
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 11, 2017

A Multiple-Criteria Decision Making Model for
Ranking Refactoring Patterns

Abdulmajeed Aljuhani
Faculty of Engineering and

Applied Science
University of Regina,

Regina, Canada

Luigi Benedicenti
Faculty of Computer Science

University of New Brunswick,
Fredericton, Canada

Sultan Alshehri
Computer Science and

Information Technology College
Majmaah University

Majmaah, Saudi Arabia

Abstract—The analytic network process (ANP) is capable of
structuring decision problems and finding mathematically deter-
mined judgments built on knowledge and experience. Researches
suggest that ANP can be useful in software development, where
complicated decisions happen routinely. In extreme programming
(XP), the refactoring is applied where the code smells bad. This
might cost more effort and time. As a result, in order to increase
the advantages of refactoring in less effort and time, the analytic
network process has been used to accomplish this purpose. This
paper presents an example of applying the ANP in order to
rank the refactoring patterns regarding the internal code quality
attributes. A case study that was conducted in an academic
environment is presented in this paper. The results of the case
study show the benefits of using the ANP in XP development
cycle.

Keywords—Analytic network process; extreme programming;
refactoring practice; refactoring patterns

I. INTRODUCTION

The process of enhancing the structure of an existing
code by altering the internal design without changing the
external design is called code refactoring [1]. It is a signif-
icant issue in the XP development cycle to enhance software
design, and to minimize the cost and effort that are needed
for testing and coding. Some researchers have concentrated
on guidelines for the refactoring process; for example, a 3-
stage model has been introduced by Kataoka et al. [2], and
the model contains “identification of refactoring candidates,
validation of refactoring effects, and application of refactoring”
[2]. Meanwhile, Mens and Tourwe [3] have described the
refactoring phases in more detail. These phases start with
specifying the portion of the software that should be refactored,
then determining which refactoring technique is suitable to
be applied, performing the refactoring, and finally measuring
the influence of the applied refactoring technique on the code
quality [3]. Other researchers investigated various aspects of
refactoring techniques. Simmonds and Mens [4] studied four
software-refactoring methods: Eclipse, Together ControlCenter
6.0, SmalltalkWorks 7.0, and Gurn. In addition, Murphy-Hill
et al. [5] conducted an empirical investigation to compare
four techniques. These four techniques were applied to collect
refactoring data in order to assist in establishing a powerful
refactoring technique.

Maticorna and Perez [6] introduced refactoring interpreta-
tion and the possibility of using it as a method in order to

compare various refactoring explanations, involving refactor-
ing catalogs. Moreover, Maticorna and Perez [6] have worked
on various refactoring concerns, like actions, application on
scheduling, design, and scope, which might lead to the building
of refactoring tools.

Several open-source Java systems have been investigated
by Brunel et al. [7] in order to measure the accuracy of
refactoring methods. This measuring is done by examining the
following Java systems: MegaMek, Velocity, Antlr, HSQLDB,
PDFBox, Tyrant, and JasperReports. Murphy-Hill [8] built a
model to investigate how refactoring techniques work in terms
of the style of the refactoring browser. The model is made up
of the following phases: identify, initiate, and execute [8].

Roberts et al. [9] examined the practical factors and tech-
nical requirements for the refactoring techniques. The authors
emphasized that the ability to search the whole program and
the accuracy are the most technical requirements. In addition,
integration and speed are the most practical factors.

Marija and Kresimir [10] evaluated seven refactoring tools
in order to choose the most suitable one. The seven tools were:
Refactoring Browser (Smalltalk), Eclipse (C++, Java), Refactor
(C# VB.NET, C++, ASP.NET), IntelliJ Idea (Java), Refactor
(C# VB.NET, ASP.NET), NDepend (.NET code base), and
Refactor (C++, Java). These refactoring tools were compared
to each other concerning various issues, such as reliability,
scalability, automation, discover-ability, coverage, and config-
urability.

Mahmood and Reddy [11] examined three refactoring
techniques in order to avoid human errors while performing the
manual refactoring. The authors evaluated the following refac-
toring tools: JBuilder 2008, RefactorIT 2.7 beta, and IntelliJ
Idea 7.0.4. The authors compared these techniques with respect
to various issues, such as user control, consistency, information
processing, user experience, goal assessment, errors, design
for the user, and ease of use. The authors proposed some
enhancements in order to maximize the consistency of software
usability.

Other studies focused on the identification of code smells
in order to locate possible refactoring. For example, Hayashi et
al. [12] introduced a tool for Eclipse using plug-ins. This tool
directs the developer in terms of how to perform refactoring
and which part of the code uses the histories of program

www.ijacsa.thesai.org 1 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 11, 2017

modification. The proposed tool focused on answering the
following questions: Where to refactor? Which suitable refac-
toring technique should be used? When should refactoring be
applied?

II. THE ANP

The Analytic Network Process (ANP) is a multi-criteria
approach of estimation used to infer relative need sizes of
supreme numbers from singular judgments (or from genuine
estimations standardized to a relative frame) that likewise have
a place with a central size of outright numbers [13]. The ANP
gives a structure to show an solution for a specific problem,
which prompts a choice for that issue. In the ANP technique,
dependencies among different criteria are considered making
it not the same as the Analytic Hierarchy Process (AHP) [13].
Saaty stated that in truth the ANP utilizes a system without
the need to indicate levels. As in, the AHP, strength or the
relative significance of impact is a focal idea [13]. In the
ANP, one structures a judgment from the principal size of the
AHP by noting two sorts of inquiries with respect to quality
of strength: 1) Given a rule, which of two components is
more overwhelming concerning that basis? 2) Which of two
components impacts a third component more, as for a measure
[13]?

In pairwise comparisons, entered values reflect the rela-
tive impact among components regarding a control paradigm.
These entered values depend on the significance of every
criterion. As such, the ANP is a helpful approach for forecast
and for representing to an assortment of contenders with
their expressly known and verifiably accepted cooperations
and the relative qualities with which they use their impact
in making a decision. It is likewise helpful in struggle de-
termination where there can be many contradicting impacts
[13]. The system structure comprises of various clusters, and
these clusters contain different nodes or components. These
clusters are associated with each other in view of the relative
impacts among the nodes. The connections can either have
outer relative impact, which implies components in cluster X
influence component in cluster Y, or interior relative impact,
which implies components in a similar cluster (e.g.X) influence
each other. For this situation, the outside relative impact is
named external reliance, and the interior relative impact is
named internal reliance [13]. The network structure permits
criticism models through cycle association, and the ANP gives
distinctive sorts of nodes, for example, source, middle, and
sink. Again, as indicated by Saaty that a source node is a
starting point of ways of impact (significance) and never a
goal of such ways. A sink node is a goal of ways of impact
and never a root of such ways. A full network can incorporate
source nodes; middle of the road nodes that fall on ways from
source nodes, lie on cycles, or fall on ways to sink nodes;
lastly sink nodes [14]. Fig. 1 gives a general idea of the ANP
structure [14].

Another part of the ANP structure is the organizing of
various alternatives keeping in mind the end goal to make
a suitable decision. This begins by making pairwise com-
parisons, in light of a principal scale, as appeared in Table
I. Following this, the vector of priorities is the foremost
eigenvector of the matrix. This vector gives the relative priority
of the criteria measured on a ratio scale. That is, these priorities

Fig. 1. The analytic network process structure [14].

TABLE I. ANP FUNDAMENTAL SCALE DEVELOPED BY SAATY [15]

Scale Numerical rating Reciprocal
Equal importance 1 1

Moderate importance of one over other 3 1
3

Very strong or demonstrated importance 7 1
7

Extreme importance 9 1
9

Intermediate values 2,4,6,8 1
2 , 14 , 16 , 18

TABLE II. RANDOM INDEX [14]

Order 1 2 3 4 5 6 7 8 9 10
R.I 0 0 0.52 0.89 1.11 1.25 1.35 1.4 1.45 1.49

Fig. 2. The Super-matrix of a network [14].

are remarkable inside augmentation by a positive consistent.
In the event that one guarantees that they whole to one they
are then extraordinary and have a place with a size of supreme
numbers [14]. “The consistency index of a matrix is given by
C.I. (max n)/(n-1), where n is the number of alternatives. The
consistency ratio (C.R.) is obtained by forming the ratio of C.I.
The suitable group of numbers is exihibited in Table II, each
of which is an average random consistency index computed for
n 10 for very large samples. They create randomly generated
reciprocal matrices using the scale 1

9 , 1
8 , 1

2 , 1, 2, 8, 9 and
calculate the average of their eigenvalues. This average is
used to form the Random Consistency Index R .I” [14]. The
consistency proportion (C.R) ought to be lower than 0.10
(or 0.20), something else, the entered judgements should be
improved.

In the wake of getting all priorities from the pairwise
comparisons, these priorities are set in a supermatrix. As per
Saaty [14] the supermatrix represents the impact priority of a
component on the left of the matrix on a component at the
top of the matrix as for a specific control rule. A supermatrix
alongside a case of one of its general passage matrices is
appeared in Fig. 2. The segment C1 in the supermatrix
incorporates all priority vectors inferred for nodes that are
parent nodes in the C1 cluster [14].

www.ijacsa.thesai.org 2 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 11, 2017

III. REFACTORING TECHNIQUES

Refactoring assists the development team to enhance the
software design, understand the software more easily, find er-
rors, and program faster, as Fowler et al. [1] confirmed. Fowler
et al. [1] specified several refactoring techniques and arranged
them into the following categories: moving features between
objects, making method calls simpler, simplifying conditional
expressions, composing methods, dealing with generalization,
and organizing data. Each of these categories influences the
quality attributes. Each project might have different quality
attribute priorities, and using the refactoring techniques en-
hances the software design and the code. Therefore, in order
to maximize the benefit from the system, it is important to
assign the developers’ efforts to the most significant quality
attributes. Selecting the refactoring techniques consumes time
and might lead to conflicting opinions.

In this paper, the main objective is to rank refactoring tech-
niques according to their influence on the internal code quality
attributes. Five refactoring techniques have been selected in
this study, in order to examine their importance using the
ANP. These techniques were selected from the four different
groups introduced by Fowler et al. [1]. The selected refactoring
techniques are: Extract Method, Extract Class, Inline Class,
Pull UP Method, and Rename Method.

IV. METHODOLOGY

The main objective in this research is to investigate how the
analytic network process might be used to rank the refactoring
patterns in order to determine the most suitable one for
the software project. The case study methodology, which is
explained in [16], is the research methodology.

The following research questions provide more focus for
the research case study:

1) What is the significance of engaging the ANP when
applying refactoring?

2) How can refactoring patterns be ranked using the
ANP?

3) How does the ANP influence the development team’s
communication and productivity in the refactoring
practice?

4) How can the development team reduce time when
refactoring using the ANP?

Moreover, the study propositions are as follows:

Proposition 1: The ANP catches significant criteria and
alternatives that affect refactoring patterns.

Proposition 2: The ANP supports ranking and selection
activities in the refactoring practice.

Proposition 3: The ANP includes creative debate and
enhances team communication.

Proposition 4: The ANP focuses on the most valuable
refactoring methods in order to increase the quality of the
code.

Proposition 5: The ANP clarifies conflicting perspectives
between the development teams when performing refactoring.

From the above inquiries, we determined the units of
analysis for our investigation. The primary target is ranking
different XP refactoring patterns in regards to the inside quality
attributes. Properly, assessing and ranking are two units of
analysis. Another is the members’ point of view of the ANP
benefits in refactoring practice. Hence, the plan of this case
study incorporates numerous cases, installed with different
units of analysis. The rationale connecting of the gathered
information to the study propositions is appeared at the end of
this paper.

V. DATA COLLECTION AND SOURCES

At the beginning of each use for the ANP in extreme
programming, we investigate the ANP benefits and ability
by introducing the related criteria and extreme programming
areas. Data is gathered from looking past studies and literature
review. Too, data triangulation is gained with a specific end
goal to expand the validity of the study.

The main data origin of this paper is an extreme program-
ming project, developed during the winter semester of 2016
at the University of Regina. The data sources in this research
are:

• Questionnaires given to the students during the devel-
opment of the XP project.

• Archival records, such as study plans, from the stu-
dents.

• Comments from the customer.

• Open-ended interviews with the students.

VI. CASE STUDY

At the beginning, the authors would like to address that a
part of this case study has been published in [17]. The case
study was organized during a 12-week Winter 2016 semester
at the University of Regina. Several researches, as [18], [19]
and [20], tended to that the reasonable XP team size is in the
vicinity of three and seven individuals. In addition, Ambler
[21] accentuated that the accomplishment of agile project
is 83 % with group estimate under eleven individuals, and
the rate runs bring down with expanding the group measure
for more than eleven individuals [21]. The significant reason
for this diminishing in the achievement rate is in regards
to correspondence need or misconstruing with the the large
team size. In this way, we had 12 graduate students from
the University of Regina, and one extra member, a customer,
who was incorporated into this case study. These students had
transitional information of XP process and practices, and var-
ious programming levels. The dominant part of these students
was a part of an expert program, implying that their graduate
degree was a part of their expert development and that they had
past work involvement in the software industry. Some of these
students were proceeding to work part-time. The members’
experiences included different programming languages, for
example, C++, Java, and PHP. The members were sorted out
into two groups, the principal group utilized the ANP strategy
with a specific end goal to make their decisions in ranking
the refactoring techniques, and the second group took after
the traditional XP way, which is based on voting, for their
decisions. The two groups were made a request to develop an

www.ijacsa.thesai.org 3 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 11, 2017

XP project called“Professors’ Availability Managing System”
finish with an arrangement of requirements. The undertaking
was produced in 5 iterations, permitting two weeks for each.
Toward the finish of the project, the two groups actualized
all framework requirements. The members were asked to
working on refactoring techniques amid the improvement cycle
to rank them. Help materials that concentrated on refactoring
practice were given to the members so as to guarantee their
comprehension. The ANP group was given white papers, a few
introductions, and other imperative materials about the ANP
keeping in mind the end goal to enable them to apply it in their
development. Team 1 honed on a few pairwise comparisons
and expanded their understandings of the ANP structure. At
the end, the researcher handed out a questionnaire to the
participants in order to gather more data about the members’
points of view.

VII. APPLYING ANP IN REFACTORING

The main objective of applying the ANP in refactoring
is to assist the XP team members in ranking the refactoring
techniques with respect to the code quality attributes. In this
paper, the ANP is used to rank the refactoring techniques based
on internal quality attributes. The following sections present
the ANP structure, evaluation and process.

A. Background

This section will introduce some previous studies that have
examined the effect of refactoring techniques on the internal
code quality attributes. This is following by introducing the
ANP applying to rank the refactoring techniques.

Zhao and Hayes [22] conducted two case studies in order
to investigate an approach that specifies which packages and
classes need to be refactored according to various measures,
like complexity, coupling, and code size. Using a measure-
driven refactoring decision, the authors presented a rank-based
software in order to support the team members’ decisions about
where resources can be applied during refactoring.

Dallal and Briand [23] presented an automated refactoring
method to enhance the cohesion of the software in order to
enhance program testability. Sahraoui et al. [24] organized an
empirical study in order to examine the effect of coupling and
inheritance metrics on maintainability. The authors discovered
a portion of the system that needed to be enhanced and
refactored.

Stroulia and Kapoor [25] studied the possibility of enhanc-
ing the design and code quality using refactoring. Several
refactoring techniques, such as Extract Abstract Class and
Extract Superclass, were applied, and the results showed
decreases in the number of methods, the number of statements,
lines of code, and the number of collaborators in the individual
system classes.

Moser et al. [26] organized a case study to investigate the
influence of refactoring on the internal quality attributes of
source code. The case study was done in an Agile environment,
and the selected quality attributes were coupling, response of
class, number of children, number of methods per class, depth
of inheritance tree, cohesion, and complexity. Based on their
proposed method, the authors found that refactoring might

enhance the internal metrics of object-oriented classes that are
written in Java for reusability.

Bois and Mens [27] introduced a framework for the internal
code qualities, like cohesion, number of children, number of
methods, coupling, and response for a class. In order to achieve
this, the authors investigated various refactoring techniques,
such as Encapsulate Filled, Pull Up Method, and Extract
Method.

Elish and Alshayeb [28] categorized refactoring patterns
according to their influence on external and internal code
quality attributes. The authors selected the following refactor-
ing techniques: Form Template Method, Replace Construction
with Creation Methods, Replace Conditional Dispatcher with
Command, Chain Constructors, Introduce Null Object, Unify
Interface, and Compose Method. The authors investigated
different internal code quality metrics such as Number of Test
Cases (NOTC) for the size of test case, Lines of Code for
Class (LOCC), FOUT, LOC, DIT, LCOM, Number of Methods
(NOM), Number of Fields (NOF), Number of Children (NOC),
RFC, and WMC.

Over the course of 15 months, Ratzinger et al. [29]
evaluated an industrial system. The authors exhibited the way
that refactoring could improve the software evolvability and
minimize the change couplings. In addition, Kataoka et al.
[30] emphasized that refactoring patterns like extract class and
extract method enhance system maintainability and minimize
coupling in the code.

B. Proposed Criteria for Ranking the Refactoring Techniques

It is important to specify code quality attributes in order to
rank refactoring techniques. The code quality attributes should
be identified based on their value to the organization or the
team member. Different projects will have different factors
and alternative refactoring techniques to be examined. In this
thesis, there are four internal code quality attributes that are
selected as criteria used to rank the refactoring patterns:

• Complexity: The degree of connectivity among com-
ponents of a design unit [31].

• Cohesion: Each component implements one function
and implements it well [31].

• Code Size: Size in terms of number of files, number
of lines of code (#LOC), functions, tables, classes, etc.
[31].

• Coupling: The strength of the interconnections be-
tween the system components [31].

C. ANP Structure for Ranking Refactoring Methods Based on
the Internal Attributes

Structuring the problem as a network that consists of three
clusters is the first step in the ANP. The first cluster is the
objective, which ranks the refactoring patterns. The second
cluster contains the criteria: coupling, code size, complexity,
and cohesion. The third cluster includes the alternatives: Pull
Up Method, Extract Class, Rename Method, Extract Method,
and Inline Class. Fig. 3 shows the ANP structure for the
problem.

www.ijacsa.thesai.org 4 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 11, 2017

Fig. 3. ANP network for ranking refactoring techniques based on the internal
attributes.

TABLE III. RANKING THE REFACTORING PATTERNS BASED ON
INTERNAL ATTRIBUTES BY TEAM 1

Refactoring Patterns Scores (%)
Extract Method 29.17 %
Extract Class 25.01 %

Pull Up Method 18.74 %
Inline Class 17.58 %

Rename Method 9.48 %

D. Pairwise Comparisons for the Refactoring Techniques

The participants have applied the refactoring techniques in
their XP project in order to note the effect on the code. After
that, based on the proposed criteria, the students evaluated each
refactoring technique. The ANP team received the suitable
ANP papers and tables in order to facilitate the comparisons
process. Examples of the participants’ questions are:

• With respect to Extract Method: which criterion is
more important, cohesion or coupling and by how
much?

• With respect to Extract Class: which criterion is more
important, complexity or cohesion and by how much?

• With respect to cohesion: which method do you prefer,
Extract Method or Extract Class?

• With respect to coupling: which method do you prefer,
Extract Method or Extract Class?

The same comparisons and questions were done again for all
refactoring techniques and code quality attributes.

VIII. FINDING AND RESULTS

Team 1’s results of ranking the refactoring patterns with
respect to all four criteria is as follows: first, Extract Method;
second, Extract Class; third, Pull Up Method; fourth, Inline
Class; and fifth, Rename Method. Table III shows the scores
of each pattern. Team 1 ranked cohesion as the most important
criterion, followed by complexity in the second position, while
code size and coupling were ranked in the third and fourth
positions, respectively. Fig. 4 exhibits the importance of each
criterion as a percentage according to Team 1.

Team 2 ranked the refactoring patterns as follows: first,
Extract Class; second, Extract Method; third, Inline Class;
fourth, Pull Up Method; and fifth, Rename Method. Table
IV displays the ranking of refactoring patterns by Team 2.
Moreover, in terms of the most important criterion, Team 2

Fig. 4. The importance of the internal attributes for the refactoring patterns
by Team 1.

TABLE IV. REFACTORING TECHNIQUES RANKING BY TEAM 2

Ranking Refactoring Techniques
1 Extract Class
2 Extract Method
3 Inline Class
4 Pull Up Method
5 Rename Method

ranked coupling in the first position. Table V shows the ranking
of the criteria by Team 2.

TABLE V. THE IMPORTANCE OF THE CRITERIA BY TEAM 2

Ranking Criteria
1 Coupling
2 Cohesion
3 Complexity
4 Code Size

A. Observations

1) With respect to all of the criteria, Team 1 ranked the
Extract Method as the highest refactoring technique.

2) Team 2 ranked Extract Class as the highest refactor-
ing technique.

3) Both teams ranked Rename Method in the last posi-
tion.

4) Team 1 ranked cohesion as the most important cri-
terion, while Team 2 ranked coupling as the most
important criterion.

5) With respect to each criterion individually, Team 1
ranked the Pull Up Method highest in terms of code
size. Table VI shows the ranking of all refactoring
techniques with respect to each criterion.

6) Inline Class was ranked highest with respect to the
coupling criterion by Team 1.

7) With respect to each refactoring technique individu-
ally, we can see that reducing complexity was ranked
highest according to Rename Method. Table VII
shows the weight of each criterion with respect to
each refactoring pattern.

IX. REFACTORING VALIDATION

Based on the previous ANP evaluation, we discovered
that three refactoring patterns received high rankings: Extract
Method, Extract Class, and Rename Method. This section
shows several collected technical information in order to
validate the ANP evaluation findings.

www.ijacsa.thesai.org 5 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 11, 2017

TABLE VI. REFACTORING TECHNIQUES WITH RESPECT TO EACH CRITERION FOR TEAM 1

Techniques Cohesion Techniques Coupling Techniques Code-Size Techniques Complexity
Extract Method 53.09 % Inline Class 46.23 % Pull Up Method 41.22 % Extract Class 47.30 %
Extract Class 28.42 % Pull Up Method 28.51 % Inline Class 31.20 % Extract Method 23.16 %
Pull Up Method 9.26 % Rename Method 11.96 % Rename Method 13.44 % Inline Class 11.38 %
Rename Method 5.91 % Extract Method 7.75 % Extract Method 7.96 % Rename Method 10.10 %
Inline Class 3.29 % Extract Class 5.52 % Extract Class 6.16 % Pull Up Method 8.04 %

TABLE VII. CRITERIA WEIGHTS WITH RESPECT TO EACH REFACTORING TECHNIQUE FOR TEAM 1

Extract Method Extract Class Inline Class Pull Up Method Rename Method
Cohesion 64.32 % 66.36 % 7.01 % 5.48 % 15.54 %
Coupling 11.32 % 10.36 % 14.13 % 26.61 % 6.29 %
Code-Size 20.28 % 18.24 % 22.33 % 34.88 % 6.29 %

Complexity 4.06 % 5.02 % 56.51 % 33.01 % 71.86 %

TABLE VIII. REFACTORING PATTERNS EFFECT ON THE INTERNAL
ATTRIBUTES BY TEAM 1

Cohesion Coupling Code-Size Complexity
Extract Method + + + +

Inline Class - - - +
Extract Class + + + -

Pull Up Method - - - -
Rename Method + 0 - -

TABLE IX. REFACTORING PATTERNS EFFECT ON THE INTERNAL
ATTRIBUTES BY TEAM 2

Cohesion Coupling Code-Size Complexity
Extract Method + 0 + -

Inline Class + - - +
Extract Class - + + -

Pull Up Method + + - -
Rename Method 0 0 0 -

A. Observations of the Internal Effect of Refactoring

This section shows the effect of the refactoring patterns on
the internal quality metrics. The students were asked to use
(-) to indicate a decrease, (+) to indicate an increase, and (0)
to indicate no use or no change. Tables VIII and IX display
the effect of refactoring on the internal quality attributes as
reported by both teams.

B. Number of Times Applying the Refactoring Patterns

Tables X and XI show the number of refactoring patterns
that have been applied by both teams in each iteration.

X. INTERVIEW RESULTS

Subsequent to finishing the project, the consequences of
the ANP assessment for ranking the refactoring patterns were
appeared to the members so as to lead the interviews. Not all
outcomes were as expected and a few results were surprising.
The interviews included open-ended inquiries so as to gather
the members’ viewpoints about the ANP, their points of view
on its advantages and disadvantages in XP, too to gather their
perspectives about the best application for ANP in XP among
all specified practices. The gathered information was contained
written by hand notes from the interviews.

The interview findings show positive remarks from the
members with respect to the ANP. The ANP was a useful
approach in explaining struggle points of view, and urged each
colleague to take an interest in deciding. The fundamental
concern was the time it took amid the ANP assessment, and
the quantity of pairwise comparisons. Another suggestion was
applying the ANP in more XP practices and concentrate the
impacts. All ANP colleagues recommended applying ANP in
their future XP projects.

On the other hand, Team 2 was not totally happy with
the procedure of their decisions. A portion of the colleagues
complained about that the most experienced member had more
voting weight than others, which lead them to take after
decisions that they dislike. Another issue is that the ANP
enabled us to know the distinction between each ranking
position in a rate; in any case, Team 2 couldn’t determined the
measure of contrast between each ranked pattern and criterion.

XI. QUESTIONNAIRES

Surveys were dispersed among the members keeping in
order to gather their experiences and perspectives. The given
surveys comprised of two areas. The principal area included
inquiries concerning ANP as a ranking and decision tool, for
example, catching the required data, decency of the decision
structure, clearness of criteria included, and clearness of alter-
natives included. The second area included inquiries regarding
the advantages of every XP practice, and the students’ ful-
fillment, for example, improving the group correspondence,
elucidating the ranking issue, making positive discourse and
learning chances, group performance, and fulfillment of the
last consequences of the ANP. In this study, a seven-point
Likert scale was used to decide the worthiness level of the
ANP approach as follows:

1) Totally unacceptable.
2) Unacceptable.
3) Slightly unacceptable.
4) Neutral.
5) Slightly acceptable.
6) Acceptable.
7) Perfectly Acceptable.

In the wake of finishing the questionnaire, the same steps were
followed as in [32]with a specific end goal to total the gathered
information and show the aggregate agreeableness rate.

www.ijacsa.thesai.org 6 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 11, 2017

TABLE X. NUMBER OF REFACTORING PATTERNS WAS APPLIED BY TEAM 1 IN EACH ITERATION

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Total
Extract Class 0 7 6 4 5 22
Inline Class 0 4 2 3 5 14

Rename Method 0 42 38 24 7 101
Pull Up Method 0 0 0 0 0 0
Extract Method 0 19 13 11 16 59

TABLE XI. NUMBER OF REFACTORING PATTERNS WAS APPLIED BY TEAM 2 IN EACH ITERATION

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Total
Extract Class 0 3 5 2 6 16
Inline Class 0 2 0 0 0 2

Rename Method 0 3 4 4 6 17
Pull Up Method 0 1 0 4 1 6
Extract Method 0 4 3 2 3 12

The total acceptability percentage can be obtained as
follows:
The total acceptability percentage (TAP)= the average score x
100
7

.
Where the average score = the sum of all scores given by team
members / number of the team members.

The following rates show the worthiness level of the ANP
as a ranking and decision tool:

• Enhancing team communication: 82%.

• Maximizing team performance: 87%.

• Supporting positive discussion and learning chances:
72%.

• Clearing up conflict perspectives among the team
members: 87%.

• Defining the ranking problem: 91%.

• Satisfaction of the ANP final results 71%.

From various information sources, the information was
gathered. By contrasting the gathered information and the
study propositions in view of the understanding of the criteria
that were specified above, we will investigation this gathered
information. The followings are the study propositions and
their answers:

• For the first proposition, we can see that both the
alternatives and criteria are organized adequately, and
considered in Fig. 3. Likewise, the final results and
targets of the ANP use in ranking the refactoring
techniques can be found in Table III, which showed
the ranking of the ANP team for the XP refactoring
patterns, and extract method was ranked as the highest.

• The survey statement ‘satisfaction of the ANP final
outcomes’ supported the second proposition, and the
comment of this was positive, which is 71 %. In
addition, the statement ‘ clearing up conflict points
of view among the developers’ supported the third
proposition, and the score was 87 %.

XII. VALIDITY

In this part, related threats to the validity are clarified.
These threats are construct validity, external validity, internal

validity, and reliability. Several studies underscored that case
studies are hard to analyze because of biases and validity
threats as described in [33] empirical studies in general and
case studies specifically are inclined to predispositions and
validity threats that make it hard to control the nature of the
study in order to generalize its outcomes [33].

A. Construct Validity

Construct validity guarantees that the treatment mirrors the
develop of the reason well, and the result mirrors the construct
of the impact well [34]. It manages coordinating the idea being
inquired about and considered, to the particular measurements.
The modest number of members is the fundamental risk to this
case study.

Using different strategies to guarantee the validity of the
outcomes decreased this threat. Some of these strategies are:

• Data triangulation: a noteworthy favorable position of
case study is the chance to utilize different sources
of proof [35]. A proof chain is built through using
interviews and questionnaire with different sorts of
members with various abilities and experience levels,
and the utilization of members’ remarks and numerous
perceptions. Hence, a valid conclusion can be come to.

• Methodological triangulation: employing a combina-
tion of research techniques such as organizing an
XP project to serve the study purpose, questionnaire,
findings of ANP pairwise comparisons, researchers’
notes, and interviews.

• Member checking: showing the final results to the
members is recommended. This issue was addressed
by showing the final findings to all participants in
order to ensure the study accuracy and to avoid
researcher bias.

B. Internal Validity

Internal validity is tied in with ensuring the result is caused
by the treatment (the impact). This kind of validity is just
identified with explanatory case study. This issue might be
tended to by connecting all information sources with respect to
the research questions, and connecting the research questions
to the study propositions.

www.ijacsa.thesai.org 7 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 11, 2017

C. External Validity

External validity guarantees the connection between the
construct and the impact to ensure that the study will be
generalized to a different environment [34]. In this investiga-
tion, extra case study will be need to be conducted in various
situations, for example, industry to include more specialists
from the field. Leading such a case study will help in looking at
the different outcomes and discoveries from various conditions.
Future work will add to expanded External validity.

D. Reliability

Reliability deals with the procedure of the gathered data
and results. Similar conclusions and findings can be arrived
by different researchers when following the same procedure,
and using the same data. This might be done through the
availability of same research questions, data collection, and
case studies designed by other researchers.

XIII. CONCLUSION

After using the analytic network process to rank the refac-
toring patterns used in extreme programming, ANP was an
appropriate and beneficial tool that gave the development team
a good understanding for determining the most valuable refac-
toring patterns. The participants evaluated various refactoring
patterns based on four internal code quality attributes, which
were complexity, cohesion, code-size, and coupling. The most
refactoring patterns that have enhanced the code quality in our
study were Extract Method and Extract Class. in addition, the
other mentioned refactoring patterns have added advantages
to the code quality as well. Moreover, the ANP allowed us
to specify the difference between each element in our model
by a percentage, while the traditional XP team were not be
able to do that. The ANP helped the team members resolve
conflicts based on a structured approach grounded in scientific
principles. The ANP ended up simplifying decision making,
which maximized the effect of the software being developed.
Team 1 members reconciled their conflicts of perspectives
based on a mathematical approach. This maximized their
satisfaction with the team’s decisions.

ACKNOWLEDGEMENT

Aljuhani’s research is supported by the Saudi Cultural
Bureau in Canada and Taibah University.

REFERENCES

[1] M. Fowler and K. Beck, Refactoring: improving the design of existing
code. Addison-Wesley Professional, 1999.

[2] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya, “A quantitative eval-
uation of maintainability enhancement by refactoring,” in Software
Maintenance, 2002. Proceedings. International Conference on. IEEE,
2002, pp. 576–585.

[3] T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE
Transactions on software engineering, vol. 30, no. 2, pp. 126–139, 2004.

[4] J. Simmonds and T. Mens, “A comparison of software refactoring tools,”
Programming Technology Lab, 2002.

[5] E. Murphy-Hill, A. P. Black, D. Dig, and C. Parnin, “Gathering
refactoring data: a comparison of four methods,” in Proceedings of the
2nd Workshop on Refactoring Tools. ACM, 2008, p. 7.

[6] R. Marticorena, C. López, J. Pérez, and Y. Crespo, “Assisting refactoring
tool development through refactoring characterization,” in Proceedings
of the 6th International Conference on Software and Data Technologies,
vol. 2, 2011.

[7] S. Counsell, Y. Hassoun, G. Loizou, and R. Najjar, “Common refactor-
ings, a dependency graph and some code smells: an empirical study
of java oss,” in Proceedings of the 2006 ACM/IEEE international
symposium on Empirical software engineering. ACM, 2006, pp. 288–
296.

[8] E. Murphy-Hill, “A model of refactoring tool use,” Proc. Wkshp.
Refactoring Tools, 2009.

[9] D. Roberts, J. Brant, and R. Johnson, “A refactoring tool for smalltalk,”
Urbana, vol. 51, p. 61801, 1997.

[10] M. Katić and K. Fertalj, “Towards an appropriate software refactoring
tool support,” in WSEAS international conference on applied computer
science, 2009, pp. 140–145.

[11] J. Mahmood and Y. R. Reddy, “Usability of refactoring tools for java
development,” in Proceedings of 1st Indian Workshop on Reverse En-
gineering, co-located with 3rd India Software Engineering Conference
(ISEC2010) Feb, 2010.

[12] S. Hayashi, M. Saeki, and M. Kurihara, “Supporting refactoring activ-
ities using histories of program modification,” IEICE transactions on
information and systems, vol. 89, no. 4, pp. 1403–1412, 2006.

[13] T. L. Saaty, “Fundamentals of the analytic network processdependence
and feedback in decision-making with a single network,” Journal of
Systems science and Systems engineering, vol. 13, no. 2, pp. 129–157,
2004.

[14] T. L Saaty, “The analytic network process,” Iranian Journal of Opera-
tions Research, vol. 1, no. 1, pp. 1–27, 2008.

[15] T. L. Saaty, “Decision making with the analytic hierarchy process,”
International journal of services sciences, vol. 1, no. 1, pp. 83–98,
2008.

[16] R. K. Yin, Case study research: Design and methods. Sage publica-
tions, 2013.

[17] A. Aljuhani, L. Benedicenti, and S. Alshehri, “Ranking xp prioriti-
zation methods based on the anp,” INTERNATIONAL JOURNAL OF
ADVANCED COMPUTER SCIENCE AND APPLICATIONS, vol. 8,
no. 5, pp. 1–8, 2017.

[18] A. Bustamante and R. Sawhney, “Agile xxl: Scaling agile for project
teams, seapine software, inc,” 2015.

[19] V. Lalsing, S. Kishnah, and S. Pudaruth, “People factors in agile
software development and project management,” International Journal
of Software Engineering & Applications, vol. 3, no. 1, p. 117, 2012.

[20] B. Rumpe and P. Scholz, “Scaling the management of extreme pro-
gramming projects,” arXiv preprint arXiv:1409.6604, 2014.

[21] S. Ambler, “Agile teams making decisions: Decision making tools,”
http://www.ambysoft.com/surveys/success2010.html, accessed: 2015-
02-24.

[22] L. Zhao and J. H. Hayes, “Rank-based refactoring decision support:
two studies,” Innovations in Systems and Software Engineering, vol. 7,
no. 3, pp. 171–189, 2011.

[23] J. Al Dallal and L. C. Briand, “A precise method-method interaction-
based cohesion metric for object-oriented classes,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 21, no. 2,
p. 8, 2012.

[24] H. A. Sahraoui, R. Godin, and T. Miceli, “Can metrics help bridging the
gap between the improvement of oo design quality and its automation,”
in Proceedings of the International Conference on Software Mainte-
nance, ICSM, 2000.

[25] E. Stroulia and R. Kapoor, “Metrics of refactoring-based development:
An experience report,” in OOIS 2001. Springer, 2001, pp. 113–122.

[26] R. Moser, A. Sillitti, P. Abrahamsson, and G. Succi, “Does refactoring
improve reusability?” in International Conference on Software Reuse.
Springer, 2006, pp. 287–297.

[27] B. Du Bois and T. Mens, “Describing the impact of refactoring on
internal program quality,” in International Workshop on Evolution of
Large-scale Industrial Software Applications, 2003, pp. 37–48.

[28] K. O. Elish and M. Alshayeb, “Using software quality attributes to
classify refactoring to patterns.” JSW, vol. 7, no. 2, pp. 408–419, 2012.

[29] J. Ratzinger, M. Fischer, and H. Gall, Improving evolvability through
refactoring. ACM, 2005, vol. 30, no. 4.

www.ijacsa.thesai.org 8 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 11, 2017

[30] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya, “A quantitative eval-
uation of maintainability enhancement by refactoring,” in Software
Maintenance, 2002. Proceedings. International Conference on. IEEE,
2002, pp. 576–585.

[31] “The software design metrics tool for the uml,”
https://www.sdmetrics.com/DProp.html, accessed: 2017-04-12.

[32] S. Alshehri and L. Benedicenti, “Ranking approach for the user story
prioritization methods,” J Commun Comput, vol. 10, pp. 1465–1474,
2013.

[33] R. Lincke, M. Höst, and P. Runeson, “How do phd students plan
and follow-up their work?–a case study,” School of Mathematics and
Systems Engineering, University Sweden, 2007.

[34] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

[35] R. Yin, “Case study research design and methods 3rd ed sage publica-
tions,” 2002.

www.ijacsa.thesai.org 9 | P a g e


