P3 P1 P1 P1 P1

P1 P1 P1 P1 P1 P1 P4

S1 → “The”

S2 → “song”

S3 → “Do”

S4 → “Wah”

S5 → “Diddy”

S6 → “Dum”

S7 → “was”

S8 → “recorded”

S9 → “on”

S10 → “June”

S11 → “and”

S12 → “released”

S13 → “July”

D1 → “11”

D2 → “1964”

D3 → “10”

P1→ “•”

P2 → “•””

P3→ ““•”

P4→ “.”

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

291 | P a g e

www.ijacsa.thesai.org

Table 4 shows the same process for a sample Arabic text
(Fig. 2) which translates into English as follows: “The number
of shares traded in the market, „Saudi‟ were more than 277
thousand shares, and the number of transactions were more
than 132 thousand transactions.” However, in this case the n-
grams are generated from right to left instead. Each unique
Arabic unigram has a non-terminal symbol associated with it.
For instance, words “عدد“ ,”ّبلغ” and “الأسِن” are replaced by
non-terminal symbols S1 to S3, respectively.

In the grammar examples, the S rule is used to represent the
word and digit symbols sequence. Separate rules (S1, S2, S3 …)
are used, one for each word, to specify each symbol‟s contents
directly using a non-terminal (denoted by characters
surrounded by “ ‟s). The V rule enumerates each of these
words in order; it is used to represent the vocabulary (the
sequence of unique words as they occur in the text). Each digit
sequence is encoded within the S sequence by using a special
symbol to indicate the positions of the digits in the sequence
(as represented by SD in the above examples). The actual
contents of each digit symbol is specified by the D rule and
encoded separately to the word and digit symbols. We also
process spaces and any punctuation characters in order to be
able to fully decode the original text back. These are
represented by the P rules for the grammars in the above
examples and are similarly encoded separately to the word and
digit unigram symbols. Moreover, the grammar will be
transmitted to the receiver once it has been constructed after all
unigrams are substituted in the original text with their non-
terminal symbols.

The grammar represents a complete description of the text
and therefore it is possible to devise a lossless text compression
scheme by directly encoding it in some manner since it is
possible for the decoder to regenerate the complete source text
losslessly once the grammar has been decoded.

 ANOTHER EXAMPLE GRAMMAR GENERATED BY GRW-PPM TABLE IV.
FOR A SAMPLE ARABIC TEXT

Sequence:

ألف • 722•هي•أكثس“•السعْدٕ•”السْق•فٖ•الأسِن•عدد•ّبلغ
صفقة.•ألف•237•هي•أكثس•الصفقات•عدد•ّبلغ•سِن•

Grammar:

S → S1 S2 S3 S4 S5 S6 S7 S3 S7 S8 SD S9 S10 S1 S2

S11 S7 S8 SD S9 S12

V → S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

D → D1 D2 D3

P → P1 P1 P1 P1 P2 P3 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1
P1 P1 P4

S1 → “ ّبلغ ”

S2 → “عدد”

S3 → “الأسِن”

S4 → “ٖف”

S5 → “السْق”

S6 → “ٕالسعْد”

S7 → “أكثس”

S8 → “هي”

S9 → “ألف”

S10 → “سِن”

S11 → “الصفقات”

S12 → “صفقة”

D1 → “277”

D2 → “132”

P1→ “•”

P2→ ““•”

P3 → “•””

P4→ “."

As stated, we have found one effective means for encoding
the grammar is to use PPM. Specifically, the grammar is
encoded by using PPMD to separately encode the four main
elements (words, vocabulary, digits and spaces/punctuation as
represented by the S, V, D and P rules). For Rule S, we can
encode the sequence of symbol numbers or letters that appear
in the rule. For example, in Table 3, the sequence of symbol
numbers/letters for Rule S is as follows: 1 2 3 4 5 5 6 5 3 7 8 9
D 10 D 11 12 9 D 13. This represents the sequence of id
numbers assigned to each unique word with id numbers
starting from 1 and incrementing by one whenever a new word
is encountered. The letter D indicates when a digit sequence
has occurred. Clearly, the sequence for rule S will be highly
repetitive for long sequences of natural language text because
of the presence of repeated words and frequent function words
(such as “the” and “and” for English and “هي” and “ ٖف” for
Arabic as shown in Table 1). More specifically, we have found
PPMD to be very effective at encoding this sequence.

However, unlike W|W (which uses similar PPM-like
methods to encode word symbols in this manner), our method
simply uses PPMD with a fixed maximum alphabet size (since
this is known when the grammar has been fully constructed for
the whole text). Also, our method does not need to encode an
escape down to a separate character-level as W|W does in order
to encode novel words when they occur.

Instead, it uses the standard PPMD encoding mechanism
(where a novel symbol will be encoded using a default order -1
model where all symbols are equiprobable).

For practical purposes, rule V and rules S1, S2, S3, … can
simply be represented as a string of text that contains all the
unique words as they appear in the source text one after
another with a separator (such as a space character) used to
indicate the end of the previous word and the beginning of the
next one. Similarly, we can use the same encoding technique
for the digit sequences for rule D and rules D1,D2,D3,… and for
the spaces and punctuation for rule P and rules P1,P2,P3,….
That is, both the digits and punctuation can be encoded
effectively by using PPMD to encode one text string that
contains all the unique digit sequences and another text string
that contains the unique space and punctuation sequences
respectively. A space character can be used as a separator for
the digits, but for the punctuation, a different separator is
needed. We use the letter “W” as the separator in this case to
mark where the words are.

As an illustration, Table 5 presents the symbols or text that
is being encoded for the four elements (symbols, vocabulary,
digits, spaces and punctuation) for the beginning of the Brown
corpus. All are encoded directly by PPMD as text except for
the Symbols element which is treated as a sequence of numbers
instead.

The decompression process first uses PPMD to decode the
four separate elements and then re-constructs the full grammar
from them. During the subsequent regeneration phase, the
grammar is then used to exactly regenerate the original source
text character for character (i.e. the method is completely
lossless). Whenever a previously unseen symbol is encountered
as the sequence specified by the S rule is being processed, the
current word is read from the sequence specified by the V rule
and then the position is moved along to the next word.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

292 | P a g e

www.ijacsa.thesai.org

 WHAT THE DIFFERENT TEXT ELEMENTS LOOK LIKE FOR THE BEGINNING OF THE BROWN CORPUS TABLE V.

Brown Corpus (text at the start of the corpus):

 The Fulton County Grand Jury said Friday an investigation

of Atlanta‟s recent primary election produced “no evidence” that
any irregularities took place. The jury further said in term-end

presentments that the City Executive Committee, which had over-all

…

Symbols Vocabulary Digits Spaces & Punctuation

2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24

2 25 26 7 27 28 29 30 20 31 32

33 34 35 36 37 38 39 11 31 16

40 31 41 42 43 11 31 32 11 12

44 31 45 27 35 31 16 46 47 2

48 49 28 25 36 50 51 52 3 53

54 55 56 57 58 59 60 11 61 …

The Fulton County Grand Jury said

Friday an investigation of Atlanta s

recent primary election produced no

evidence that any irregularities took

place jury further in term end

presentments the City Executive

Committee which had over all

charge …

1 1 2 2 1913 71 74 637 1937 1923 1

13 1962 8 1961 100 30 3 4 1958 50

10 87 31 29 5 13 1 119 402 18 17

63 31 300 000 6 13 451 500 157

460 88 000 182 17 000 1 000 12 3

81 65 4 22 1 4 250 114 4 5 000 000

15 000 000 24 12 30 24 4 150 13

1961 62 10

…

 W W W W W W W W W

W W'W W W W W "W W" W
W W W W. W W W W W W-W

W W W W W W, W W W-W

W W W W, "W W W W W W W
W W W" W W W W W W W W W.

 W W-W W W W W W W W
W W W W W W W W W W

"W" W W W-W W W W W W

W-W W W W&. "W W W W
W W W W W", W W W, "W W

W W W W W, W W W W W W W

W W W". W W W W W W W…

The P rule is used to insert the punctuation between the
word and digit symbols as they are encountered in the S rule.
Whenever a digit is signified by the SD symbol for this rule, the
current digit symbol is read from the sequence specified by the
D rule, which is then inserted into the decoded output sequence
and the position then moves along to the next digit symbol.

Algorithm 1 summarizes the algorithm using pseudo-code.
Lines 1 through 15 are for the n-gram tokenizer. Line 3 starts
the for loop to read the n-grams in the input file. Lines 4
through 9 check if the n-gram is a word; if it is, it prints the n-
gram to the Grammar file, assigns each id numbers with ids for
unique n-grams increasing with each new n-gram that is found
and also prints a W to the Spaces & Punctuation file. Lines 10
through 13 checks if this n-gram is a digit; if it is, it adds this
digit to the digit file and prints W to the Spaces & punctuation
file. Lines 14 and 15 checks if this n-gram is punctuation or
space; if so these are added to the Spaces & Punctuation file.
Line 16 compresses the final text for the four files by using
PPMD.

A further improvement of our approach, both in terms of
compression and execution speed, can be gained by further
processing the files in the following manner. The main
disadvantage of the Symbols file is that it consists of many
singletons that occur only once in the text and doubletons that
occurs only twice [18]. Singletons and doubletons are
detrimental to the encoding efficiency because they do not give
any useful reference information [19]. In addition, singletons
incur an unnecessary extra cost in our scheme because their
symbol numbers are unique and therefore cause the alphabet
size to be incremented by 1 each time they occur (which is
frequently due to the Zipf‟s Law-like nature of natural
language text). As a result, the alphabet size can be
substantially higher when these are present. A large alphabet
for PPM is undesirable when using the full exclusions
mechanism [1] that PPM uses for its encoding as it
substantially slows down execution speeds due to the need to
exclude symbols already seen in the higher orders from lower
order predictions.

In order to overcome these problems and therefore improve
our new method, we process the Symbols file to replace all
singletons in the Symbols file with the same special symbol
wherever they occur. For example, for the Symbols stream “1 6
7 6 7 7 4 5” there are three singletons – 1, 4 and 5. These

singletons get replaced by a special symbol (, say) and the

Symbols sequence being encoded becomes “ 6 7 6 7 7 ‟.
Each singleton can be readily decoded once the special symbol
is encountered in the Symbols stream which signals to the
decoder to read the characters for the word from the next set of
characters in the Vocabulary stream up until the next word
separator character. For our example, let‟s say that the
characters in the Vocabulary stream are “one six seven four
five”. When replacing just singletons in the Symbols stream,
there is no need to change this Vocabulary stream since the
decoder will have all the necessary information to decode each
word since singletons only occur once. The only effect is that
the Symbols stream becomes slightly more compressible with a
much smaller alphabet which significantly speeds up
compression speeds when performing full exclusions as shown
below.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

293 | P a g e

www.ijacsa.thesai.org

We also have an option to replace doubletons and tripletons
(and so on) wherever they occur in the Symbols file if we wish.
However, when replacing non-singletons in this case, there is
no way to decode the characters when the word is being
replaced the second time or subsequent times (for tripletons
etc.) so a simple expedient is to repeat the word character for
character in the Vocabulary stream whenever it occurs again.
Using the previous example again, if we were to replace
singletons and doubletons (but not tripletons), then the

Symbols sequence would now be encoded as “ 7 7 7

” since the symbol 6 appears twice (i.e. it is a doubleton) but
symbol 7 appears three times (i.e. it is not a singleton or
doubelton). In the Vocabulary stream in this case, the
characters for symbol 6 would appear twice, i.e. it would now
become “one six seven six four five” since the word “six” is a
doubleton and therefore appears again in this sequence.
Clearly, the size of the Vocabulary stream now will grow
because of the presence of the repeated words and this can
affect the overall compression, but this is offset by the
significantly faster processing since the alphabet size in the
Symbols stream is much smaller.

In the experimental results below, we use the following
labels for the variants of our algorithm: GRW-PPM for our
standard algorithm; GRW1-PPM for when singletons are
replaced by the special symbol; GRW2-PPM for when both
singletons and doubletons are replaced; GRW3-PPM for when
all the singletons, doubletons and tripletons are replaced; and
GRW4-PPM for when all the singletons, doubletons, tripletons
and quadrupletons are replaced.

IV. EXPERIMENTAL RESULTS

This section discusses experimental results using GRW-
PPM and its variants described above for compression of
various text files. We compare our new method with other
compression schemes. Also, we discuss in this section the
encoding execution times for GRW-PPM with and without
using the full exclusions mechanism that PPM uses for its
encoding.

In this experiment, the GRW-PPM encoding is divided into
four parts. The four parts are for the Grammar, the Symbols,
the Digits and the Spaces and Punctuation. Order 5 PPMD is
used for the Grammar, order 1 PPMD for the Symbols, order 4

PPMD for the Digits and for Spaces and Punctuation, order 4
PPMD is used. Experiments showed these different orders
were the most effective at compressing the different text
elements.

Table 6 illustrates the compression ratio for the four parts.
The compression ratio is calculated by multiplying the
compressed output size in bytes times 8 divided by the original
input file size in order to determine the contribution each part
has to the overall encoding cost. As shown in the table, the
Digits part has the smallest compression rate for the different
languages. Also, the compression rate for Grammar and Spaces
and Punctuation are small compared to the Symbols part for
the Brown, LOB, CEG, Hamshahri and BACC corpora.

As shown in Table 7, order 1 GRW3-PPM significantly
outperforms order 1 GRW-PPM as it has the best compression
ratio for the corpora being compressed. The improvement of
GRW3-PPM over GRW-PPM occurs for all texts and ranges
from over 2% to 4.2% for the BACC corpus of Arabic text.

From our experiments as shown in Tables 7 and 10 for
different text files, we found that full exclusions improves the
compression rate. However, this increases the execution time
slightly because for full exclusions all symbols are removed for
prediction in the lower order level if they have already been
seen in the higher order. (There may be many symbols needing
to be excluded depending on the context.) The configuration of
our test machine is 4 GB GHz intel Core i5, with 4GB internal
memory.

It is clear from Tables 8 and 9 that not using full exclusions
result in a worse compression rate. The improvement of
GRW1-PPM and GRW2-PPM with full exclusions over
GRW1-PPM and GRW2-PPM without using full exclusion
ranges on average from just over 4% to 5.4% for all texts.
However, the advantage in not performing full exclusions is
that this runs on average 3% to 20% more quickly for different
texts.

Table 11 shows an interesting result when comparing
GRW-PPM and GRW3-PPM with PPMD and W|W. It is clear
that GRW3-PPM on average significantly outperforms W|W.
GRW3-PPM shows an average 7.1% improvement over W|W.
Also, it illustrates that there are significant differences between
each of the compression methods for different languages.

 COMPRESSION RATIOS FOR GRW-PPM IN THE FOUR ELEMENTS FOR THE DIFFERENT SAMPLE TEXTS TABLE VI.

File
Language or

Dialect
Size

Symbols

(bpc)

Vocabulary

(bpc)

Digits

(bpc)

Spaces &

Punct.

(bpc)

Overall

(bpc)

Brown American English 5968707 1.698 0.226 0.014 0.278 2.21

LOB British English 6085270 1.628 0.217 0.016 0.191 2.05

BACC Arabic 31018167 1.078 0.143 0.006 0.173 1.40

Hamsh. Persian 1120834 0.982 0.311 0.042 0.101 1.43

CEG Welsh 6753317 1.284 0.147 0.089 0.214 1.73

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

294 | P a g e

www.ijacsa.thesai.org

 COMPRESSION RATIOS FOR GRW-PPM WITH FULL EXCLUSIONS COMPARED WITH GRW1-PPM, GRW2-PPM AND GRW3-PPM PERFORMANCE TABLE VII.
FOR DIFFERENT NATURAL LANGUAGES

File GRW-PPM (bpc) GRW1-PPM (bpc) GRW2-PPM (bpc) GRW3-PPM (bpc) GRW4-PPM (bpc)

Brown 2.21 2.16 2.15 2.14 2.14

LOB 2.03 1.99 1.98 1.98 1.98

BACC 1.40 1.35 1.34 1.34 1.34

Hamsh. 1.43 1.41 1.40 1.39 1.39

CEG 1.73 1.70 1.69 1.69 1.69

Average 1.76 1.72 1.71 1.71 1.71

 GRW-PPM WITHOUT FULL EXCLUSIONS COMPARED WITH GRW1-PPM, GRW2-PPM AND GRW3-PPM PERFORMANCE FOR DIFFERENT NATURAL TABLE VIII.
LANGUAGES

File GRW-PPM (bpc) GRW1-PPM (bpc) GRW2-PPM (bpc) GRW3-PPM (bpc) GRW4-PPM (bpc)

Brown 2.35 2.33 2.23 2.23 2.23

LOB 2.14 2.11 2.07 2.06 2.06

BACC 1.49 1.45 1.43 1.43 1.43

Hamsh. 1.52 1.48 1.46 1.46 1.46

CEG 1.80 1.76 1.76 1.75 1.75

Average 1.86 1.82 1.79 1.79 1.79

 EXECUTION TIMES FOR GRW1-PPM, GRW2-PPM, AND GRW3-PPM WHEN NOT USING FULL EXCLUSIONS TABLE IX.

File GRW1-PPM (seconds) GRW2-PPM (seconds) GRW3-PPM (seconds) GRW4-PPM (seconds)

Brown 722.25 481.15 389.04 320.10

LOB 596.83 583.66 353.13 296.02

BACC 5655.20 4156.35 2339.16 3179.45

Hamsh. 2544.21 1375.30 965.34 843.35

CEG 275.82 198.56 193.31 138.03

 EXECUTION TIMES FOR GRW1-PPM, GRW2-PPM, AND GRW3-PPM WHEN USING FULL EXCLUSIONS TABLE X.

File GRW1-PPM (seconds) GRW2-PPM (seconds) GRW3-PPM (seconds) GRW4-PPM (seconds)

Brown 760.83 600.05 471.92 342.59

LOB 670.20 436.98 328.12 329.57

BACC 6149.99 5292.56 3693.99 3320.88

Hamsh. 3260.91 2062.56 1268.33 916.22

CEG 302.71 264.58 239.56 173.57

 COMPARING THE PERFORMANCE OF THE PPMD, PPM WORD-BASED, GRW-PPM AND GRW3-PPM MODELS TABLE XI.

File Size PPMD Order4 (bpc) W|W Order4 (bpc) GRW-PPM Order1 (bpc) GRW3-PPM Order1 (bpc)

Brown 5968707 2.22 2.13 2.21 2.14

LOB 6085270 2.03 1.96 2.05 1.98

BACC 31018167 1.57 1.59 1.40 1.34

Hamsh. 1120834 1.75 1.79 1.43 1.39

CEG 6753317 1.69 1.70 1.73 1.69

Avg. 1.85 1.83 1.76 1.70

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

295 | P a g e

www.ijacsa.thesai.org

For instance, for American English text, W|W achieves the
best compression rate compared with other models, with a
3.6% improvement over GRW-PPM and a 0.45% improvement
over GRW3-PPM. For British English text, W|W achieves a
4.3% improvement over GRW-PPM and a 1.0% improvement
over GRW3-PPM. For Welsh, GRW3-PPM and PPMD attain a
2.3% improvement over GRW-PPM and approximately a 1.0%
improvement over W|W. For Arabic text, GRW3-PPM
outperforms the other models, attaining a 14.6% improvement
over PPMD and a 15.7% significant improvement over W|W.
For Persian text, GRW3-PPM exceeds the other models, with a
22.3% improvement over W|W (see Fig. 3).

Fig. 3. Comparing the compression performance between the various

methods for different languages.

V. CONCLUSIONS

In this paper, a new word-based grammar scheme (GRW-
PPM) has been described for compressing natural language
text. Our method creates a context-free grammar by replacing
words and repeated sequences of digits, spaces and punctuation
represented as non-terminal symbols in the text as it is
processed from beginning to end in a single pre-processing
pass. The PPM text compression algorithm is then used as the
compression algorithm to encode the sequences of non-
terminal sequences once they have been constructed for the
whole text. Unlike PPM which is an online method, our
method is off-line during the phase which generates the
grammar.

In our experimental evaluation, GRW-PPM (and further
such as variants GRW2-PPM and GRW3-PPM) have been
compared with other well-known schemes on various language
corpora for the English, Welsh, Arabic and Persian languages.
The best performing scheme for the languages that use Arabic
script (Arabic and Persian) is GRW3-PPM, followed by the

previous best performing word-based PPM models (W|W) then
the standard character-based PPMD scheme. For the English
language, our experiments show that the word-based PPM
models (W|W) is the best compared with standard PPM and
GRW-PPM. For Welsh text, the best results are achieved using
the standard character-based PPMD scheme and GRW3-PPM.
Also, GRW3-PPM significantly outperforms GRW-PPM itself
for different languages.

REFERENCES

[1] J. Cleary and I. Witten, “Data compression using adaptive coding and
partial string matching,” Commun. IEEE Trans., vol. 32, no. 4, pp.
396–402, 1984.

[2] A. Moffat, “Implementing the PPM data compression scheme,” IEEE
Trans. Commun., vol. 38, no. 11, pp. 1917–1921, 1990.

[3] P. Howard, “The design and analysis of efficient lossless data
compression systems,” Ph.D. dissertation, Dept. Comput. Sci.,Brown
Univ., Providence, RI, Jun. 1993.

[4] J. Cleary and Teahan, W. “Unbounded Length Contexts for PPM,”
Computing Journal, vol. 40, nos. 2 and 3, pp. 67–75, Feb. 1997.

[5] C. Bloom. “Solving the problems of context modeling.” Informally
published report, see http://www.cbloom.com/papers. 1998.

[6] D. Shkarin. “PPM: One step to practicality”. Proc. Data Compression
Conference, pp. 202-211, 2002. IEEE.

[7] I. H. Witten and T. C. Bell. The zero-frequency problem: Es- timating
the probabilities of novel events in adaptive text compression. IEEE
Transactions on Information Theory, 37(4):1085–1094, 1991.

[8] W. Teahan, “Modelling English text,” Ph.D. dissertation, School of
Computer Science, University of Waikato, 1998.

[9] W. Francis, W. and Kucera, H. “Brown corpus manual.” Brown
University. 1979.

[10] S. Johansson. “The tagged LOB Corpus: User s Manual.” 1986.

[11] W. Teahan and K. Alhawiti,“pre-processing for PPM: Compressing
UTF-8 encoded natural language text,” Int. J. Comput., vol. 7, no. 2, pp.
41–51, Apr. 2015.

[12] L. Al-Sulaiti and E. S. Atwell. The design of a corpus of contem- porary
Arabic. International Journal of Corpus Linguistics, 11(2):135– 171,
2006.

[13] A. Ahmad et al., “Hamshahri: A standard Persian text collection,”
Knowledge-Based System, vol. 22, no. 5, pp. 382–387, 2009.

[14] C. Nevill-Manning and I. Witten,“Identifying hierarchical structure in
sequences: A linear-time algorithm,” J. Artif. Intell. Res.(JAIR), vol. 7,
pp. 67–82, 1997.

[15] Teahan, W. J. and Aljehane, N. O., “Grammar-Based Pre-Processing for
PPM,” IJCSIT, vol. 9, no. 1, 2017.

[16] N. C. Ellis et al., “Cronfa Electroneg o Gymraeg (CEG): a 1 million
word lexical database and frequency count for Welsh,” 2001.

[17] T.C. Bell, J.G. Cleary, and I.H. Witten. Text Compression. Prentice
Hall, New Jersey, 1990.

[18] ISO/IEC JTC1/SC29/WG1 N339. Xerox Proposal for JBIG2 Coding,
June 1996.

[19] Y. Ye and P. Cosman, “Fast and memory efficient text image
compression with JBIG2,” IEEE Trans. image Process., 2003.

