
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

77 | P a g e

www.ijacsa.thesai.org

Task Scheduling in Cloud Computing using Lion

Optimization Algorithm

Nora Almezeini and Prof. Alaaeldin Hafez

College of Computer and Information Sciences

King Saud University

Riyadh, Saudi Arabia

Abstract—Cloud computing has spread fast because of its

high performance distributed computing. It offers services and

access to shared resources to internet users through service

providers. Efficient performance of task scheduling in clouds is

one of the most important research issues which needs to be

focused on. Various task scheduling algorithms for cloud based

on metaheuristic techniques have been examined and showed

high performance in reasonable time such as scheduling

algorithms based on Ant Colony Optimization (ACO), Genetic

Algorithm (GA), and Particle Swarm Optimization (PSO). In this

paper, we propose a new task-scheduling algorithm based on

Lion Optimization Algorithm (LOA), for cloud computing. LOA

is a nature-inspired population-based algorithm for obtaining

global optimization over a search space. It was proposed by

Maziar Yazdani and Fariborz Jolai in 2015. It is a metaheuristic

algorithm inspired by the special lifestyle of lions and their

cooperative characteristics. The proposed task scheduling

algorithm is compared with scheduling algorithms based on

Genetic Algorithm and Particle Swarm Optimization. The results

demonstrate the high performance of the proposed algorithm,

when compared with the other algorithms.

Keywords—Cloud computing; task scheduling algorithm; cloud

scheduling; lion optimization algorithm; optimization algorithm

I. INTRODUCTION

Cloud computing is considered to be a distributed system
that offers services to internet users through service providers
such as Amazon, Google, Apple, and Microsoft. Cloud
computing uses internet technologies to offer elastic services
that support variable workloads and dynamic access to
computing resources.

Many of the scientific researches on cloud computing had
focused on the performance efficiency of task scheduling. Task
scheduling focuses on mapping tasks to appropriate resources,
efficiently. Finding an optimal solution in cloud computing is
considered an NP-complete problem. Each scheduling
algorithm is based on one or more strategy. The most important
strategies or objectives commonly used are time, cost, energy,
quality of service (QoS), and fault tolerance [1], [2]. Several
scheduling algorithms based on heuristic algorithms, such as
Min-Min, Max-Min, and Heterogeneous Earliest Finish Time
(HEFT) algorithms have been developed for cloud systems [3],
[4]. In addition, different metaheuristic task scheduling
algorithms that generate optimal schedules, such as the
scheduling algorithm based on Genetic Algorithm (GA),
Particle Swarm Optimization (PSO), and Ant Colony
Optimization (ACO) [3], [5] have also been developed.

In this study, a new task scheduling algorithm is proposed
for cloud environment using the concept of lion optimization
algorithm (LOA), which was proposed in [6]. LOA is a nature-
inspired algorithm based on the special lifestyle of lions and
their cooperative behaviors. To evaluate the performance of the
proposed algorithm, a comparative study is done among the
proposed algorithm, task scheduling based on PSO algorithm,
and task scheduling using the GA.

The main objective of this research paper is to propose a
task-scheduling technique for cloud computing using the LOA
to minimize the total execution time of the task on the cloud
resources (makespan). Section 2 reviews some literature on
LOA and some metaheuristic algorithms. Section 3 describes
the proposed algorithm. Section 4 presents the experimental
methodology and simulation parameters, followed by metrics
used in experiment in Section 5. Section 6 presents the results
of simulations and comparisons. Finally, conclusion and the
future work are discussed in Section 7.

II. RELATED WORK

Many metaheuristic algorithms have been proposed and
applied for task scheduling in the area of cloud computing.
Metaheuristic algorithms depend on two techniques to be
effective. The first technique is “exploitation”, which exploits
the best solution from among the previous results. The second
technique is “exploration”, which explores new areas of the
solution space. Most of these algorithms are distinguished and
remarkable, such as the Genetic Algorithms (GA), Particle
Swarm Optimization (PSO), Ant Colony Optimization (ACO),
and League Championship Algorithm (LCA), and many more
algorithms [5], [7].

The GA is a metaheuristic technique that was introduced by
Holland in 1975 [8]. It provides useful solutions to
optimization problems by applying the principles of evolution.
The GA begins by initializing a population with random
candidate solutions called individuals. Each individual is
evaluated by a fitness function, which can be different
according to the given optimization objective. Then, a
proportion of the population is selected to reproduce a new
generation. After that two main genetic operators are used to
generate the new-generation population. These two operators
are: crossover and mutation [9].

Using the GA in cloud task scheduling is a powerful
approach as it provides better solutions with increase in the
population size and number of generations. However, the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

78 | P a g e

www.ijacsa.thesai.org

random generation of the initial population leads to schedules
that are not very fit. Therefore, when these schedules are
mutated with each other, there is a very low probability of
producing a child better than the parents. Therefore, many
researches have been conducted on improving the GA,
especially, the initial steps, in order to improve the
performance. For example, the authors in [10] improved the
GA by using the Min-Min and Max-Min algorithms for
generating the initial population. This provided a better initial
population and better solutions than the standard GA, which
initialized the population randomly.

The PSO metaheuristic algorithm was proposed by
Kennedy and Eberhart in 1995 [11]. It was derived from the
social behavior of particles. Each particle has position and
velocity, which are initialized randomly. Moreover, each
particle has a fitness value, and knows its personal best value
(pbest) and the global best value (gbest). In each iteration, the
particle improves its position based on its velocity using the
gbest and pbest values [5], [12].

Task scheduling in clouds using PSO algorithm was found
to be faster than that using the GA. It spent shorter time to
complete the different scheduling tasks. In addition, the PSO
provided better results for large-scale optimization problems,
than the GA. However, many techniques and strategies were
developed to improve the PSO for task scheduling. For
example, [13] proposed an algorithm that combined the ACO
and PSO algorithms in order to improve the performance. This
combination improved the convergence speed and the resource
utilization ratio.

In this paper, a new task-scheduling algorithm has been
proposed using the concept of a new optimization algorithm
called Lion Optimization Algorithm. It is based on the lifestyle
and social organization of lions. In 2012, Wang [14] proposed
an algorithm inspired by a few characteristics of lions, named
the “Lion Pride Optimizer”. It was based on the fighting and
mating between lions. Rajakumar [15] proposed an algorithm
named “The Lion’s Algorithm”, which was based on the
mating, territorial defense, and territorial takeover. In 2015,
Yazdani and Jolai [6] proposed the Lion Optimization
Algorithm (LOA), which was different from the previous
algorithms. It was inspired by simulating the isolated life style
and cooperative behaviors of lions, such as hunting, territory
marking, migration, and the different life styles of the nomad
and resident lions, in addition to mating and fighting.

III. TASK SCHEDULING BASED ON LION OPTIMIZATION

ALGORITHM

The LOA was developed based on the simulations of the
behaviors of lions, such as hunting, mating, and defense. Lions
have two organizational behaviors: resident behavior and
nomadic behavior. Residents live in groups called prides. A
resident lion may become a nomad, and vice versa. In the
LOA, the initial population is generated randomly over the
solution space where every single solution is called a “Lion”.
(%N) of lions in the population are selected randomly as
nomad lions and the rest of the population are residents.
Residents are divided randomly into (P) prides. (%S) of the
lions in each pride are considered female and the rest are male.

However, this proportion is reversed for nomad lions. The
parameters and their meanings are shown in Table 1.

The proposed task-scheduling algorithm based on the LOA
is detailed in the following steps:

Step 1: Initialize population

In this study, our target is to resolve the task scheduling for
cloud computing and minimize the makespan of the solution,
which is the maximum completion time for all tasks.
Therefore, we should map each underlying solution to a lion. A
lion represents a task scheduling solution, which is initialized
randomly by mapping cloud tasks (cloudlets) to cloud
resources (virtual machines (VMs)). For example, Fig. 1 shows
a lion represents a schedule of five tasks that have been
assigned randomly to three VMs. Such that, each lion will
represent a random schedule solution, so the initial lion
population is constructed randomly over the solution space for
the LOA algorithm.

The goal of the proposed algorithm is to find the best lion
(solution) that has the best fitness value. The fitness value is
the makespan of that solution, which is the maximum
completion time for the tasks. Moreover, each lion knows its
own best solution (schedule of tasks), as well as the global best
solution, which are updated progressively during optimization.

TABLE I. PARAMETERS OF LOA

Parameter Definition of the parameters

%N Percent of nomad lions

P Number of prides

%S Percent of female lions in each pride

%R Roaming percent

%Ma Mating percent of female lions

%I Immigrate rate of female lions in each pride

Fig. 1. A lion representation.

TABLE II. VALUES OF LOA PARAMETERS

Parameter Value

%N 20

P 4

%S 80

%R 20

%Ma 30

%I 40

In our proposed algorithm, each lion has the following
parameters:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

79 | P a g e

www.ijacsa.thesai.org

 vmPositions List: initially contains random schedule of
VMs

 vmBestPositions List: in order to save the best
schedule for that lion.

 Fitness: represents the makespan of current
vmPositions

 Best Fitness: represents the makespan of
vmBestPositions

As mentioned previously, the initial population will be
classified into residents and nomads. Table 2 shows the value
of parameters used in the experiment. %20 of lions are
nomads. Residents will be divided into 4 prides randomly, and
in each pride, %80 of lions are females, whereas the rest are
males. However, it is the reverse for nomad lions: %(100−80)
of the nomads are females and the rest are males.

Moreover, each pride has its own territory. Territory is a
collection of the best visited positions of the pride members. In
our study, the territory of the pride is formed by the best
solution (task scheduling) of each lion in the pride. This will
help to save the best positions or solutions obtained over each
iteration. In our proposed algorithm, the territory of the pride
will consist of vmBestPositions of each lion in the pride.

Step 2: Each pride will do the following:

Step 2.1: Hunting

Based on LOA, some females of the pride are selected
randomly for hunting. These hunters move toward the prey and
encircle it, to catch it. In our proposed algorithm, this strategy
will help achieve a better solution, as each hunter will update
its best visited position (task schedule solution) and the global
best position (solution) by moving toward the prey.

First, the selected female hunters are partitioned into three
groups randomly: left wing, center, and right wing. The group
with highest cumulative fitness is considered as the center
while the other two groups as the two wings.

Next, a prey is generated at the center of the hunters, as
follows [6]:

During hunting, each hunter moves toward the prey
according to its group, as follows [6]:

If a hunter belongs to the center group:

 {
 (()) ()

 (()) ()

If it belongs to the left or right wings:

{

 (())

 ()

 (())

 ()

Where, PREY and Hunter are their current positions, and
Hunter' is the new position of the hunter.

Throughout hunting, if the new position of the hunter is
better than its previous position, which means that it has
improved its own fitness, the prey will escape from the hunter,
and the new position of the prey will be [6]:

 () ()

Where, PI is the percentage of improvement in the hunter’s
fitness.

Step 2.2: Remaining Females

As some females in each pride go hunting, remained
females in the pride will move toward one of the positions of
territory. The first step based on LOA is calculating the
tournament size of the pride. This is done by first calculating
the number of lions in the pride, who improved their fitness in
the last iteration (Success value). Then, the tournament size for
this pride is calculated as follows [6]:

 ((

 ()

))

Where, () is the number of lions in pride j, who

improved their fitness in the last iteration.

Tournament size of a pride is varied in every iteration
based on success value. If success value decreased, the
tournament size increases and this will enhance diversity.

After that, for each remaining female in the pride, a place is
selected from the pride’s territory by tournament selection to
move the female toward the selected place. As mentioned
before, the lion’s personal best visited position is updated as
well as the global best position.

Step 2.3: Roaming

Roaming strategy is a strong local search and it helps our
proposed algorithm to find a good solution and improve it.
Based on LOA, each resident male in the pride roams within
the pride’s territory.

First, %R of the territory positions is selected randomly so
that the lion will visit these selected positions. During roaming,
if the new place of that male lion is better than its personal best
visited position, its best visited position is updated, and that
place is marked as territory. Finally, the best visited position
for that lion is set as its current position and the global best
position is updated if necessary.

Step 2.4: Mating

Based on LOA, %Ma of the female lions in the pride mate
with one or more resident males, where all of them are selected
randomly, to produce offspring. This will share information
between genders and new offspring will inherit characteristics
from both genders.

Each mating operation will produce two new offspring,
according to the following equations:

 ∑
 -

∑

 ,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

80 | P a g e

www.ijacsa.thesai.org

 () ∑

∑

Where, is a randomly generated number with normal
distribution with mean 0.5 and standard deviation 0.1. = 1 if
male i is selected for mating, otherwise it is 0. NR is the
number of resident males in the pride.

One of the two offspring is considered as male and the
other as female, randomly. Our proposed algorithm by mating
strategy will share solutions between each other and produce
new solutions that may have better fitness value.

Step 2.5: Defense

New mature resident males will fight other males in the
pride. The weakest males will leave their pride and become
nomads. This behavior can be simulated by merging new
mature males and old males. Then, all males are sorted
according to their fitness values. The weakest males are driven
out of the pride and become nomads, whereas the remaining
males become resident males. This strategy assists our
proposed algorithm to retain powerful male lions as solutions
that play an important role in LOA.

Step 3: Each lion of Nomads will do the following:

Step 3.1: Roaming

All nomad male and female lions roam and move randomly
in the search space. The new positions of the nomad lions are
determined as follows:

 {

 ,

 (
 -

),

where, rand is a random number between 0 and 1, pr is a
probability, Nomad is the fitness value of the current nomad,
and BestNomad is the best fitness value of the nomad lions.

If the new place of a nomad lion is better than its personal
best visited position, the best visited position of that lion is
updated. The global best position is also updated, if necessary.

Step 3.2: Mating

%Ma of female nomads are selected randomly. Every
female mates with only one male nomad, who is also selected
randomly, and produces two offspring according to the
equations mentioned in the previous part; one of them is male
and the other is female.

Step 3.3: Defense

Nomad males attack prides randomly to try to take over a
pride by fighting the male lions in the pride. If the nomad lion
is strong enough, the weak male lion will be driven out of the
pride and will become a nomad.

Step 4: Migration

For each pride, the maximum number of females is
determined by %S of the population. For migration, %I of the
maximum number of female lions plus the surplus females
(number of female offspring) are selected randomly to migrate

from their pride and become nomads. This mechanism will
preserve the diversity of the population and share information
among prides.

Step 5: Equilibrium

At the end of each iteration, the number of live lions must
be controlled. Therefore, the female nomad lions are sorted
based on their fitness values. The best females are selected and
distributed to prides to fill the empty places of the migrated
females.

The weakest females are removed with respect to the
maximum number of female nomads %(1-S). Male nomads are
also sorted based on their fitness values, and the lions with the
least fitness will be removed with respect to the maximum
number of male nomads %S.

Step 6: Steps 2, 3, 4, and 5 are repeated till the last
iteration.

The previous steps of the LOA are summarized in the
pseudo code presented below:

Pseudo code : LOA-based Task Scheduling

 Input: List of Cloudlets (Tasks), List of VMs

Output: the best solution for tasks allocation on VMs

Steps:

1. Initialize

Set value of parameters Number of Lions, VMs, Iterations

Generate random solution for each Lion

Initiate Prides and Nomad lions

2. For each Pride

Some females are selected randomly for hunting.

Remained females move toward best selected positions of territory.

Each male roams in %R of territory.

%M of females mate with one or more resident males.

Weakest male drive out from pride and become nomad.

3. For each Nomad lion

Both male and female move randomly in the search space

%M of females mate with only one male

Nomad males attack prides .

4. For each pride

%I of females Immigrate from pride and become nomad.

5. Do
Each gender of nomad lion are sorted based on their fitness value

Best females are selected and distributed to prides filling empty

places

Nomad lions with least fitness value will be removed based on the

max permitted number of each gender.

6. If (t< Iterations)

Go to step 2

Return best solution.

IV. EXPERIMENTAL METHODOLOGY

The proposed algorithm was implemented using CloudSim.
CloudSim is a simulation framework that enables us to
simulate, model, and experience the cloud system [16]. The
main nodes of ClouSim are Datacenters, hosts, VMs, cloudlets
and brokers [17].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

81 | P a g e

www.ijacsa.thesai.org

The Datacenter is responsible for creating the core
infrastructure services that are required for the cloud. It acts as
the cloud service provider and it consists of same or different
configuration hosts (servers).

A host in a datacenter represents the characteristics of the
physical resources such as storage server or compute server. It
is characterized by host id, RAM, storage, bandwidth,
processing power (MIPS) and number of processing elements
(PE). Hosts are responsible for creating VMs and managing the
VM migration, VM destruction, and VM provisioning. The
VMs created on a host are characterized by VM id, image size,
RAM, bandwidth, processing power (MIPS) and number of
processing elements (PE).

Cloudlets in CloudSim represent the tasks that should be
uploaded to the cloud for processing. Each cloudlet has a pre-
defined length, file input size, and file output size. The broker
is a mediator between the users and cloud service providers. It
maps the requests of users to the appropriate provider such that
it insures the achievement of the Quality of Service (QoS)
requirements [18].

Scheduling of CPU resources (Processor elements PE) in
CloudSim is modeled at two levels: Hos and VM. At Host
level, fractions of each PE are shared among VMs running on
the host. This scheduler is called VmScheduler and it is a
parameter of the Host constructor. At VM level, each VM
divides the resources received from the host and shares them to
each cloudlet running on that VM. This scheduler is called
CloudletScheduler and it is a parameter of VM constructor.

There are two default policies in both levels: SpaceShared
and TimeShared. This means that VmScheduler and
CloudletScheduler can be in any combinations of these two
policies. For example, it is possible to use
VmSchedulerTimeShared and CloudletSchedulerSpaceShared
or vice versa. Also, it is possible to use the same policy for
both schedulers. In the SpaceShared scheduling policy, only
one VM/cloudlet is allowed to be executed at a given instance
of a time. In TimeShared scheduling policy, it allows multiple
VMs/cloudlets to multitask and run simultaneously within a
host/VM [19].

The proposed algorithm was written in the Java programing
language. It has been simulated on Intel Core i5 Processor, 2.3
GHz machine having 3 MB of L3 Cache and 4 GB of RAM
running Mac OS, Eclipse IDE 4.4 and CloudSim Toolkit 3.0.3.

The cloud is simulated in CloudSim with 1 datacenter. Two
hosts are created in the datacenter where each host has the
following configuration: RAM = 2048 MB, storage = 1 GB,
and bandwidth = 10 Gbps. Each VM has the following
characteristics: RAM = 512 MB, processing power is varied
between 100-1000 MIPS, bandwidth = 1 Gbps, and image size
= 10 GB. The cloudlets have the characteristics: file size = 300
MB, output file = 300 MB, and the length is varied between
1000 – 2000 MI. In our experiment, both VmScheduler and
CloudletScheduler utilized the TimeShared policy.

The testing dataset is produced randomly. Tasks (cloudlets)
are generated randomly with different lengths between 1000
and 2000 million instructions (MI). VMs are also generated
randomly with different capacities between 100 and 900

million instructions per second (MIPS). The cost of resources
for calculating cost based on VM’s specification is as follow:
$0.12, $0.13, $0.17, $0.48, $0.52, and $0.96 per hour. The
parameter set for CloudSim is shown in Table 3 [20].

TABLE III. CLOUDSIM PARAMETERS

Entity Parameter Values

Cloudlet

No of cloudlets 50 – 500

length 1000-2000

Virtual Machine

No of VMs 15

RAM 512 MB

MIPS 100-1000

Size 10000

bandwidth 1000

Policy type Time Shared

VMM Xen

Operating System Linux

No of CPUs 1

Host

No of Hosts 2

RAM 2048MB

Storage 1000000

Bandwidth 10000

Policy type Time Shared

Data Center No of Data Center 2

V. EXPERIMENTAL METRICS

The performance metrics for the proposed task scheduling
is based on makespan, cost, average utilization, and degree of
imbalance. The following describes these performance metrics
[20], [21]:

A. Makespan

Makespan determines the maximum completion time by
indicating the finishing time of last task. Minimizing the
makespan is the most popular optimization criteria for task
scheduling. It can be calculated using the following equation:

Where, Fn Time shows the finishing time of task i.

B. Cost

Cost means the total amount of payment to cloud provider
against the resource utilization. The main purpose for cloud
providers is to increase revenue and profit while cloud users
aim to reduce the cost with efficient utilization. Cost is
measured as follows:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

82 | P a g e

www.ijacsa.thesai.org

 ∑ ()

Where, Ci represents the cost of VM i per time unit and Ti
represents the time for which VM i is utilized.

C. Average Utilization

Maximizing resource utilization is another important
criteria for cloud providers by keeping resources as busy as
possible to earn maximum profit. The following equation is
used to measure the average utilization:

∑

Where, n is the number of resources.

D. Degree of Imbalance

Degree of imbalance (DI) means the amount load
distribution among the VMs regarding to their execution
capacity. The small value of DI shows that the load of the
system is more balanced. It is computed by:

Where, Tmax, Tmin, and Tavg are the maximum, minimum,
and average execution time of all VMs.

VI. RESULTS AND EVALUATION

The results of the proposed algorithm are compared with
scheduling algorithms that based on two popular metaheuristic
algorithms: PSO and GA [22], [23]. In all cases, the population
size is set to 100 and the number of iterations is 100. These
algorithms are compared with each other based on makespan,
cost, average resource utilization, and degree of imbalance.

Fig. 2 shows the comparison of makespan between LOA,
PSO, and GA. The x-axis denotes the number of cloudlets and
the y-axis denotes the makespan. When the numbers of
cloudlets are less, the makespan of the three algorithms are
convergent. However, LOA produces much better makespan
time when the number of cloudlets increases.

In Fig. 3, the comparison of cost is shown between LOA,
PSO, and GA. The x-axis indicates the number of tasks and the
y-axis indicates the cost per hour of the execution of tasks.
The outcomes show the cost of LOA is between PSO and GA
although the difference is not great.

Fig. 2. Makespan results.

Fig. 3. Cost results.

Fig. 4. Average resource utilization.

Fig. 5. Degree of imbalance.

0

200

400

50 100 200 300 500

Ti
m

e
in

 s
ec

o
n

d
s

of tasks

Makespan

LOA

PSO

GA

0

0.2

0.4

50 100 200 300 500$
 p

er
 h

o
u

r

of tasks

Cost

LOA

PSO

GA

0

0.2

0.4

0.6

0.8

50 100 200 300 500

P
e

rc
e

n
t

o
f

U
ti

liz
at

io
n

of tasks

Average Resource Utilization

LOA

PSO

GA

0

2

4

6

50 100 200 300 500

D
I

of tasks

Degree of Imbalance

LOA

PSO

GA

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

83 | P a g e

www.ijacsa.thesai.org

Fig. 4 shows the comparison of average resource utilization
between LOA, PSO, and GA. It is obvious that LOA provides
a very high utilization of resources when compared with PSO
and GA.

Fig. 5 explains the comparison of degree of imbalance
between LOA, PSO, and GA. The x-axis signifies the number
of cloudlets and the y-axis signifies the degree of imbalance.
The comparison result tells that LOA produces much better
degree of imbalance than PSO and GA.

It is obvious that the proposed task scheduling algorithm
based on LOA provides a high performance and much better
results than the other two algorithms. It can solve the
optimization problems in task scheduling with high
performance because it searches for the optimal solution using
different strategies. Each solution “lion” has a specific gender
and is classified as a resident or nomad, and all of them have
their own strategies to search for the optimal solution, as
explained previously.

VII. CONCLUSION

Various metaheuristic optimization algorithms have been
used to develop task scheduling techniques for cloud
computing. In this paper, a new cloud task-scheduling
algorithm was proposed, based on the concept of LOA, which
is a newly constructed algorithm based on the lifestyle of lions.
The performance of the proposed algorithm was compared
with that of the PSO and GA metaheuristic algorithms. It
provided an outstanding result in minimizing the makespan and
degree of imbalance. Also, it produced high utilization of
resources.

In future work, we aim to enhance the proposed algorithm
to decrease the cost of executing the tasks on cloud resources,
using cloud pricing models.

ACKNOWLEDGMENT

This research project was supported by a grant from the
Deanship of Graduate Studies, King Saud University, Saudi
Arabia.

REFERENCES

[1] D. P. Chandrashekar, “Robust and fault-tolerant scheduling for scientific
workflows in cloud computing environments.” University of Melbourne,
Australia, 2015.

[2] N. Almezeini and A. Hafez, “An enhanced workflow scheduling
algorithm in cloud computing,” in CLOSER 2016 - Proceedings of the
6th International Conference on Cloud Computing and Services Science,
2016, vol. 2.

[3] M. Masdari, S. ValiKardan, Z. Shahi, and S. I. Azar, “Towards workflow
scheduling in cloud computing: a comprehensive analysis,” J. Netw.
Comput. Appl., vol. 66, pp. 64–82, 2016.

[4] S. H. H. Madni, M. S. Abd Latiff, M. Abdullahi, S. M. Abdulhamid, and
M. J. Usman, “Performance comparison of heuristic algorithms for task
scheduling in IaaS cloud computing environment,” PLoS One, vol. 12,
no. 5, p. e0176321, May 2017.

[5] M. Kalra and S. Singh, “A review of metaheuristic scheduling techniques
in cloud computing,” Egypt. informatics J., vol. 16, no. 3, pp. 275–295,
2015.

[6] M. Yazdani and F. Jolai, “Lion optimization algorithm (LOA): a nature-
inspired metaheuristic algorithm,” J. Comput. Des. Eng., vol. 3, no. 1, pp.
24–36, 2016.

[7] S. H. H. Madni, M. S. A. Latiff, Y. Coulibaly, and S. M. Abdulhamid,
“An Appraisal of Meta-Heuristic Resource Allocation Techniques for
IaaS Cloud,” Indian J. Sci. Technol. Vol. 9, Issue 4, January 2016, Jan.
2016.

[8] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine
learning,” Mach. Learn., vol. 3, no. 2, pp. 95–99, 1988.

[9] K. Dasgupta, B. Mandal, P. Dutta, J. K. Mandal, and S. Dam, “A Genetic
Algorithm (GA) based Load Balancing Strategy for Cloud Computing,”
Procedia Technol., vol. 10, pp. 340–347, 2013.

[10] P. Kumar and A. Verma, “Scheduling Using Improved Genetic
Algorithm in Cloud Computing for Independent Tasks,” in Proceedings
of the International Conference on Advances in Computing,
Communications and Informatics, 2012, pp. 137–142.

[11] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Micro Machine and Human Science, 1995. MHS’95.,
Proceedings of the Sixth International Symposium on, 1995, pp. 39–43.

[12] A. I. Awad, N. A. El-Hefnawy, and H. M. Abdel_kader, “Enhanced
Particle Swarm Optimization for Task Scheduling in Cloud Computing
Environments,” Procedia Comput. Sci., vol. 65, pp. 920–929, 2015.

[13] X. Wen, M. Huang, and J. Shi, “Study on Resources Scheduling Based
on ACO Allgorithm and PSO Algorithm in Cloud Computing,” 2012
11th International Symposium on Distributed Computing and
Applications to Business, Engineering & Science. pp. 219–222, 2012.

[14] B. Wang, X. Jin, and B. Cheng, “Lion pride optimizer: An optimization
algorithm inspired by lion pride behavior,” Sci. China Inf. Sci., vol. 55,
no. 10, pp. 2369–2389, 2012.

[15] B. R. Rajakumar, “The Lion’s Algorithm: A New Nature-Inspired Search
Algorithm,” Procedia Technol., vol. 6, pp. 126–135, 2012.

[16] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation of
scalable Cloud computing environments and the CloudSim toolkit:
Challenges and opportunities,” 2009 International Conference on High
Performance Computing & Simulation. pp. 1–11, 2009.

[17] T. Goyal, A. Singh, and A. Agrawal, “Cloudsim: simulator for cloud
computing infrastructure and modeling,” Procedia Eng., vol. 38, no.
Supplement C, pp. 3566–3572, 2012.

[18] S. Mehmi, H. K. Verma, and A. L. Sangal, “Simulation modeling of
cloud computing for smart grid using CloudSim,” J. Electr. Syst. Inf.
Technol., vol. 4, no. 1, pp. 159–172, 2017.

[19] H. S. Sidhu, “Comparative analysis of scheduling algorithms of Cloudsim
in cloud computing,” 2014.

[20] S. H. H. Madni, M. S. Abd Latiff, M. Abdullahi, S. M. Abdulhamid, and
M. J. Usman, “Performance comparison of heuristic algorithms for task
scheduling in IaaS cloud computing environment,” PLoS One, vol. 12,
no. 5, p. e0176321, 2017.

[21] A. Keshk, “Cloud Computing Online Scheduling,” IOSR J. Eng., vol. 4,
no. 3, pp. 07–17, 2014.

[22] E. Ibrahim, N. A. El-Bahnasawy, and F. A. Omara, “Task Scheduling
Algorithm in Cloud Computing Environment Based on Cloud Pricing
Models,” in Computer Applications & Research (WSCAR), 2016 World
Symposium on, 2016, pp. 65–71.

[23] E. Ibrahim, N. A. El-Bahnasawy, and F. A. Omara, “Load Balancing
Scheduling Algorithm in Cloud Computing System with Cloud Pricing
Comparative Study.”

