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Abstract—The advanced network applications enable 

software driven spectral analysis of non-stationary signal or 

processes which precisely involves domain analysis with the 

purpose of decomposing a complex signal coefficients into simpler 

forms. However, the proper estimation of power coefficients over 

frequency components of a random signal leads to provide very 

useful information required in various fields of study. The 

complex design constraints associated with conventional 

parametric models such as Dynamic Average Model, 

Autoregressive MA, etc. for multidimensional spectral estimation 

using adaptive filters leads to a situation where higher 

computational complexities generate significant overhead on the 

systems. Therefore, the proposed study aims to formulate an 

efficient framework intended to derive a fast algorithm for 

processing Adaptive Capon and Phase Estimator (APES). The 

proposed method is applied to a non-stationary signal which is 

random. Further, the adaptive estimation of power spectra along 

with more accurate spectral efficiency has been identified in case 

of APES. An extensive performance evaluation followed by a 

comparative analysis has been performed by obtaining the values 

from different spectral estimation techniques, such as APES, 

PSC, ASC, and CAPON. Moreover, the framework ensures that 

unlike others, APES is subjected to attain superior signal quality 

regarding Power Spectral Density (PSD) and Signal to Noise 

Ratio (SNR) while achieving very less amount of Mean Square 

Error (MSE). It also exhibits comparatively low convergence 

speed and computational complexity as compared to its legacy 

versions. 

Keywords—Amplitude and phase estimation; ASC; capon 

spectral estimator; spectral estimation; PSC 

I. INTRODUCTION 

Spectral analysis of signals is the measurement of power 
spectral components further analyzed to investigate the 
frequency coefficients of a random signal. The power 
distribution over a non-stationary signal eases the computation 
of frequency components. 

However, the large scope of its applicability extended into 
various fields of study for software-driven electronic devices 
including Speech Analysis, Medicine, RADAR, and SONAR 
communications, etc. The prime reason lies in the fact that the 
frequency content of an observed signal can provide very 
useful information in the fields like multidimensional 
intelligence Naval and military communications [1], [2]. A data 

independent method namely Periodogram was initially 
developed by the author named Arthur Schuster with the 
purpose of estimating spectral coefficients of a non-stationary 
signal efficiently. The numerical computing method which is 
applied to a synthetic signal has adopted the concept of Fourier 
transform followed by efficient utilization of FFT algorithm 
[3]. However, the algorithm is claimed to have a limited scope 
of applications due to various factors such as poor resolution 
and high side lobe problems. This situation further leads to a 
scenario, where retrieval of significant information by 
analyzing signal coefficients becomes entirely unfeasible. 

An in-depth investigational study gives an insight into the 
fact that the conventional data-dependent (adaptive) methods 
for both non-parametric and parametric approaches attain 
superior performance efficiency in comparison with the 
conventional data independent methods like Periodogram. 
Adaptive data dependent methodologies are also claimed to 
achieve optimal computational cost. The applicability of data-
adaptive approaches further leads to improve the spectrum 
quality of a signal significantly and helps to retrieve more 
information under study. Therefore, it has gained the interest 
among more researchers to explore its applicability towards 
mitigating issues of spectral estimation.  These advantages 
have led to increasing interest in data-adaptive approaches 
towards the problem of spectral estimation. The proposed study 
thereby formulated a novel framework to access the 
performance efficiency of the conventional APES technique 
and determine the quality signal concerning PSD and 
computational complexity perspectives [4]. The study also 
gives insight into the in-depth performance analysis of 
conventional PSC, ASC and Capon estimation methods while 
improving the SNR as well as reducing the MSE of a non-
stationary process. The experimental outcomes precisely 
exhibit the performance efficiency of the APES method on 
evaluating spectral correlation (SC) and effective spectral 
growth regarding SNR and PSD [5]. The paper is organized in 
a way where Section II discusses the essentials of the spectrum 
estimation followed by existing survey highlighted in 
Section III. However, Section IV discusses the conceptual 
framework for APES spectrum estimation. Finally, Section V 
discusses the outcomes of the study followed by Section VI 
that discusses conclusion and future work. 
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II. BACKGROUND 

Most phenomena of signals that occur in nature or practice 
are typically random and are best modeled as random signals. 
However, examples of such random signals include various 
non-deterministic processes, but they are not limited to 
speech/audio signals and thermal noise generated by electronic 
devices. Due to the random fluctuation of these signals, they 
are best characterized regarding statistical averages. The 
autocorrelation function of a random process is a statistical 
average used for characterizing these random signals in the 
time field. A closer look into the estimated PSD spectrum 
shows that how frequency contents are distributed over 
periodic time. The spectral estimation thereby involves a 
process to approximate the uniform distribution of frequency 
components of an arbitrary signal. The process of estimating 
the power distribution over frequency components of a non-
stationary process thereby exhibits the power band of a signal. 

Power spectral estimation has applications in many fields. 
Speech signals which are periodic are analyzed using the 
spectrogram. In case of frequency domain analysis provides 
useful information that can lead to speech recognition and 
generation. In the sensing fields of RADAR and SONAR, the 
spectral content of received signals may provide information 
about the targets of interest in a given scene of interest (see 
Fig. 1). Also, the power spectrum of signals may provide 
information about radio frequency interference in such a signal 
and hence lead to effective suppression of the interference. In 
MEDICINE field, power band of EEG signals can be used to 
evaluate the different sleep cycles in humans [6]. These can/are 
used to investigate and study narcoleptic (a disease 
characterized by the inability to properly regulate sleep-wake 
cycles) patients. More recently these are used in audio. 

 
Fig. 1. Synthetic aperture radar imaging. 

 
Fig. 2. Spectrogram. 

The spectrogram of the audio signal can indicate the 
presence of the electric network frequency (see Fig. 2), which 
can be used for digital audio authentication. Synthetic aperture 
radar imaging: (A) Photograph of the object at 45 degrees (B) 
SAR image formed using Spectral Estimation (FFT) (Fig. 1.). 

There are two broad approaches to manage spectral 
coefficient estimation. The principal approach is known as the 
non-parametric technique, and the other is known as the 
parametric strategy. However, the non-parametric techniques 
expect no earlier data about the information, while the 
parametric strategies accept a particular model of the 
information, which then outcomes in an issue of parameter 
estimation. The parametric strategies are more exact than the 
traditional non-parametric systems when the expected model is 
precise. Notwithstanding, they perform inadequately when 
there are errors in the information modeling. 

A. Problem Formulation 

Let
 1,...,1,0,1,....,1,0,,  NnNnnZn


 

Denote a 2-D discrete-time data sequence. For a frequency 

pair 
 ,

of interest, we model 
nZn


,
 as: 

     ,,,, ,  nnwnwnwejnZn 
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Where, 
  ,

denotes the complex amplitude of a 2-D 

sinusoid with frequency 
 ,

and 
 ,,nnw


denotes the 

unmodeled noise and interference at the frequency  , . The 

problem of interest is to obtain the estimate of 
  ,

from 

the 2-D data sequence for all
 ,

 of interest. In 2-D SAR 

imaging applications, for example, 
  ,

would be 
proportional to the radar cross-section of a target scatterer 

located at a range proportional to  and cross-range 

proportional to . 

B. Energy Spectral Density 

Consider a signal 
][x

(discrete) with finite energy, that is, 
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Then its discrete-time Fourier transforms (DTFT) exists and 
is given by: 
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Where,  is the angular frequency variable measured in 
radians per sample? From Parseval’s theorem equation (1-1) 
can be written as: 
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From the equation above the energy spectral density of 

 x
which is the distribution of the energy of the signal of 

frequency is therefore defined as: 
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Note that the ESD 
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can be written as the 
computation of Fourier transform associative autocorrelation 

sequence 
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of the signal 
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:
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Where, 
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The analysis above is expressly for signals with finite 
energy (deterministic signals). However, signals typically 
encountered in applications are characterized as stochastic 
processes and do not have finite energy and hence do not 
possess a Fourier transform. These random signals, however, 
possess and average power can be described by their PSD. 

C. Power Spectral Density 

Consider a stationary stochastic process
][y

, where 

   0yE
for all


. The auto covariance function (same as 

Auto Correlation function for stationary stochastic process with 

mean zero) of 
][y

is given by 

      kyyEkyy  *

   (8) 

Where,
 E

 is the statistical average over all realizations? 

The PSD of 
][y

is well-defined as:  
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This simply the Fourier transforms of the AC function. 

Note that the inverse transform of this PSD gives 
 kyy

as 
shown below: 
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Where,  denotes the Kronecker delta function. Note that 

the average power of the stochastic process 
][y

is given by 

the zero lag o the AC function
 0yy
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This equation (1-9) leads to the motivation for defining the 
PSD in (1-8). The PSD can also be defined as: 
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Which is equivalent to the definition in (1-8) under the 
assumption that the autocovariance sequence (ACS) 

 kyy
decays quickly. 

III. EXISTING SURVEY 

Guo et al. [7] investigated the outcome of frequency 
shifting in an acoustic feedback control system. This work 
recommends a solution to achieve an unbiased approximation 
by eliminating the slowly time variable part in adaptive filter 
estimation. 

Kim et al. [8] suggested a less computational improved 
time-based and spectral constraints approximation methods for 
SIFT output of radar signals. This method enhanced the 
spectral resolution of a received radar signal by utilizing the 
STFT outputs. Similarly, it will also improve the time-based 
resolution of the complete system for obtained radar signals. 
The performance of the executed approaches are hypothetically 
examined, and it accomplishes the low computational 
complexity is obtained. 

Rosado et al. [9] analyzed the presentation of an adaptive 
multilayer technique for decreasing the coherent noise 
associated with spectral of ultrasound echoes. The proposed 
strategy effectively lessened predisposition and coherent noise 
related to standards for different methodologies, demonstrating 
its favorable position for spectral investigation of muddled 
back-scattered signals. 

Fu et al. [10] introduced a novel technique for adaptively 
investigating the time-varying AC of non-stationary signals. 
This article also gives the information about its applications to 
time-frequency spectrum analysis. This method implements a 
local valuation with sliding window method to have a certain 
bandwidth to investigate time-varying AC locally. 

Zhang et al. [11] proposed a novel adaptive Kalman filter 
based recursive technique to estimate the spectrum for 
measuring time-varying non-stationary signals. The 
measurements in Kalman filter are decided adaptively as 
indicated by the state divisions. The simulation results show 
that the proposed method achieves a better time-frequency 
resolution that compared to the traditional spectrum 
estimations. 
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Cheng et al. [12] presented an alteration of traditional least 
mean squared error (MMSE) inappropriate subtraction 
calculation by acquainting a versatile averaging variable with 
precisely evaluate the from the earlier SNR. Execution of the 
adjusted process concerning the earlier SNR is assessed by 
contrasting and ordinary phantom subtraction calculation. 
Enhanced results are gotten as far as discourse quality 
measures for different sorts of commotion when the time-
recurrence fluctuating averaging element, proposed in this 
paper; the customary subtraction rules are also exhibited. 

Bracale et al. [13] concentrated on otherworldly parts of 
force static converters utilized for both train drives, and 
assistant administrations can be exceedingly time-changing 
with ensuing troubles in their location. In this paper, a versatile 
asymmetric strategy is proposed to ascertain time-changing 
phantom segments with great precision and adequate 
computational endeavors. The strategy depends on a versatile 
system which minimizes the mean square relative blunder of 
sign estimation. The utilization of the strategy to an assistant 
static converter demonstrates its high precision and satisfactory 
computational endeavors. 

Alty et al. [14] displayed a computationally effective 
sliding window time redesigning of the Capon and sufficiency, 
and stage estimation (APES) coordinated channel bank 
otherworldly estimators in light of the time-variation relocation 
structure of the information covariance network. The exhibited 
calculation shapes a characteristic expansion of the most 
computationally effective calculation to date and offers a 
critical computational addition when contrasted with the 
computational unpredictability connected with the bunch re-
assessment of the appraisals for every time-upgrade. Moreover, 
through recreations, the calculation is observed to be 
numerically better than the time-overhauled precise gauge 
framed from straightforwardly redesigning the information 
covariance grid. 

The study of Huillery et al. [15] concentrated on an 
instance of a spectrogram built from a limited length discrete-
time boisterous sign is introduced. This study expands past 
takes a shot at negligible insights on two viewpoints: to start 
with, the most extreme probability appraisal of the commotion 
is detailed by clear investigation of the likelihood conveyance 
of the time-recurrence coefficients. Second, the decision of an 
ideal insignificant subset is examined. The sign versus 
commotion segregation property of the ghastly kurtosis is 
utilized to choose a negligible subset which guarantees a 
reasonable exchange off between the predisposition and the 
difference of the estimator. The subsequent exhibitions are 
talked about and contrasted and those of different strategies 
through numerical recreations on engineered signals. The 
utilization of the MiniSMaL estimator in a period recurrence 
recognition method is at last shown on a certifiable sign. 

The study of Zhang et al. [16] proposed another versatile 
Kalman channel based recursive range estimator for measuring 
a time-differing range of non-stationary signs. The non-
stationary sign is demonstrated as a period shifting 
autoregressive process, and the time-differing parameters are 
portrayed by smoothness prior’s model. Another Kalman 
channel calculation with a variable number of estimations is 

utilized to recursively figure out the TVAR coefficients and 
after that, the time-differing range is formulated. The quantity 
of estimations in the Kalman channel is resolved adaptively as 
per the state gauge subsidiaries. Moreover, a quick QR 
disintegration calculation is created to decrease the math 
unpredictability of the proposed KFVNM calculation. 
Reenactment results demonstrate the proposed Kalman channel 
based recursive range estimator can accomplish a superior 
time-recurrence determination than the customary parametric 
range estimations. Its potential application to power quality 
checking is likewise shown. 

Glentis et al. [17] proposed quick calculations for versatile 
Capon and adequacy and stage estimation (APES) techniques 
for efficient examination of time fluctuating signs. A quick, 
steady, and non-recursive formulae are inferred considering of 
time moving properties of the related variables. As a result, 
productive recurrence space recursive slightest squares (RLS) 
based, and also quick RLS based calculations for the versatile 
estimation of the force spectra are created. Soundness issues of 
the recurrence area estimators are considered, and adjustment 
techniques are proposed. The computational intricacy of the 
proposed calculations is lower than applicable existing 
strategies. The execution of the proposed calculations is 
exhibited through broad reenactments. 

The study of Resende et al. [18] introduced a structure that 
offers ascend to unearthly gauges that speak to the genuine 
basic range with preferred devotion over routine LS strategies 
by permitting a subjective exchange off between differences of 
phantom gauges and following capacity of the estimator along 
with the recurrence area. The straight forecast mistake is 
deteriorated through a force correlative channel bank, and 
segments of every band are broke down by various window 
lengths, permitting long windows to track gradually differing 
signs and short windows to watch firstly shifting parts. The 
connection network of the info sign is appeared to fulfill both 
time-upgrade and request overhaul properties for rectangular 
windowing capacities, and an RLS calculation given every 
property is displayed. Additionally, reenactments looking at the 
execution of customary and the proposed multi-band LS 
strategies are delineated and examined. 

IV. CONCEPTUAL FRAMEWORK 

The proposed study aims to formulate a Numerical 
computing framework for estimating spectrum components of a 
synthetic signal using Capon, PSC, APES and ASC techniques. 
The study intended to perform spectral estimations by reducing 
the (MSE) of APES linear regression models. The proposed 
system aims to design a novel framework is integrated with 
different significant spectral estimation frameworks, e.g., 
Capon, PSC, APES, and ASC to perform spectral estimation on 
non-stationary signals by reducing the (MSE) of all linear 
regression models. It also performs a comparative analysis in 
between the conventional state of art spectral estimation 
processes to compute bit error rate (BER) concerning SNR. 
Moreover, the proposed model also applies a linear shrinkage 
based approach (includes both Capon and APES Spectral 
Estimators) to intensify the spectral quality of an input signal. 
This section of the study discusses the conceptual model 
intended to carry out spectral estimation of an input sinusoidal 
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signal by applying four different spectral estimation 
methodologies such as PSC, ASC, CAPON, and APES. It also 
highlights a comparative analysis to ensure the effectiveness of 
the proposed integrated framework for APES estimation 
concerning reducing MSE and enhancing the signal quality. 

To understand the error pattern with the performance metric 
(MSE), the filter length (FL) and signal to SNR measurement 
are required for the given signal input. 

Spectral analysis associated with signal components 
especially for random signals provides necessary information 
about the frequency and power components (PSD). The 
obtained values can be further utilized for numerical 
integration, analytical modeling, prediction and filtering of the 
deserved random signal. The prime objective of the spectral 
estimation process is to formulate a correlation between the 
spectral components to estimate the spectral density of a 
random signal concerning different time sample sequence.  It 
deals with the computation of frequency components to 
determine the significant spectrum component of a random 
signal. 

The following Fig. 3 depicts a pictorial representation of the 
proposed system shows how the experimental process has been 
carried out by evaluating the different set of operations during 
the computation process. It includes generation of the 
sinusoidal signal, which is further interpreted for the 
computation of PSD. The model performs Monte-Carlo 
simulation to perform numerical integration on PSC, CAPON, 
APES, and ASC. Finally, the proposed system SC Density of 
the input signals by applying the four algorithms and compute 
the MSE.  SNR, MSE and filter length (M) are considered as 
the performance parameters, respectively. The MSE value has 
been computed using a function, which considers the filter 
length as input parameters. 

Fig. 4 represents a flow diagram of the proposed model 
where a different set of operations such as SAR processing, 
spectral equalization, and signal chipping are performed. Signal 
chipping is used to segregate a set frequency components for 
better resolution of computation. The framework also considers 
2-D DFT and re-sampling for construction of signal with better 
resolution. 

After performing 2D DFT different spectral estimation 
techniques are evaluated to generate the consecutive spectrum 
(i.e., PSD and PSC).  A component called as signal mosaicking 
is applied on the retrieved signal for re-shaping. The following 
is the algorithm designed and implemented in a numerical 
computing framework to evaluate the performance efficiency 
of the APES method. 

General and Derived Parameters

Sinusoid Signal Generation

Compute

Theoretical PSD 

Monte Carlo

Simulation

Performance Analysis

Compute SNR,MSE, PSD
 

Fig. 3. System architecture of the proposed method. 

Raw Data

Standard

Processing

Spectral Equalization

Signal Chipping

Chip 

Signal

Chip 

Signal

Chip 

Signal

2-D DFT and 

Re-Sampling 

Capon/APES/ASC/

PSC

Chip signals 

Reshaping and

Estimation

 
Fig. 4. Flowchart of the proposed method. 
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Mathematical Algorithm Design: An Adaptive Framework for Spectral Estimation  

Input: N (Number of Samples), fs (Sampling Frequency), M (Filter Length), A (SNR) 

Output: Performance Evaluation of Spectral Estimation Techniques on non-stationary signals. (Capon, ASC, APES, PSC) 

PROCEDURE: 

START 

1. Input Number of samples  N 

2. Input sampling frequency fs 

3. Input Sample SNR  snr 

4. Input Filter Length  M  

5. Generated signal SNR, matrix A(1×2)    [1,1] 

6. Generated signal Frequency, matrix f(1×2)   [0.3,0.2] 

7. trails = 10 

8. Sampling period, Ts  1/fs 

9. nT (1×N)  Ts 

10. Generated signal Y  A*sin(2*pi*f*nT)  

11. h  PSD (Y) 

12. Initiate Monte-Carlo Simulation 

13. FOR trails (1: trails)  

a. Signal xin  Y+Gaussian  Noise 

b. Function SCD 

c. Pass In: xin,M,METHOD,fs,res 

d.  Pass Out: SCD F A 

e. Function PSC 

f. Pass In: Y, M 

g.  Pass Out: cross PSD, wave no (k) 

h. Function ASC 

i. Pass In: Y, M 

j. Pass Out: cross PSD, wave no (k) 

k. Function CAPON 

l. Pass In: Y, M  

m. Pass Out: cross PSD, wave no (k) 

n. Function APES 

o. Pass In: Y, M 

p. Pass Out: cross PSD, wave no (k) 

14. END ( trails) 

15. Plot power spectral distribution, SCD  

16. calculate MSE 

17. performance parameters.  

END 

The above algorithm depicts the procedures to compute the 
performance estimation of different spectral estimation 
techniques. This method gives the more accurate value of 
spectral estimates but, the lower resolution than the schemes 
they based on. A comparative analysis has been performed in 
between the entire standard APES algorithm and the 
conventional methods which show that integrated APES 
outperforms the conventional shrinkage based techniques 
regarding detection of every frequency and also the amplitude 
of spectral components. Fig. 3 shows the system design 
architecture of the proposed method. It contains as an input like 
general and derived parameters like N, M, A, SNR, f. fs, t, ts, 
etc. The sinusoidal signal is generated after collecting all the 
inputs to the system. Then, the next step is to calculate the PSD  

of the given input signal. Apply Monte Carlo method to 
simulate the signal. Then add the Gaussian noise to the input 
signal.  Perform the PSC, CAPON, APES and PSC techniques 
to simulate the experiments. Finally, calculate the SC for the 
above-mentioned techniques. Estimate the MSE and filter 
length of the signal. Analyze the given signal using 
performance parameters like MSE, SNR, and filter length. 
Fig. 4 shows the flowchart of the proposed method. It gives an 
explicit conceptual aspect of the proposed framework. 

V. RESULTS AND DISCUSSION 

The computational efficiency offered by the proposed 
method is illustrated in Fig. 4, where the process involves 
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effective SC of APES method is illustrated as well as the 
spectral estimation of the above algorithm is shown as a 
function of the sliding window data size N. here the number of 
observed samples N=100, filter length M=8, sampling 
frequency fs=1, SNR=35 is assumed for the implementation 
purposes. Fig. 5 to 19 shows the result obtained after 

simulating this proposed framework on a numerical computing 
tool. It shows that it gives a better spectral estimation for a 
given non-stationary signals. 

Fig. 18 and 19 depicts that APES significantly achieves 
better outcomes concerning MSE and SNR thus exhibits the 
conventional spectral estimation techniques. 

 
Fig. 5. Input signal.

 
Fig. 6. PSC spectrum estimation. 

 
Fig. 7. ASC spectrum estimation. 

 

Fig. 8. CAPON spectrum estimation. 

 

Fig. 9. APES spectrum estimation. 

 
Fig. 10. Spectral correlation for PSC. 

 
Fig. 11. Spectral correlation for ASC. 

 

Fig. 12. Spectral correlation for CAPON. 
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Fig. 13. Spectral correlation for APES. 

 
Fig. 14. Spectrum correlation (PSC). 

 
Fig. 15. Spectrum correlation (ASC). 

 
Fig. 16. Spectrum correlation (CAPON). 

 
Fig. 17. Spectrum correlation (APES). 
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Fig. 18. Filter Length vs. MSE comparison for PSC, ASC, CAPON and APES. 
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Fig. 19. SNR vs. MSE comparison for PSC, ASC, CAPON and APES. 

VI. CONCLUSION AND FUTURE WORK 

The present paper has studied about the effectiveness of 
existing compressive sensing algorithms that has been seen too. 

Further, the study introduced the shrinkage-based APES 
spectral estimators, termed integrated linear regression 
framework for APES, by minimizing the MSE of APES in a 
linear regression shrinkage approach. 

Regarding resolution, the proposed framework for APES is 
found to be a superior method. It has the appealing property 
that this resolution, even for fairly high target densities, 
improves as the SNR increases. For applications in which 
target discrimination is critical, it may be the preferred choice. 
In particular, in a polarimetric case, APES may be able to 
discriminate close targets with different polar metric signature 
where Capon or a traditional matched filter approach cannot. 
The asymptotic analysis of the proposed APES shows that it 
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significantly reduces the computational overhead and obtains 
efficient convergence speed like RLS. Therefore a closer look 
at the above Fig. 18 and 19 exhibits that to a large extent the 
proposed framework for APES achieves very less MSE as 
compared to the conventional spectral estimation techniques.  
Future work will focus on testing and apply integrated APES to 
In SAR, DInSAR, and PolDInSAR. Using large data sets in 
DInSAR should allow a real-life evaluation of the phase 
quality of both algorithms. Also, DInSAR in urban areas, 
where side lobe mitigation is a real issue, and large sets of 
SLCs are available, can be expected to benefit directly from 
these algorithms. Another possible research direction is to find 
criteria and algorithms to automatically select some of the 
processing parameters. 
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