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Abstract—Cloud computing has spread fast because of its 

high performance distributed computing. It offers services and 

access to shared resources to internet users through service 

providers. Efficient performance of task scheduling in clouds is 

one of the most important research issues which needs to be 

focused on. Various task scheduling algorithms for cloud based 

on metaheuristic techniques have been examined and showed 

high performance in reasonable time such as scheduling 

algorithms based on Ant Colony Optimization (ACO), Genetic 

Algorithm (GA), and Particle Swarm Optimization (PSO). In this 

paper, we propose a new task-scheduling algorithm based on 

Lion Optimization Algorithm (LOA), for cloud computing. LOA 

is a nature-inspired population-based algorithm for obtaining 

global optimization over a search space. It was proposed by 

Maziar Yazdani and Fariborz Jolai in 2015. It is a metaheuristic 

algorithm inspired by the special lifestyle of lions and their 

cooperative characteristics. The proposed task scheduling 

algorithm is compared with scheduling algorithms based on 

Genetic Algorithm and Particle Swarm Optimization. The results 

demonstrate the high performance of the proposed algorithm, 

when compared with the other algorithms. 
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I. INTRODUCTION 

Cloud computing is considered to be a distributed system 
that offers services to internet users through service providers 
such as Amazon, Google, Apple, and Microsoft. Cloud 
computing uses internet technologies to offer elastic services 
that support variable workloads and dynamic access to 
computing resources. 

Many of the scientific researches on cloud computing had 
focused on the performance efficiency of task scheduling. Task 
scheduling focuses on mapping tasks to appropriate resources, 
efficiently. Finding an optimal solution in cloud computing is 
considered an NP-complete problem. Each scheduling 
algorithm is based on one or more strategy. The most important 
strategies or objectives commonly used are time, cost, energy, 
quality of service (QoS), and fault tolerance [1], [2]. Several 
scheduling algorithms based on heuristic algorithms, such as 
Min-Min, Max-Min, and Heterogeneous Earliest Finish Time 
(HEFT) algorithms have been developed for cloud systems [3], 
[4]. In addition, different metaheuristic task scheduling 
algorithms that generate optimal schedules, such as the 
scheduling algorithm based on Genetic Algorithm (GA), 
Particle Swarm Optimization (PSO), and Ant Colony 
Optimization (ACO) [3], [5] have also been developed. 

In this study, a new task scheduling algorithm is proposed 
for cloud environment using the concept of lion optimization 
algorithm (LOA), which was proposed in [6]. LOA is a nature-
inspired algorithm based on the special lifestyle of lions and 
their cooperative behaviors. To evaluate the performance of the 
proposed algorithm, a comparative study is done among the 
proposed algorithm, task scheduling based on PSO algorithm, 
and task scheduling using the GA. 

The main objective of this research paper is to propose a 
task-scheduling technique for cloud computing using the LOA 
to minimize the total execution time of the task on the cloud 
resources (makespan). Section 2 reviews some literature on 
LOA and some metaheuristic algorithms. Section 3 describes 
the proposed algorithm. Section 4 presents the experimental 
methodology and simulation parameters, followed by metrics 
used in experiment in Section 5. Section 6 presents the results 
of simulations and comparisons. Finally, conclusion and the 
future work are discussed in Section 7. 

II. RELATED WORK 

Many metaheuristic algorithms have been proposed and 
applied for task scheduling in the area of cloud computing. 
Metaheuristic algorithms depend on two techniques to be 
effective. The first technique is “exploitation”, which exploits 
the best solution from among the previous results. The second 
technique is “exploration”, which explores new areas of the 
solution space. Most of these algorithms are distinguished and 
remarkable, such as the Genetic Algorithms (GA), Particle 
Swarm Optimization (PSO), Ant Colony Optimization (ACO), 
and League Championship Algorithm (LCA), and many more 
algorithms [5], [7]. 

The GA is a metaheuristic technique that was introduced by 
Holland in 1975 [8]. It provides useful solutions to 
optimization problems by applying the principles of evolution. 
The GA begins by initializing a population with random 
candidate solutions called individuals. Each individual is 
evaluated by a fitness function, which can be different 
according to the given optimization objective. Then, a 
proportion of the population is selected to reproduce a new 
generation. After that two main genetic operators are used to 
generate the new-generation population. These two operators 
are: crossover and mutation [9]. 

Using the GA in cloud task scheduling is a powerful 
approach as it provides better solutions with increase in the 
population size and number of generations. However, the 
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random generation of the initial population leads to schedules 
that are not very fit. Therefore, when these schedules are 
mutated with each other, there is a very low probability of 
producing a child better than the parents. Therefore, many 
researches have been conducted on improving the GA, 
especially, the initial steps, in order to improve the 
performance. For example, the authors in [10] improved the 
GA by using the Min-Min and Max-Min algorithms for 
generating the initial population. This provided a better initial 
population and better solutions than the standard GA, which 
initialized the population randomly. 

The PSO metaheuristic algorithm was proposed by 
Kennedy and Eberhart in 1995 [11]. It was derived from the 
social behavior of particles. Each particle has position and 
velocity, which are initialized randomly. Moreover, each 
particle has a fitness value, and knows its personal best value 
(pbest) and the global best value (gbest). In each iteration, the 
particle improves its position based on its velocity using the 
gbest and pbest values [5], [12]. 

Task scheduling in clouds using PSO algorithm was found 
to be faster than that using the GA. It spent shorter time to 
complete the different scheduling tasks. In addition, the PSO 
provided better results for large-scale optimization problems, 
than the GA. However, many techniques and strategies were 
developed to improve the PSO for task scheduling. For 
example, [13] proposed an algorithm that combined the ACO 
and PSO algorithms in order to improve the performance. This 
combination improved the convergence speed and the resource 
utilization ratio. 

In this paper, a new task-scheduling algorithm has been 
proposed using the concept of a new optimization algorithm 
called Lion Optimization Algorithm. It is based on the lifestyle 
and social organization of lions. In 2012, Wang [14] proposed 
an algorithm inspired by a few characteristics of lions, named 
the “Lion Pride Optimizer”. It was based on the fighting and 
mating between lions. Rajakumar [15] proposed an algorithm 
named “The Lion’s Algorithm”, which was based on the 
mating, territorial defense, and territorial takeover. In 2015, 
Yazdani and Jolai [6] proposed the Lion Optimization 
Algorithm (LOA), which was different from the previous 
algorithms. It was inspired by simulating the isolated life style 
and cooperative behaviors of lions, such as hunting, territory 
marking, migration, and the different life styles of the nomad 
and resident lions, in addition to mating and fighting. 

III. TASK SCHEDULING BASED ON LION OPTIMIZATION 

ALGORITHM 

The LOA was developed based on the simulations of the 
behaviors of lions, such as hunting, mating, and defense. Lions 
have two organizational behaviors: resident behavior and 
nomadic behavior. Residents live in groups called prides. A 
resident lion may become a nomad, and vice versa. In the 
LOA, the initial population is generated randomly over the 
solution space where every single solution is called a “Lion”. 
(%N) of lions in the population are selected randomly as 
nomad lions and the rest of the population are residents. 
Residents are divided randomly into (P) prides. (%S) of the 
lions in each pride are considered female and the rest are male. 

However, this proportion is reversed for nomad lions. The 
parameters and their meanings are shown in Table 1. 

The proposed task-scheduling algorithm based on the LOA 
is detailed in the following steps: 

Step 1:  Initialize population 

In this study, our target is to resolve the task scheduling for 
cloud computing and minimize the makespan of the solution, 
which is the maximum completion time for all tasks. 
Therefore, we should map each underlying solution to a lion. A 
lion represents a task scheduling solution, which is initialized 
randomly by mapping cloud tasks (cloudlets) to cloud 
resources (virtual machines (VMs)). For example, Fig. 1 shows 
a lion represents a schedule of five tasks that have been 
assigned randomly to three VMs. Such that, each lion will 
represent a random schedule solution, so the initial lion 
population is constructed randomly over the solution space for 
the LOA algorithm. 

The goal of the proposed algorithm is to find the best lion 
(solution) that has the best fitness value. The fitness value is 
the makespan of that solution, which is the maximum 
completion time for the tasks. Moreover, each lion knows its 
own best solution (schedule of tasks), as well as the global best 
solution, which are updated progressively during optimization. 

TABLE I. PARAMETERS OF LOA 

Parameter  Definition of the parameters 

%N Percent of nomad lions 

P Number of prides 

%S Percent of female lions in each pride 

%R Roaming percent 

%Ma Mating percent of female lions 

%I Immigrate rate of female lions in each pride 

 

Fig. 1. A lion representation. 

TABLE II. VALUES OF LOA PARAMETERS 

Parameter  Value 

%N 20 

P 4 

%S 80 

%R 20 

%Ma 30 

%I 40 

In our proposed algorithm, each lion has the following 
parameters: 
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 vmPositions List: initially contains random schedule of 
VMs 

 vmBestPositions List: in order to save the best 
schedule for that lion. 

 Fitness: represents the makespan of current 
vmPositions 

 Best Fitness: represents the makespan of 
vmBestPositions 

As mentioned previously, the initial population will be 
classified into residents and nomads. Table 2 shows the value 
of parameters used in the experiment. %20 of lions are 
nomads. Residents will be divided into 4 prides randomly, and 
in each pride, %80 of lions are females, whereas the rest are 
males. However, it is the reverse for nomad lions: %(100−80) 
of the nomads are females and the rest are males. 

Moreover, each pride has its own territory. Territory is a 
collection of the best visited positions of the pride members. In 
our study, the territory of the pride is formed by the best 
solution (task scheduling) of each lion in the pride. This will 
help to save the best positions or solutions obtained over each 
iteration. In our proposed algorithm, the territory of the pride 
will consist of vmBestPositions of each lion in the pride. 

Step 2: Each pride will do the following: 

Step 2.1: Hunting 

Based on LOA, some females of the pride are selected 
randomly for hunting. These hunters move toward the prey and 
encircle it, to catch it. In our proposed algorithm, this strategy 
will help achieve a better solution, as each hunter will update 
its best visited position (task schedule solution) and the global 
best position (solution) by moving toward the prey. 

First, the selected female hunters are partitioned into three 
groups randomly: left wing, center, and right wing. The group 
with highest cumulative fitness is considered as the center 
while the other two groups as the two wings. 

Next, a prey is generated at the center of the hunters, as 
follows [6]: 

      
                  

                 
 

During hunting, each hunter moves toward the prey 
according to its group, as follows [6]: 

If a hunter belongs to the center group: 

         {  
    ((      )     )           (      )     

    (     (      ))           (      )     
 

If it belongs to the left or right wings: 

         

{
 
 

 
 

  

    ((             )     )      

     (             )      

    (     (             ))    

       (             )      

 

Where, PREY and Hunter are their current positions, and 
Hunter' is the new position of the hunter. 

Throughout hunting, if the new position of the hunter is 
better than its previous position, which means that it has 
improved its own fitness, the prey will escape from the hunter, 
and the new position of the prey will be [6]: 

               (   )    (           ) 

Where, PI is the percentage of improvement in the hunter’s 
fitness. 

Step 2.2: Remaining Females 

As some females in each pride go hunting, remained 
females in the pride will move toward one of the positions of 
territory. The first step based on LOA is calculating the 
tournament size of the pride. This is done by first calculating 
the number of lions in the pride, who improved their fitness in 
the last iteration (Success value). Then, the tournament size for 
this pride is calculated as follows [6]: 

  
        (       (

   ( )

 
)) 

Where,    ( )  is the number of lions in pride j, who 

improved their fitness in the last iteration. 

Tournament size of a pride is varied in every iteration 
based on success value. If success value decreased, the 
tournament size increases and this will enhance diversity. 

After that, for each remaining female in the pride, a place is 
selected from the pride’s territory by tournament selection to 
move the female toward the selected place. As mentioned 
before, the lion’s personal best visited position is updated as 
well as the global best position. 

Step 2.3: Roaming 

Roaming strategy is a strong local search and it helps our 
proposed algorithm to find a good solution and improve it. 
Based on LOA, each resident male in the pride roams within 
the pride’s territory. 

First, %R of the territory positions is selected randomly so 
that the lion will visit these selected positions. During roaming, 
if the new place of that male lion is better than its personal best 
visited position, its best visited position is updated, and that 
place is marked as territory. Finally, the best visited position 
for that lion is set as its current position and the global best 
position is updated if necessary. 

Step 2.4: Mating 

Based on LOA, %Ma of the female lions in the pride mate 
with one or more resident males, where all of them are selected 
randomly, to produce offspring. This will share information 
between genders and new offspring will inherit characteristics 
from both genders. 

Each mating operation will produce two new offspring, 
according to the following equations: 

                         ∑
  -  

∑   
  
   

             , 
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Where,   is a randomly generated number with normal 
distribution with mean 0.5 and standard deviation 0.1.    = 1 if 
male i is selected for mating, otherwise it is 0. NR is the 
number of resident males in the pride. 

One of the two offspring is considered as male and the 
other as female, randomly. Our proposed algorithm by mating 
strategy will share solutions between each other and produce 
new solutions that may have better fitness value. 

Step 2.5: Defense 

New mature resident males will fight other males in the 
pride. The weakest males will leave their pride and become 
nomads. This behavior can be simulated by merging new 
mature males and old males. Then, all males are sorted 
according to their fitness values. The weakest males are driven 
out of the pride and become nomads, whereas the remaining 
males become resident males. This strategy assists our 
proposed algorithm to retain powerful male lions as solutions 
that play an important role in LOA. 

Step 3: Each lion of Nomads will do the following: 

Step 3.1: Roaming 

All nomad male and female lions roam and move randomly 
in the search space. The new positions of the nomad lions are 
determined as follows: 

      {
                           

                             
       , 

          (    
     -         

         
), 

where, rand is a random number between 0 and 1, pr is a 
probability, Nomad is the fitness value of the current nomad, 
and BestNomad is the best fitness value of the nomad lions. 

If the new place of a nomad lion is better than its personal 
best visited position, the best visited position of that lion is 
updated. The global best position is also updated, if necessary. 

Step 3.2: Mating 

%Ma of female nomads are selected randomly. Every 
female mates with only one male nomad, who is also selected 
randomly, and produces two offspring according to the 
equations mentioned in the previous part; one of them is male 
and the other is female. 

Step 3.3: Defense 

Nomad males attack prides randomly to try to take over a 
pride by fighting the male lions in the pride. If the nomad lion 
is strong enough, the weak male lion will be driven out of the 
pride and will become a nomad. 

Step 4: Migration 

For each pride, the maximum number of females is 
determined by %S of the population. For migration, %I of the 
maximum number of female lions plus the surplus females 
(number of female offspring) are selected randomly to migrate 

from their pride and become nomads. This mechanism will 
preserve the diversity of the population and share information 
among prides. 

Step 5: Equilibrium 

At the end of each iteration, the number of live lions must 
be controlled. Therefore, the female nomad lions are sorted 
based on their fitness values. The best females are selected and 
distributed to prides to fill the empty places of the migrated 
females. 

The weakest females are removed with respect to the 
maximum number of female nomads %(1-S). Male nomads are 
also sorted based on their fitness values, and the lions with the 
least fitness will be removed with respect to the maximum 
number of male nomads %S. 

Step 6: Steps 2, 3, 4, and 5 are repeated till the last 
iteration. 

The previous steps of the LOA are summarized in the 
pseudo code presented below: 

Pseudo code : LOA-based Task Scheduling 

 Input: List of Cloudlets (Tasks), List of VMs 

Output: the best solution for tasks allocation on VMs 

Steps: 

1. Initialize  

Set value of parameters Number of Lions, VMs, Iterations 

Generate random solution for each Lion 

Initiate Prides and Nomad lions 

2. For each Pride 

Some females are selected randomly for hunting. 

Remained females move toward best selected positions of territory. 

Each male roams in %R of territory. 

%M of females mate with one or more resident males. 

Weakest male drive out from pride and become nomad. 

3. For each Nomad lion 

Both male and female move randomly in the search space 

%M of females mate with only one male 

Nomad males attack prides . 

4. For each pride 

%I of females Immigrate from pride and become nomad. 

5. Do 
Each gender of nomad lion are sorted based on their fitness value 

Best females are selected and distributed to prides filling empty 

places 

Nomad lions with least fitness value will be removed based on the 

max permitted number of each gender. 

6. If ( t< Iterations) 

Go to step 2 

Return  best solution. 

IV. EXPERIMENTAL METHODOLOGY 

The proposed algorithm was implemented using CloudSim. 
CloudSim is a simulation framework that enables us to 
simulate, model, and experience the cloud system [16]. The 
main nodes of ClouSim are Datacenters, hosts, VMs, cloudlets 
and brokers [17]. 
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The Datacenter is responsible for creating the core 
infrastructure services that are required for the cloud. It acts as 
the cloud service provider and it consists of same or different 
configuration hosts (servers). 

A host in a datacenter represents the characteristics of the 
physical resources such as storage server or compute server. It 
is characterized by host id, RAM, storage, bandwidth, 
processing power (MIPS) and number of processing elements 
(PE). Hosts are responsible for creating VMs and managing the 
VM migration, VM destruction, and VM provisioning. The 
VMs created on a host are characterized by VM id, image size, 
RAM, bandwidth, processing power (MIPS) and number of 
processing elements (PE). 

Cloudlets in CloudSim represent the tasks that should be 
uploaded to the cloud for processing. Each cloudlet has a pre-
defined length, file input size, and file output size. The broker 
is a mediator between the users and cloud service providers. It 
maps the requests of users to the appropriate provider such that 
it insures the achievement of the Quality of Service (QoS) 
requirements [18]. 

Scheduling of CPU resources (Processor elements PE) in 
CloudSim is modeled at two levels: Hos and VM. At Host 
level, fractions of each PE are shared among VMs running on 
the host. This scheduler is called VmScheduler and it is a 
parameter of the Host constructor. At VM level, each VM 
divides the resources received from the host and shares them to 
each cloudlet running on that VM. This scheduler is called 
CloudletScheduler and it is a parameter of VM constructor. 

There are two default policies in both levels: SpaceShared 
and TimeShared. This means that VmScheduler and 
CloudletScheduler can be in any combinations of these two 
policies. For example, it is possible to use 
VmSchedulerTimeShared and CloudletSchedulerSpaceShared 
or vice versa. Also, it is possible to use the same policy for 
both schedulers. In the SpaceShared scheduling policy, only 
one VM/cloudlet is allowed to be executed at a given instance 
of a time. In TimeShared scheduling policy, it allows multiple 
VMs/cloudlets to multitask and run simultaneously within a 
host/VM [19]. 

The proposed algorithm was written in the Java programing 
language. It has been simulated on Intel Core i5 Processor, 2.3 
GHz machine having 3 MB of L3 Cache and 4 GB of RAM 
running Mac OS, Eclipse IDE 4.4 and CloudSim Toolkit 3.0.3. 

The cloud is simulated in CloudSim with 1 datacenter. Two 
hosts are created in the datacenter where each host has the 
following configuration: RAM = 2048 MB, storage = 1 GB, 
and bandwidth = 10 Gbps. Each VM has the following 
characteristics: RAM = 512 MB, processing power is varied 
between 100-1000 MIPS, bandwidth = 1 Gbps, and image size 
= 10 GB. The cloudlets have the characteristics: file size = 300 
MB, output file = 300 MB, and the length is varied between 
1000 – 2000 MI. In our experiment, both VmScheduler and 
CloudletScheduler utilized the TimeShared policy. 

The testing dataset is produced randomly. Tasks (cloudlets) 
are generated randomly with different lengths between 1000 
and 2000 million instructions (MI). VMs are also generated 
randomly with different capacities between 100 and 900 

million instructions per second (MIPS). The cost of resources 
for calculating cost based on VM’s specification is as follow: 
$0.12, $0.13, $0.17, $0.48, $0.52, and $0.96 per hour. The 
parameter set for CloudSim is shown in Table 3 [20]. 

TABLE III. CLOUDSIM PARAMETERS 

Entity Parameter Values 

Cloudlet 

No of cloudlets 50 – 500 

length 1000-2000 

Virtual Machine 

No of VMs 15 

RAM 512 MB 

MIPS 100-1000 

Size 10000 

bandwidth 1000 

Policy type Time Shared 

VMM Xen 

Operating System Linux 

No of CPUs 1 

Host 

No of Hosts 2 

RAM 2048MB 

Storage 1000000 

Bandwidth 10000 

Policy type Time Shared 

Data Center No of Data Center 2 

V. EXPERIMENTAL METRICS 

The performance metrics for the proposed task scheduling 
is based on makespan, cost, average utilization, and degree of 
imbalance. The following describes these performance metrics 
[20], [21]: 

A. Makespan 

Makespan determines the maximum completion time by 
indicating the finishing time of last task. Minimizing the 
makespan is the most popular optimization criteria for task 
scheduling. It can be calculated using the following equation: 

                                   

Where, Fn Time shows the finishing time of task i. 

B. Cost 

Cost means the total amount of payment to cloud provider 
against the resource utilization. The main purpose for cloud 
providers is to increase revenue and profit while cloud users 
aim to reduce the cost with efficient utilization. Cost is 
measured as follows: 
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Where, Ci represents the cost of VM i per time unit and Ti 
represents the time for which VM i is utilized. 

C. Average Utilization 

Maximizing resource utilization is another important 
criteria for cloud providers by keeping resources as busy as 
possible to earn maximum profit. The following equation is 
used to measure the average utilization: 

                     
∑                              

   

          
 

Where, n is the number of resources. 

D. Degree of Imbalance 

Degree of imbalance (DI) means the amount load 
distribution among the VMs regarding to their execution 
capacity. The small value of DI shows that the load of the 
system is more balanced. It is computed by: 

    
          

    
 

Where, Tmax, Tmin, and Tavg are the maximum, minimum, 
and average execution time of all VMs. 

VI. RESULTS AND EVALUATION 

The results of the proposed algorithm are compared with 
scheduling algorithms that based on two popular metaheuristic 
algorithms: PSO and GA [22], [23]. In all cases, the population 
size is set to 100 and the number of iterations is 100. These 
algorithms are compared with each other based on makespan, 
cost, average resource utilization, and degree of imbalance. 

Fig. 2 shows the comparison of makespan between LOA, 
PSO, and GA. The x-axis denotes the number of cloudlets and 
the y-axis denotes the makespan. When the numbers of 
cloudlets are less, the makespan of the three algorithms are 
convergent. However, LOA produces much better makespan 
time when the number of cloudlets increases. 

In Fig. 3, the comparison of cost is shown between LOA, 
PSO, and GA. The x-axis indicates the number of tasks and the 
y-axis indicates the cost per hour of the execution of tasks.  
The outcomes show the cost of LOA is between PSO and GA 
although the difference is not great. 

 
Fig. 2. Makespan results. 

 
Fig. 3. Cost results. 

 

Fig. 4. Average resource utilization. 

 

Fig. 5. Degree of imbalance. 
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Fig. 4 shows the comparison of average resource utilization 
between LOA, PSO, and GA. It is obvious that LOA provides 
a very high utilization of resources when compared with PSO 
and GA. 

Fig. 5 explains the comparison of degree of imbalance 
between LOA, PSO, and GA. The x-axis signifies the number 
of cloudlets and the y-axis signifies the degree of imbalance. 
The comparison result tells that LOA produces much better 
degree of imbalance than PSO and GA. 

It is obvious that the proposed task scheduling algorithm 
based on LOA provides a high performance and much better 
results than the other two algorithms. It can solve the 
optimization problems in task scheduling with high 
performance because it searches for the optimal solution using 
different strategies. Each solution “lion” has a specific gender 
and is classified as a resident or nomad, and all of them have 
their own strategies to search for the optimal solution, as 
explained previously. 

VII. CONCLUSION 

Various metaheuristic optimization algorithms have been 
used to develop task scheduling techniques for cloud 
computing. In this paper, a new cloud task-scheduling 
algorithm was proposed, based on the concept of LOA, which 
is a newly constructed algorithm based on the lifestyle of lions. 
The performance of the proposed algorithm was compared 
with that of the PSO and GA metaheuristic algorithms. It 
provided an outstanding result in minimizing the makespan and 
degree of imbalance. Also, it produced high utilization of 
resources. 

In future work, we aim to enhance the proposed algorithm 
to decrease the cost of executing the tasks on cloud resources, 
using cloud pricing models. 
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