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Abstract—Detecting redundant nodes and scheduling their
activity is mandatory to prolong the lifetime of a densely-deployed
wireless sensor network. Provided that the redundancy check and
the scheduling phases both help to preserve the coverage ratio
and guarantee energy efficiency. However, most of the solutions
usually proposed in the literature, tend to allocate a large number
of unnecessary neighbor (re)discovery time slots in the duty-
cycle of the active nodes. Such a shortcoming is detrimental to
battery power conservation. In this paper, we propose a crossing
points-based heuristic to fast detect redundant nodes even in
heterogeneous networks; then, an integer linear program and
a local exclusion based strategy to respectively, formulate and
solve the sensing unit scheduling problem. Simulations show that
the resulting localized asynchronous protocol outperforms some
state-of-the-art solutions with respect to coverage preservation
and network lifetime enhancement.
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I. INTRODUCTION

Wireless sensor networks (WSNs) are composed of small
electronic resource-limited devices that are capable to measure
physical quantities in their environment. To collect information
in remote or hostile areas, such networks require a random
deployment of large number of nodes. However, this high
node density leads to a redundantly monitored Field of Interest
(FoI) that favors energy wastes and decreases network lifetime.
Therefore, it is mandatory to work towards detecting and
turning off all redundant nodes while preserving the area
coverage ratio required by the underlying application.

Solutions for this kind of redundancy check are often
categorized into deterministic and probabilistic ones [1]. Deter-
ministic methods require that nodes have an exact knowledge
of their positions whereas probabilistic ones try to relax this
constraint.

As for putting redundant nodes to sleep state, it requires
scheduling their duty-cycle. Techniques that are often used
for that purpose can also be categorized into deterministic
and probabilistic ones. Deterministic solutions are based on
self-inactivation or sequential activation techniques. Whereas,
probabilistic ones use more or less complex probability laws
to calculate states transitions durations.

The above-mentioned coverage optimization processes lead
to two well-known NP-hard problems, namely, the minimum
set cover problem [2], [3] and the sleep scheduling problem
[4]. Most of the solutions usually proposed for the first process
have relatively good accuracy and precision ratios. While

solutions for the second process tend to allocate a large number
of unnecessary neighbor (re)discovery time slots in the duty-
cycle of the active nodes. Such a shortcoming causes message
overhead.

In this paper, we use a crossing points-based technique
to detect redundant nodes in heterogeneous networks. Then,
we formulate the scheduling problem as a special case of the
general Maximum Set Packing problem using an integer linear
program.

We propose a local mutual exclusion based scheduling
scheme from a metaheuristic referred to as GRASP (Greedy
Randomized Adaptative Search Procedure) that helps to re-
duce active nodes’ neighbor discovery frequency and balance
their energy depletion. The resulting asynchronous localized
protocol increases network lifetime and preserve the coverage
ratio. A second contribution of this paper is a sleep scheduling
strategy that takes into account energy wastes due to state
transition.

The rest of the paper is organized as follows. In Section
II, we review some major related solutions recently proposed
in the literature. Then, we detail our contribution in Section
III. We evaluate its performance by analysis and simulation in
Section IV. The results we obtained are discussed in Section
V. Finally, we conclude the paper in Section VI.

II. RELATED WORK

Coverage optimization in WSNs consists of two steps,
namely, redundancy detection and sensing unit sleep schedul-
ing. In this paper, we focus on area k-coverage, i.e. we assume
that the underlying application requires that every points in the
Field of Interest (FoI) be covered by at least k sensors. Where
k ≥ 1.

A. Redundancy Check

Area coverage redundancy check is generally reduced
to the minimum set cover problem which was proven to
be NP-hard [2], [3]. Existing solutions can be categorized
into deterministic and probabilistic ones [1]. The former are
often geometric and use techniques, such as virtual grid
[5], sponsored sector [6], perimeter-coverage [7], intersection
points [8], voronoı̈ tessellation [9]. Unfortunately, they require
that nodes have an exact knowledge of their location. While
probabilistic methods try to relax this constraint.

Liu et al. [10] proposed the use of a virtual grid. To this
end, each sensor node divides its coverage into virtual square
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grids. If all these grids are covered by its neighbors a node
is said to be redundant. Virtual grid technique has a low time
complexity but are often space consuming. Chenait et al. [11]
suggest the use of the sponsored sector technique. Each node
has to create three sectors with a 2π

3 central angle and check if
each of them is covered by at least k neighbors. However, they
applied this strategy only on a homogeneous network. Chen et
al. [12] chose the perimeter-coverage scheme to evaluate the
k-coverage of sensors. These nodes have to verify that each
arc it shares with its neighbors is totally covered. Gupta et al.
[13] used a similar approach for heterogeneous 3D networks.
Unfortunately, when using this strategy, each node needs to
have at least three neighbors. Jabeur et al.[14] proposed a
dynamic strategy referred to as bully approach where sensor-
nodes must compete to offer their services and get rewarded.
In the relocation scheme, nodes with low actual redundancy
force sensors with high actual redundancy to be the redundant
sensors. This strategy requires that nodes be able to control
their mobility. Xing et al. [8] proposed the intersection points
method. A node is redundant if all the crossings inside its
sensing disk are covered. However, this strategy was applied
using an algorithm with a O(n3) time complexity. Moreover,
Liu et al. [15] showed that the above strategy is based on a
necessary but not sufficient criterion. Diédié et al. [16] gave an
additional condition to this technique. It consists in building the
Maximal Redundancy Zone of each node, namely the convex
hull of all crossings. Therefore, a node is redundant if it is
located inside this zone and the above mentioned condition
is met. Chang et al. [17] use the weighted voronoı̈ diagram
method. Weight metric is based on nodes residual energy. In
order to minimize coverage redundancy, each node has to build
its voronoı̈ cell and adjust its sensing range while avoiding
holes.

There are also several probabilistic solutions in the liter-
ature. They are based on probabilistic sensing models [18],
[19]. Each node must find a condition that helps the area under
its surveillance be also covered by at least k neighbors with
a probability greater than a predefined threshold. Gupta et al.
[20] proposed to use a probabilistic scheme in a heterogeneous
network. Yang et al. [21] showed a relationship between two
points in FoI implying that if one of them is covered with
a probability greater than a value denoted by εekd the other
one is covered with a probability no less than ε. The problem
is formulated as an integer linear program and solved with
a greedy approximation solution. Tian et al. [22] proposed a
solution based on a sensing model derived from the Neyman-
Pearson theory [23]. Unfortunately, the strategy is not fully-
distributed since it is initialized by a central node.

B. Sleep Scheduling

Sensing unit scheduling is the second phase of the coverage
optimization process. Solutions to this problem can also be
categorized into deterministic and probabilistic ones.

Deterministic solutions are based on self-inactivation or
sequential activation techniques [1]. When using the first
method, each sensor node has to discover its neighborhood
and perform redundancy check then enters into Sleep state, if
it is redundant. To help mitigate coverage hole probability, a
redundant node has to start a random backoff timer. After the
latter timer expiration, it broadcasts a SLEEP message then

enters into Sleep state if it has not already received such a
message. Among the recent authors that use this technique are
Idrees et al. [24], Jamali and Hatami [25], Zhang et al. [26],
Gupta et al. [13] and Shi et al. [27].

However, when using sequential activation approach, nodes
are mostly-off, set a timer and become active with a certain
probability. If redundant, they broadcast ACTIVE message
before entering into Sleep state. If a node receives a ACTIVE
message it adjusts its timer and perform redundancy check.
Zhang and Hou [28] are among the first authors who used that
technique. Recently, He et al. [29] or More and Wagh [30]
also applied such a strategy.

Probabilistic scheduling solutions are based on states tran-
sitions of which durations are chosen using more or less
complex Probability laws. The state transition is similar to
the one used by sequential activation strategy. Dioungue and
Thiare [31] used the Weibull distribution to select all the
sentinels i.e. nodes that should wake up and remain active
when all their neighbors are in sleep state. Shen et al. [32]
proposed to define sleep state’s duration using exponential
law. However, the process used to calculate the required node
average density is costly. Farinelli et al. [33] used an agent-
based Learning Automata strategy to help sensor-nodes to
coordinate their sense/sleep schedules. Authors proposed a
linear program to find a schedule that maximizes the total
utility (i.e. social welfare) of agents.

III. PROPOSED SOLUTION

A. Motivation and Objectives

This work is aimed at energy efficiency and coverage ratio
preservation. To this end, redundancy check process must be
precise and accurate while being executed regularly from fresh
information. Strategy often used consists in merging redun-
dancy check and neighbor discovery into a single process.
However, this approach is costly when applied with self-
inactivation or sequential activation sleep scheduling tech-
niques, as discussed in the previous section. Indeed, nodes have
to check their redundancy each time they receive respectively
a SLEEP and a ACTIVE message; hence, a large number of
time slots is allocated for unnecessary neighbor (re)discovery
processes in the duty-cycle of active nodes. Moreover, many
redundancy checks are based on old information. Such short-
comings increase message overhead and the risk of having
coverage holes.

Our goal is to minimize unnecessary redundancy check
and neighbor discovery periods. We also aim at providing a
strategy to define a Sleep schedule that helps to balance the
amount of energy expended during states transitions.

B. Assumptions

We make the following assumptions:

- For each sensor u, we have rc(u) = 2×rs(u) where rc(u) et
rs(u) are respectively its communication and sensing ranges.

- Nodes have knowledge of their positions using localization
schemes similar to the ones discussed by Holger and Willig
[34] or Mao and Fidan [35].
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- Network is heterogeneous i.e. nodes have different ranges;
since they have different residual energy and are able to adjust
their communication ranges.

- This process takes place in the plane.

C. Description

We detail in this section our protocol referred to as CGSCP
(Coverage Greedy Scheduling Coordination Protocol). It con-
sists of two phases: redundancy check and sensing unit sleep
scheduling.

D. Redundancy Check

We give some important definitions for a better understand-
ing of our strategy.

Definition 1 (Redundancy). A node u is redundant with
respect to a subset of neighbors denoted by Ni if the area de-
noted by cov(u) that u covers is identical with or included in-
side the area denoted by cov(v) obtained from the union of all
areas covered by each member v of Ni. Formally, u is redun-
dant with respect to Ni iff cov(u) ⊆

⋃
v∈Ni:Ni⊆N(u) cov(v).

Where N(u) denotes the set of node u’s neighbors.

Definition 2 (m-redundancy). A node u is m-redundant if it
is redundant with respect to at least m subsets of neighbors.

Definition 3 (Maximum Redundancy Zone). The Maximum
Redundancy Zone (MRZ) is the region delimited by the convex
hull deriving from the cloud of the intersection points between
a subset of neighbors, as depicted by Fig.1. Points located on
this hull will be referred to as Border Points; whereas the
others will be referred to as Interior Points.

bp3

u

v3

v2

v1

v4
Candidate-Point

Border point

bp1

bp2

bp4
MRZ

Fig. 1. The Maximum Redundancy Zone (MRZ) of node u deriving from
the intersection points between its neighbors v1, v2, v3 and v4.

Area k-coverage problem has been proven to be NP-hard
[36]. Therefore,we have to design an approximated solution.

Each node must apply the following intersection points-
based heuristic in order to check its redundancy.

- Step 1: Discover the vicinity and select neighbors.

- Step 2: If no neighbor found then not redundant, stop.
Instead, if at least two neighbors found go to Step 4.

- Step 3: If located inside this neighbor then redundant,
otherwise not redundant, stop.

- Step 4: Derive the MRZ from neighbors’ intersection points.

- Step 5: If not located inside the MRZ then not redundant,
stop.

- Step 6: If at least one border point is covered then not
redundant, stop.

- Step 7: If covered by one neighbor and the latter is adjacent
to all the other neighbors then redundant, stop.

In the example shown in Fig. 1 node u is redundant with
respect to neighbors v1, v2, v3 and v4 since u is located inside
the MRZ, it does not cover any border point and it is covered
by neighbors v1 and v4. Each of them are adjacent to the other
neighbors.

It is noteworthy to mention that Steps 5 and 6 can be
combined. To this end, node has to derive its RMRZ (Relative
MRZ) from the set of points composed of its position, the
intersection points with its neighbors and their mutual crossing
points. Therefore, node is outside the MRZ if its position or
at least one of the intersection points with its neighbors is on
the RMRZ.

Methods we use to determine intersection points’ coor-
dinates and to construct nodes’ RMRZ are detailed in our
previous work [16].

We propose to estimate each node u’s k-coverage by
assessing its m-redundancy. Therefore, we have to search its
vicinity denoted by N(u), for m(m ≥ k) subsets of neighbors
with respect to which node u is redundant. This problem can
be formulated using the following program:

max m (1)

st :

m⋃
i=1

Ni (2)

(d(u, p) ≤ rs(u))⇒ (∃v ∈ Ni, d(v, p) ≤ rs(v)) (3)
,∀p ∈ A,∀i = 1, ...,m

(|Ni| ≤ |Nj |)⇒ (|Ni ∩ Nj | < |Ni|), (4)
i, j ∈ [1,m] , i 6= j

Our goal is (1) i.e. finding the number of subsets of
neighbors denoted by m that satisfies the constraints expressed
by (2) - (4).

Equation 2 requires that only node u’s neighbors are
concerned. Whereas (3) helps ensuring that node u is redun-
dant with respect to each of these subsets; i.e. any point p
in the area of interest A covered by u (d(u, p) ≤ rs(u))
must also be covered by at least a member v of subset Ni.
Equation 4 requires more detailed explanations. Indeed, it
means that when a subset of nodes is involved in a redundancy
case, its members must not be inserted into another subset.
For instance, if node u is redundant with respect to subsets
N1 = {1, 3, 7}, N2 = {1, 5, 7, 3} and N3 = {1, 7, 4}, N2

will be ignored since it includes N1. In other words, u is not
redundant with respect to N2 because it is already redundant
with respect to N1. Instead, N3 can be included in a feasible
solution since it has only two elements in common with N1.

We must relax (4) since we are solving the m-redundancy
problem in order to evaluate nodes’k-coverage. Hence, we
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replace (4) by (5). The latter requires that the subsets of
neighbors be disjoint.

Ni ∩ Nj = ∅ , i, j ∈ [1,m] , i 6= j (5)

Therefore, area k-coverage problem becomes similar to a well-
known NP-hard problem referred to as General Maximum
Set Packing [2], [37]. We formulate it with an integer linear
program.

xij =

{
1 if neighbor i is inserted into subset j,

0 otherwise
(6)

yi =

{
1 if redundant with respect to subset i

0 otherwise
(7)

Note that for n (n ≥ 1) neighbors, there are at most n disjoint
subsets of neighbors.

max

n∑
i=1

n∑
j=1

xij +

n∑
j=1

yj (8)

st :

n∑
i=1

xij ≤ 1, ∀j = 1, ..., n (9)

n∑
j=1

yj ≥ k (10)

xij ∈ {0, 1} ∀i = 1, ..., n, ∀j = 1, ..., n (11)
yj ∈ {0, 1} ∀j = 1, ..., n (12)

Equation 8 is the objective-function. Equation 9 assures
that a neighbor is inserted into only one subset. Equation 10
requires that the number of subsets with respect to which the
node is redundant, be greater than or equal to k.

To solve this problem, we use a scheme based on a
metaheuristic referred to as GRASP (Greedy Randomized
Adaptative Search Procedure), proposed by Feo and Resende
[38], [39]. The latter scheme is formally detailed in Algorithms
1 - 3.

Algorithm 1 Evaluation of node u’s k-coverage
Input: k,nitrmax, N(u), p
Output: s∗

1: s∗← ∅
2: c∗ ← 0
3: nitr← 0
4: RCL← ∅ . Restricted Candidate List
5: while (k > |s∗|)∧ (N(u) 6= ∅)∧ (nitr< nitrmax) do
6: s← Generate random greedy solution (N(u), p, RCL)
7: s← Local Search(s) . Neighbouring solutions of s∗

8: c ← f(s) . Calculate cost see Eq.8
9: if ( c∗ < c) then

10: s∗ ← s
11: c∗ ← c
12: end if
13: nitr←nitr + 1
14: end while
15: return s∗

Algorithm 2 Greedy random solution generation by node u
Input: N(u), p, LRC
Output: s∗

1: n← 0
2: repeat
3: Choose randomly e ⊆ N(u) : 1 ≤ |e| ≤ |N(u)|
4: if Redundancy-Check(e) then . see Algorithm 1
5: LRC ← LRC ∪ {e}
6: N(u)← N(u) \ e
7: n← n+ 1
8: end if
9: until (n = p) ∨ (N(u) = ∅)

10:
11: Sort in ascending order the LRC . According to length
12: s∗ ← {e ∈ LRC | @f ∈ LRC : |e| < |f |}
13: return s∗

Algorithm 3 Local search by node u
Input: s∗, N(u), p
Output: s∗

1: s← {e ∈ s∗| @f ∈ s∗ : |e| > |f |} . get the smallest element
2: n← 0
3: OK ← false
4: while (n < p)∧(N(u) 6= ∅)∧ ¬OK do
5: Choose randomly e ⊆ N(u) : 1 ≤ |e| ≤ |N(u)|
6: if Redundancy-Check(e) then . see Algorithm 1
7: s∗ ← s∗ \ s
8: s∗ ← s∗ ∪ {e}
9: N(u)← N(u) \ s

10: OK ← true
11: end if
12: n← n+ 1
13: end while
14: return s∗

E. Sleep Scheduling

The second phase of CGSCP consists in scheduling the
sensing unit’s activity. We formulate it as a local mutual
exclusion problem [40], i.e. a localized version of the well-
known mutual exclusion problem [41], [42], [43]. Indeed, we
believe that a node enters into the critical section when it
begins to check its redundancy. Redundancy is a relative notion
that has a local scope as Sleep scheduling.

Our mutual exclusion scheme aims at minimizing the
number of active nodes while preserving the coverage degree
required by the underlying application. In other words, pre-
venting coverage holes by avoiding two redundancy-dependent
nodes to enter into Sleep state simultaneously.

We propose an heuristic-based solution since scheduling
problem also was proven to be NP-hard [4].

Definition 4 (Node’s state). Any node u can only have the
following states :

• Active(ACT) ,
state(u) = ACT ⇐⇒ [(rs(u) > 0) ∧ (@v ∈ N(u) :
state(v) = SLP )]

• Discovery (DSC) ,
state(u) = DSC ⇐⇒ [(rs(u) > 0) ∧ (@v ∈ N(u) :
state(v) = DSC ∨ state(v) = FRZ)]

www.ijacsa.thesai.org 330 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 10, 2017

• Frozen (FRZ) ,
state(u) = FRZ ⇐⇒ [(rs(u) > 0) ∧ (∃v ∈ N(u) :
state(v) = SLP )]

• Sleep (SLP)
state(u) = SLP ⇐⇒ [(rs(u) = 0) ∧ (N̆(u) 6= ∅)]

Where N(u) and N̆(u) respectively denote the set of node u’s
one-hop neighbors and the family of subsets involved in its
k-coverage.

Our sensing unit scheduling scheme is actually based on
the k-coverage evaluation process as described in the previous
section. Indeed, once deployed, each node must choose its next
neighbor discovery and k-coverage evaluation time randomly
and uniformly in interval [tmin; tmax], then start a back-off
timer. When the latter expires, node enters into Discovery
state and broadcasts a HELLO message. Each neighbor should
reply with a WELCOME message containing its residual
neighborhood discovery time denoted by ∆tdiscov . A node
v in Discovery state returns to Active state when receiving
a HELLO message from a neighbor u with a greater ID.
Therefore, after updating its neighbor table, and checked that it
is k-redundant, node u must calculate its sleep time duration
denoted by tsleep using (13). If the latter is greater than a
threshold denoted by thsleep, node u has to send a SLEEP
message that includes its tsleep to a subset of neighbors with
respect to which it is k-redundant. This subset is the one with
the lowest cardinality chosen among the m subsets discovered
by the redundancy check process. thsleep is defined so as to
overcome delays and the amount of energy expended during
states transitions.

In (13) Er , Ei, N̆ and N respectively denote nodes’
residual energy, their initial energy, the family of subsets with
respect to which they are redundant and their neighbors set.

tsleep = t̃− ((α× Er

Ei
) + (β × (1− |N̆ |

|N |
)) + γ) (13)

α and β, γ are three weighting coefficients such as α+β =
1 while γ is randomly chosen in interval [0, 1− (α+ β)]. t̃ is
the lowest ∆tdiscov provided by the neighbors with respect to
which a node is redundant.

It is worth noting that t̃ must take account of the average
message response time denoted by treply.

When a node u in Active state receives a SLEEP message
from a neighbor v, it resets its next neighbor discovery time
and enters into Frozen state. Node u has to postpone its next
discovery time by (tsleep(v) − treply) units of time, if its
residual discovery time denoted by ∆tdiscov(u) is lower than
neighbor v’s sleeping time, namely, tsleep(v).

It is also noteworthy to mention that after receiving a
SLEEP message a node in Frozen state must increase by 1
unit its fixation counter denoted by δf . The latter is helpful
for nodes to count neighbors that are in Sleeping state.

At the end of its sleeping time, a node enters into Active
state, chooses at random its next neighbor discovery time
and broadcast a AWAKE message to its one-hop neighbors.
After receiving such a message, nodes in Frozen state have to
decrease their fixation counter by 1 unit and enter into Active

state if their fixation counter’s value reaches 0. The sensing
unit scheduling process is formally described in Algorithms 4
and 5. States transitions are depicted in Fig. 2.

Active

Discovery

Sleep

hello-delay   and 
not redundant

hello-delay  and 
redundant

receiving SLEEP

discov-delay

discov-delay

activ-delay

receiving AWAKE
and df=0

Frozen

Fig. 2. State transition diagram of CGSCP.

Algorithm 4 Sensing unit scheduling by node u
Input: Ethr, treply ,α,β,γ,r̂s, tmin, tmax, thsleep

1:
2: Er← Estimate residual energy
3: ACTIV-delay ← 0
4: while (Er>Ethr) do . Residual energy is enough
5: if (ACTIV-delay = 0)∨(Current-Time() = ACTIV-delay) then
6: rs(u)← r̂s
7: state(u)← ACT
8: tdiscov(u)← U(tmin; tmax) . Uniform Law
9: DISCOV-delay ← Current-Time() + tdiscov(u)

10: δf ← 0
11: Send AWAKE to v,∀v ∈ N̆(u)
12: end if
13: if (Current-Time() = DISCOV-delay) then . Critical Section
14: state(u)← DSC
15: Choose ∆tdiscov(v) : ∀v, w ∈ N(u) ⇒ (∆tdiscov(v) >

∆tdiscov(w))
16: ∆tdiscov(u)← U(tmin; tmax) + ∆tdiscov(v)
17: DISCOV-delay ← Current-Time() + ∆tdiscov(u)
18: HELLO-delay ← Current-Time() + treply
19: Broadcast HELLO (idu,∆tdiscov(u), state(u))
20: end if
21: if (Current-Time() = HELLO-delay) then
22: state(u)← ACT
23: Check k-coverage(N(u)) . see Algorithm 1
24: if (N̆(u) 6= ∅) then
25: tsleep(u)← Sleeptime (α,β,γ,Er,Ei) . see Eq. 13
26: if (tsleep(u) > thsleep) then
27: N̂(u)← min(N̆(u))
28: Send SLEEP(tsleep(u)) to v, ∀v ∈ N̂(u)
29: rs(u)← 0
30: state(u)← SLP
31: ACTIV-delay ← Current-Time() + tsleep(u)
32: end if
33: end if
34: end if
35: Handle Scheduling messages . see Algorithm 5
36: Er← Estimate residual energy
37: end while
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Algorithm 5 Scheduling messages Handling by nœud u
1: Receive message de v
2: switch message do
3: case HELLO
4: if (state(u) = ACT )∨(state(u) = FRZ)∨((state(u) = DSC)∧

(idv > idu)) then
5: ∆tdiscov(v)← ∆tdiscov(v)− treply . Considering latency
6: N(u)← Neighbor table Update (idv,∆tdiscov(v), state(v))
7: ∆tdiscov(u)← Current-Time() - DISCOV-delay
8: Send WELCOME (idu,∆tdiscov(u), state(u)) to v
9: end if

10: if (state(u) = DSC) ∧ (idv > idu) then
11: state(u)← ACT
12: end if
13: case WELCOME
14: if (state(u) = DSC) then
15: ∆tdiscov(v)← ∆tdiscov(v)− treply . Considering latency
16: N(u)← Neighbor table Update (idv,∆tdiscov(v), statut(v))
17: end if
18: case SLEEP
19: if (state(u) 6= FRZ) ∧ (∆tdiscov(u) < tsleep(v)) then
20: DISCOV-delay ←Current-Time() + (tsleep(v)− treply)
21: state(u)← FRZ
22: end if
23: δf ← δf + 1

24: case AWAKE
25: if (state(u) = FRZ) then
26: δf ← δf − 1
27: if (δf = 0) then
28: state(u)← ACT
29: end if
30: end if
31: end switch

IV. PERFORMANCE EVALUATION

To verify and validate our protocol we analyzed its time
and messages number complexities. Then we formally proved
its mutual exclusion property. We also conducted extensive
simulations using OMNeT++ 4.6 simulator [44]. The results
were compared to those obtained with some related protocols
namely, CCP by Xing et al. [8] DiLCO by Idrees et al. [24],
ERPC by Liu et al. [15], the solution by Gupta et al. [13] and
VGSCA by Liu et al. [10] .

Theorem 1 (Time complexity). On an asynchronous fair
daemon, in the worst case and in the absence fault, the time
complexity of CGSCP is O(n).

Proof: In the worst case, topology induced by the network
is a complete graph with n nodes and where each of them
has n − 1 neighbors. In the worst case, a node u will ran-
domly choose the greatest neighbor discovery time denoted by
tdiscov(u). Therefore, before the latter occurs, it may receive at
most n−1 SLEEP messages from its neighbors. After receiving
a SLEEP message from a redundant neighbor v, node u will
enter into Frozen state for at most tsleep(v) − treply units of
time if v has chosen a sleeping time denoted by tsleep(v) that
postpones node u’s neighbor discovery time (see Lines 18 - 23
in Algorithm 5). Moreover, each node has to define its next
neighbor discovery time according to those of its neighbors
(see Lines 15 - 18 in Algorithm 4). In other words, nodes’
waiting time before entering into the critical section and their
sleeping time duration are linearly dependent on the number
of their neighbors. Hence the O(n) time complexity.

Theorem 2 (Message complexity). On an asynchronous and
fair daemon, in the worst case and in the absence of fault,
message number complexity of CGSCP is O(n) where n
denotes the number of neighbors.

Proof: In the worst case, topology induced by the net-
work is a complete graph. Since each of the n nodes has
n − 1 neighbors, CGSCP requires three messages namely,
HELLO, SLEEP and AWAKE sent by a redundant node u
to respectively, discover its neighborhood, announce its Sleep
state and announce its Active state. Node u will receive n− 1
WELCOME messages in response, hence O(n2) messages in
the worst case for n redundant nodes.

Lemma 1 (Safety). Two redundancy-dependent nodes can-
not discover their neighborhood, or enter into Sleep state
simultaneously. More formally, let G = (V,E) be the graph
induced by network ; where V and E respectively denote
the set of nodes and the set of links, ∀u, v ∈ V : ∀v ∈
N(u), ((state(u) = DSC) ∨ (state(u) = SLP )) ⇒
((state(v) = FRZ) ∨ (state(v) = ACT )).

Proof: Proving that nodes have an exclusive access to the
critical section consists in showing that two adjacent nodes u
and v (v ∈ N(u)∧u ∈ N(v)) cannot discover their neighbor-
hood, let alone enter into Sleep state simultaneously. Indeed,
if node u chooses a shorter next neighborhood discovery time
denoted by tdiscov(u), it will certainly enter into Discovery
state (state(u) = DSC) before its neighbors.

Therefore, when node v receives a HELLO message, it
will not enter also into discovery state (see Lines 3 - 12 in
Algorithm 5). However, we could have tdisc(u) = tdisc(v)
for two nodes u and v because neighbor discovery times are
randomly chosen; but, since their respective IDs namely, idu
and idv are different (idu 6= idv), it follows that state(u) 6=
state(v). Indeed, let us assume that idu > idv ; after sending
a HELLO message, node u will receive WELCOME messages
in response and will evaluate its redundancy (see Lines 20 -
22 in Algorithm 4 and Lines 3 - 9 in Algorithm 5). In contrast,
v will enter into Active state (state(v) = ACT see Lines 10
- 12 in Algorithm 5). Therefore, node u would probably be
the only node to enter into Sleep State (state(u) = SLP )
(see Lines 23 - 31 in Algorithm 4). Consequently, only
node u’s redundancy-dependent neighbors (N̂(u)) will finally
be in Frozen state (state(v) = FRZ) after receiving its
SLEEP message (Lines 18 - 23 in Algorithm 5). Formally,
∀v ∈ N̂(u), state(v) = FRZ and N̂(u) ⊆ N(u) then
∀v ∈ N(u), ((state(u) = DSC) ∨ (state(u) = SLP )) ⇒
((state(v) = FRZ) ∨ (state(v) = ACT ))

Lemma 2 (Liveness). Each node will eventually discover its
neighborhood or enter into Sleep state.

Proof: Proving liveness consists in showing that any
node can enter into another state after a finite length of time
particularly, after been in Frozen state, even if a sleeping
neighbor fails. Indeed, according to Lemma 1 after it had
randomly chosen its next neighbor discovery time denoted by
tdisc(u) a node u will always enter into the critical section if
tdisc(u) is the shortest discovery time and its ID is the smallest
after breaking tie. Therefore, two situations may occur:

- Node u is not redundant, it will update its neighborhood
table and choose another neighbor discovery time denoted by
tdiscov(u).

To this end, u chooses tdiscov(u) : ∀v ∈ N(u), tdisc(u) >
∆tdisc(v) (see Line 15 Algorithm 4). Where ∆tdisc(v) is the
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residual time before node v’s next neighbor discovery. This
information was piggybacked in the WELCOME message that
neighbor v sent to node u. The latter cannot prevent anymore
its neighbors to also enter into critical section;

- Node u is redundant, therefore it enters into Sleep state
(state(u) = SLP ) and set its sleeping state time duration
denoted by tsleep(u) according to the shortest neighbor dis-
covery time and the threshold denoted by thsleep . Formally,
tsleep(u) : ∀v ∈ N(u), thsleep < tsleep(u) < ∆tdisc(v).
If tsleep(u) cannot meet this condition, node u will return
immediately to Active state (state(u) = ACT ). Instead, if
node u can enter into Sleep state, its redundancy-dependent
neighbors will enter into Frozen state. (see Lines 18 - 23
in Algorithm 5) ∀v ∈ N̂(u), state(v) = FRZ. The latter
will return to Active state (state(v) = ACT ) after receiving
a AWAKE message sent by node u at the end of its
sleeping time. In the worst case, nodes that are in Frozen
state (state(v) = FRZ) will return to Active state when
their neighbor discovery time occurs. In other words, let
G = (V ;E) be the graph induced by the network, where V
and E denote respectively the set of nodes and the set of links.
Formally, ∀u ∈ V, (∆tdisc(u) = 0)⇒ (state(u) = ACT ).

Lemma 3 (Concurrency). Two redundancy-independent
nodes can discover their neighborhood or enter into Sleep
state simultaneously.

Proof: Proving concurrency consists in showing that two
non-adjacent nodes u and v (v /∈ N(u)∧u /∈ N(v)) can enter
into their critical section freely with no conflict. Therefore, two
events may occur:

- Nodes u and v have at least one neighbor in common
(N(u) ∩ N(v) 6= ∅). If their neighbor discovery times
respectively denoted by tdisc(u) and tdisc(v) are such that
tdisc(u) > tdisc(v) and if we have (state(u) = SLP ) ⇒
(∃w ∈ N(u) ∩ N(v) : (state(w) = FRZ)), node v will
enter into its critical section freely (state(v) = DSC ∨
state(v) = SLP ) without node w having to enter into
another state. The same event occur if we have ((tdisc(u) =
tdisc(v))∧ (state(u) = SLP )∧ (state(v) = SLP )⇒ (∃w ∈
N(u) ∩N(v) : (state(w) = FRZ));

- Nodes u and v do not have any neighbor in common
(N(u) ∩N(v) = ∅) then it is obvious that no decision made
by node u will affect node v and vice versa. Therefore, nodes
u and v can enter into their critical section simultaneously.
Let G= (V ;E) the graph induced by the network topology;
where V and E respectively denote the set of nodes and the
set of links. Formally, ∀u, v ∈ V, (v /∈ N(u) ∧ u /∈ N(v))⇒
((state(u) = state(v)) ∨ (state(u) 6= state(v))).

Theorem 3. CGSCP provides a local mutual exclusion for the
sensing unit sleep scheduling problem.

Proof: CGSCP allows a safe sensing unit scheduling and
a weak fairness. Proof is given by Lemma 1 and 2. CGSCP
allows a mutual exclusion; Lemma 3 showed that this process
is fully localized.

Corollary 1. In the absence of fault, CGSCP does not create
any coverage hole.

TABLE I. SIMULATION PARAMETERS

Parameter Value

Deployment area 500 m X 500 m
Number of sensors 100 to 1000
Sensors’ initial energy (Ei) 0,2 J
Self-discharge per second 0,1 µJ
Energy threshold (Ethr) 100 µJ
Eelec 50 nJ/bit
efs 10 nJ/bit/m2

eamp 0,0013 nJ/bit/m4

d0 87 m
Message length (l) 2000 bits
Usup 2,7 V
Isens 25 mA
tsens 0,25 ms
Data length (b) 200 bits
nitrmax 100 to 200

TABLE II. ENERGY LOST DURING STATE TRANSITION

Active Sleep

Active - 0.4mW
Sleep 0.4mW -

TABLE III. STATE TRANSITION DELAYS

Active Sleep

Active - 2µs
Sleep 2µs -

For simulation campaigns, we used the radio energy con-
sumption model by Heinzelman et al. [45] and a sensing unit
energy consumption model by Halgamuge et al. [46].

Tables I to III summarize parameters we used for the
simulation campaigns we conducted with respect to three
metrics, namely, k-coverage efficiency, energy efficiency and
network lifetime. Each experiment was repeated 10 times as
nodes population was increased.

V. RESULTS AND DISCUSSION

A. k-Coverage Efficiency

Fig. 3a shows that among the 6 evaluated protocols, only
CGSCP and VSGCA help to preserve virtually 100% of the
coverage ratio in the case of 1-coverage despite the increase
in the number of sensor-nodes. However, as shown in Fig. 3b,
CGSCP requires to keep active on average about 15% of the
deployed nodes. This trend continues in the case of 4-coverage
as depicted in Fig. 3c and Fig. 3d. The number of nodes kept
active logically increases according to parameter k. However,
CGSCP is the protocol that keeps the least number of active
nodes. These performances are due to the detection process.
Indeed, the strategy we used has a good accuracy and precision
ratio even for heterogeneous networks [16]. DiLCO and the
solution by Gupta et al. are the worst performing protocols
since they are essentially based on the scheduling process with
a less precise random redundancy detection process. Therefore,
one can conclude that deterministic strategies provide the best
k-coverage ratio.
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(a)

(b)

(c)

(d)

Fig. 3. k-coverage efficiency vs. Number of sensors. (a) coverage ratio for
k = 1, (b) active nodes ratio for k = 1, (c) coverage ratio for k = 4, (d) active
nodes ratio for k = 4.

B. Network Lifetime and Energy Efficiency

Fig. 4a shows that CGSCP is the protocol that best in-
creases network lifetime i.e. that keeps the longest the coverage
ratio above 98%. Fig. 4b shows that this performance requires
to spend on average 17% of the initial energy in spite of the
increasing of the number of sensor-nodes. This trend continues
as parameter k increases. Logically, network lifetime decreases
as parameter k grows; since the number of nodes to be kept
active depends on parameter k.

CCP and DiLCO are the two protocols of which per-

formances are the lowest. This situation is due to the poor
performances of their redundancy detection process.

As for CGSCP, these results show the energy-efficiency
of the local mutual exclusion strategy. Indeed, it prevents
nodes that are in Frozen state to unnecessarily rediscover their
neighborhood. Furthermore, this strategy allows load balancing
since it guarantees to each node the opportunity of entering
into Sleep state.

(a)

(b)

(c)

(d)

Fig. 4. Network lifetime & Energy Efficiency with a 98% coverage ratio.
(a) Network lifetime for k = 1, (b) Energy Efficiency for k = 1, (c) Network
lifetime for k = 4, (d) Energy Efficiency for k = 4.
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VI. CONCLUSION

In this paper, we investigated the problem of area k-
coverage in a heterogeneous wireless sensor network. We
assumed that the underlying application requires that every
points in the Field of Interest (FoI) be covered by at least
k(k ≥ 1) sensor-nodes. We proposed an asynchronous and
localized protocol referred to as CGSCP (Coverage Greedy
Scheduling Coordination Protocol). The latter use a crossing
points-based technique and a local mutual exclusion-based
heuristic to, respectively, detect redundant nodes and schedule
their duty-cycles. Several simulations have been carried out to
evaluate the proposed protocol. Results show that our scheme
provides a lower coverage ratio and is more energy-efficient
than some recently proposed solutions.

In a future work, we plan to extend our protocol by adding
a process that helps to explicitly tolerate both node and link
failures. Finally, it would be also interesting to implement the
CGSCP protocol in 3D more realistic environment.
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