
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

176 | P a g e

www.ijacsa.thesai.org

A Comparative Study between Applications

Developed for Android and iOS

Robert Győrödi

Department of Computer Science and Information

Technology, University of Oradea

Oradea, Romania

Doina Zmaranda

Department of Computer Science and Information

Technology, University of Oradea

Oradea, Romania

Vlad Georgian Adrian

Department of Computer Science and Information

Technology, University of Oradea

Oradea, Romania

Cornelia Győrödi

Department of Computer Science and Information

Technology, University of Oradea

Oradea, Romania

Abstract—Now-a-days, mobile applications implement

complex functionalities that use device’s core features

extensively. This paper realizes a performance analysis of the

most important core features used frequently in mobile

application development: asynchronous multi-threaded code

execution, drawing views/elements on the screen and basic

network communications. While multiple mobile platforms have

emerged in recent years, in this paper two well-established and

popular operating systems were considered for comparison and

testing: Android and iOS. Thus, two basic applications featuring

the same functionality and complexity were developed to run

natively on both platforms. Applications were developed by using

development languages and tools recommended for each

operating system. This paper aims to highlight the differences

between the two operating systems by analyzing core feature

performance metrics for both functionally identical mobile

applications developed for each platform. Results obtained could

be further used for guiding the optimization of application’s

development process for each considered operating system.

Keywords—Android; iOS; mobile application development;

mobile device core features; common scenario performance

comparison; development optimization

I. INTRODUCTION

The rapid development of the mobile devices industry has
culminated with the rise of modern operating systems,
specifically optimized to use the advantages and limits of the
hardware environment in order to interface with the user.

While many mobile operating systems have been
developed in the recent years, in today’s market, the most
widely adopted are Android [7], developed by Google and iOS
[8] developed by Apple.

Being open-source software, Android has been extended
and used by some of the major mobile device manufactures,
being advantageous from the development cost perspective
and offering a great level of customization.

Apple’s approach to a mobile operating system was quite
different, as iOS was developed to run on a very specific set of
devices, which feature an established list of hardware

components. The close relationship between the hardware
setup and the operating system development have tied the
success of iOS platform to the popularity of its host devices.
This approach, however, also represents an advantage, as iOS
was optimized to have a responsive and fast interface,
designed specifically around its hardware limitations.

The comparative study developed in this paper will
concentrate on the analysis of three important core system
features that are used extensively in every modern mobile
application: asynchronous multi-threaded code execution,
drawing views/elements on-screen and basic network
communications.

A specific architecture together with several tests was
developed to measure the time needed for the operating
system to perform tasks that involved each feature. The
observed performance differences for individual tasks are
expected to be relatively small, with only a few milliseconds
separating one device from another. These discrepancies will,
however, become noticeable in real-world applications, where
core features are combined and used recurrently to introduce
new functionalities.

The performance measurements were applied on a basic
application developed to run on Android and iOS. During the
development phase, the recommended development languages
and tools were used: for the Android operating system, the
Android Studio [9] environment was used to develop the
application and the main programming language chosen was
Java [10]; the application authoring tool XCode [11] was used
for the iOS implementation alongside the Objective C [12]
language.

Finally, an exhaustive analysis of obtained results was
made and several guidelines for application development
optimization were presented.

II. RELATED WORK

While several comparison studies between the two
operating systems exist in the literature, they are merely

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

177 | P a g e

www.ijacsa.thesai.org

focused on comparing existing features and architectures than
taking into consideration application development issues.

For example, a comparison related to various factors that
influence security on both platforms, such as application
provenance, application permissions, application isolation, and
encryption mechanisms is presented in [1], [2], [6]; [3], [4]
present a comparison of the two operating system architecture
together with provided features and frameworks for
application development; several tools for cross-mobile
application development are proposed in [5]; also, a
comparison based on availability and capabilities of different
set of UIs is described in [6].

Moreover, several papers in the literature realize
comparisons based on detailed analysis of market share of
smart phones having different mobile operating systems [3],
but also on advertisement and overall impact on the
consumers [6].

With the general complexity of both operating systems
expanding on each new version iteration, more features
become available for application developers. In this context,
analyzing from the performance point of view of the most
important core features used in mobile application
development for both operating systems could be very helpful
for further application development processes. Consequently,
the paper approaches a very important aspect, by guiding the
optimization process to potential slow or inefficient parts of
the application specifically on each device.

The paper is structured as follows: next chapter presents
the two mobile applications developed for each operating
system together with the web platform used by both
applications for receiving HTTP requests and sending JSON
responses. Chapter IV describes the developed testing
architecture and the performance tests carried on. Based on the
results of the comparisons, several conclusions regarding
optimization issues for application development are drawn and
presented in the conclusion chapter.

III. PRESENTATION OF THE MOBILE APPLICATIONS

A native mobile application was developed for each
operating system (Android and iOS) in order to study the
performance and development differences. Both mobile
applications feature the same functionality and scene structure,
with differences only being visible at the user interface level,
where some elements diverge in order to respect the design
guidelines recommended by each operating system
manufacturer.

The mobile applications are complemented by a web
platform built on top of the Laravel [13] framework. The
platform receives signed data requests through the HTTP
protocol and it then sends back responses containing JSON
[14]-encoded structured data that is extracted and compiled
from a MySQL [15] database.

From a functionality standpoint, each application allows
the user to view promoted commercial locations and related
events or picture galleries for a specific geographical area. The
web platform provides the data, which is displayed within the
mobile applications, allowing registered users to perform

CRUD operation over the datasets representing the locations,
events and galleries.

The mobile applications were designed to use a
hierarchical navigation system that guides the user to the
desired content. Using this approach, different category and
entry lists were created for each data type alongside shortcut
paths that allow the user to reach the content in an efficient
manner. The general structure of the scenes is described in
Fig. 1.

In recent years, several frameworks such as Xamarin [16],
Cordova [17] or React Native [18] were created, allowing the
development of mobile applications that run on multiple
operating systems using a single codebase solution. Using the
hybrid application development approach, while it does have
its advantages, was not preferred in this case because the
purpose-built frameworks introduce another layer over the
native code, making testing much more difficult and the
results inaccurate.

Therefore, a native approach was chosen for the
application development process on each platform, using the
tools recommended by each operating system manufacturer.
This allowed each codebase to exploit the advantages of its
operating system separately, emphasizing the major
differences in implementation and optimization between the
platforms.

Both applications followed similar MVC (Model-View-
Controller) architectural pattern [19], having clear
delimitations between classes and code sections that handle
the application behavior, the user inputs and the information
representation form. Model classes were created to describe
and handle the structured data displayed using the user
interface.

Fig. 1. The application scene structure 1.

Login
Screen

Main Menu

Events

Event
Categories

Event List

Event

Galleries

Gallery
Categories

Gallery
List

Gallery

Locations

Location
Categories

Location
List

Location

Map View

Calendar

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

178 | P a g e

www.ijacsa.thesai.org

A. Android Application Development

For the Android operating system, the choice for the
development language was straightforward as only the Java
language is supported natively. The visual structure for each
scene was built using the default method of declaring UI
elements in separate XML [20] files.

Since the Android application development process lacks a
tool for scene navigation management, the rules that define the
order of scenes were described within the Activity and
Fragment derived classes [7].

The responsiveness of the user interface was facilitated by
isolating all long-lasting or complex operations in secondary
threads. This approach reduced the amount of workload on the
main thread, which was then able to handle user interface
updates and input detection without further delays.

Slow operations, such as establishing a network
connection or data decoding, were implemented by deriving
the AsyncTask class form Java [10]. Once a data set is
prepared, the main thread is notified of this change using the
observer design pattern optimized for multiple listeners.

Activities were created for each section context, leaving all
subsequent scenes to be handled by using Fragments. For
scenes that involved grids and lists, the application took
advantage of the reusable item view approach, minimizing the
amount of memory used to store complex arrays of data.

B. iOS Application Development

The iOS application authoring tool XCode offers two
native options regarding the main development language:
Objective C and Swift. Currently, Swift is being promoted for
the development of new application that run in the Apple
ecosystem. But, for this implementation process, Objective C
was chosen as it is much more mature language with clearly
outlined best practices, coding styles and an existing suite of
well tested and stable third-party libraries.

Unlike the approach used by Android Studio, the visual
structure of the whole application can be managed in a single
file using the Storyboard [21] environment. Each individual
scene was constructed using static View Controllers for
standalone pages and Collection View Controllers to list
structured data [12].

The navigation paths between the main scenes (segues)
were described using the graphical user interface and
references were created inside the header files for each view
controller, allowing for scene transitions to be performed
automatically for events triggered when a background task is
complete or for user inputs.

Asynchronous tasks were handled using NSOperation [12]
instances that notified the main application thread once all the
processing stages were completed. The network connections
were managed using the AFNetworking [22] library that
extends and simplifies the networking abstractions already
available in Cocoa [23], the application development
environment for iOS and OS X.

IV. PERFORMANCE TESTS

After developing the mobile applications, the differences
between iOS and Android were highlighted by analyzing the
specific performance metrics and signature. Since both
applications were created using the native tools and
development languages, they take advantage of optimizations
offered by each operating system.

A. Testing Architecture

From a development standpoint, each application uses the
advantages of multi-threading, an approach which improves
the responsiveness of the user interface. Standalone long-
lasting tasks such as network downloads, data decoding and
image conversions were executed in separate threads, leaving
the operating system to decide which hardware cores to use in
order to perform each operation.

Within the applications, the most computational intensive
section was used to highlight the differences between the
operating systems. As such, a predefined location scene was
loaded on each tested device. The data received from the
server represents a JSON-encoded string containing the
location information; the full data size is 1 MB total, including
HTTP headers. The amount of time required to complete each
test is expected to be directly proportional to the size of the
source data.

The user interface for the location scene was created using
the following native graphical elements available on both
operating systems: adjustable text labels, an image view and
structural layout groups. The components of the user interface
were displayed prior to running each test in order to maintain
the computational cost low for each draw cycle.

At the time of writing this paper, there are no official
devices that offer support for both operating systems, meaning
that the hardware components must also be taken into
consideration while interpreting the results. The discrepancies
at a hardware level were minimized by also emulating real
devices in a shared environment.

For each device, a total of three tests were performed,
measuring the time needed to complete each specific task. The
tests were performed on the following physical devices
running the latest versions of their respective operating
system: Samsung Galaxy S8+ (using Android 7.0) and Apple
iPhone 7 Plus (using iOS 10.0). Well-established and leading
benchmarking tools, such as GeekBench [24], position both
devices very close to each other from a performance
perspective.

The iOS device is roughly 72.5% faster in single-core
operations however it loses its edge in multi-core tasks where
it is 8.6% slower than the Android counterpart. Table 1
presents the most relevant hardware differences between the
two devices.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

179 | P a g e

www.ijacsa.thesai.org

TABLE I. THE PHYSICAL DEVICES USED IN THE TESTING PHASE

Device Samsung Galaxy S8+
Apple iPhone 7

Plus

CPU (cores) 8 4

CPU (clock)
4 x 2.35 GHz

4 x 1.9 GHz
4 x 2.34 GHz

RAM Memory 3GB 4 GB

GPU Mali – G71
PowerVR

Series7XT Plus

In an effort to reduce the hardware differences to a
minimum, the performance tests were also executed on
emulated devices. For the emulation process, the devices with
the most advanced specifications were chosen from the
available options, ensuring several criteria such as memory
size or display resolution remained consistent.

For the Android platform, a virtual device that used the
Google Pixel definition file was created by using the native
tools embedded in Android Studio. For iOS, a Simulator [25]
instance was launched form the XCode environment for the
iPhone 7 Plus device.

The emulated devices and the web-based platform that
supplies data for the mobile applications used a host computer
with the hardware/software setup presented in Table 2.

TABLE II. HARDWARE ARCHITECTURE OF THE SERVER

CPU Intel 3570K

CPU (cores) 4

CPU (clock) 4x4.4 GHz

RAM Memory 16GB

GPU AMD Radeon 280x

Network Link State 1000 Mbps, Full Duplex

Storage Type SSD

Network related delays and issues were minimized by
constructing a local network where only the server and the
tested device were able to interact. The mobile devices were
connected to the local network using 802.11n standard over
the 5GHZ band (Wi-Fi). For the emulated devices, a bridged
connection over the host computer adapter was used in order
to connect to the local network. The testing architecture
components are described in Fig. 2.

Fig. 2. The testing architecture.

B. Testing Results

Before running each test, the mobile devices were restarted
and all non-essential background processes and applications
were closed.

The time needed to perform an operation was determined
by analyzing the timestamp values echoed in the development
platform console. This approach allows accurate
measurements down to 1ms as it relies on the mechanisms
used by the operating systems. Each test was performed
several times (p=10) in order to obtain the average values.

The first test measures the time needed to establish a
connection with the server and to retrieve the location
information. The data payload is small in order to prevent any
network related delays.

The values obtained by running the first performance test
can be visualized in Table 3 and Fig. 3.

TABLE III. NETWORK PERFOMANCE RESULTS

Device

Transfer Time (ms)

MIN MAX AVG

Physical devices

Samsung Galaxy S8+ 165 183 171.5

Apple iPhone 7 Plus 187 382 272.5

Emulated Devices

Google Pixel XL 173 252 206.5

Apple iPhone 7 Plus 347 517 401.5

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

180 | P a g e

www.ijacsa.thesai.org

Fig. 3. Network performance results chart.

By analyzing the average values for each device, it can be
observed that the Android platform is faster by a small margin
in terms of data download times. One aspect that must be
emphasized is that on iOS, establishing the initial connection
to the server took longer than expected on each device, only
with subsequent network calls being more consistent. The
implications of using emulated devices become clear as
substantial performance differences (slower by more than
30ms) are measured, even in such cases, where the host
computer has more computational power than the original
device.

Once the data is downloaded and available, a second test is
executed, measuring the time needed to transform the raw
JSON data into string values that are processed afterwards into
model instances. The test results are highlighted in
Table 4 and Fig. 4.

The JSON parsing task is launched in a new thread in
order to minimize any interference with the main thread that
controls the user interface.

Several conclusions can be drawn from the second test
results. Since both operating systems allow for tasks of other
applications to persist in the background, the performance of
the current task is directly controlled by the available core
count and the efficiency of the operating system’s task
scheduler. The multi-threaded approach taken during the
development phase has improved the performance on devices
that are advantaged by a high number of physical cores.

For both real and emulated devices, the iOS platform had
faster average execution times and lower limits. In a simulated
environment, Android needed twice the amount of time to
process the same amount of data.

The developed application processes structured data in
small bursts meaning that higher core clocks do not
necessarily improve the overall performance.

TABLE IV. JSON ASYNCHRONOUS PARSING PERFORMANCE RESULTS

Device
Processing Time (ms)

MIN MAX AVG

Physical devices

Samsung Galaxy S8+ 16 29 24.2

Apple iPhone 7 Plus 10 21 14.25

Emulated Devices

Google Pixel XL 10 14 12.75

Apple iPhone 7 Plus 5 7 6

Fig. 4. JSON asynchronous parsing performance results chart.

With the location data downloaded and processed, the
third test measured the time needed to update the UI elements
on the screen. This actually measured the time needed to
display only static data, ignoring elements, which still have to
be handled asynchronously, such as image downloads.

From a structural perspective, the location scene has a
container element, a RelativeLayout on Android and a
ViewController on iOS. Inside the container, there is a scroll
view that enables all the child elements to be visible on the
screen. The relevant data is displayed using a set of labels and
a single ImageView [7]. For the purpose of this test, we did not
take into account the time needed for the image to be
displayed, since this would require additional network
transfers.

TABLE V. DRAW PERFORMANCE RESULTS

Device
Draw Time (ms)

MIN MAX AVG

Physical devices

Samsung Galaxy S8+ 19 25 22.5

Apple iPhone 7 Plus 13 20 16

Emulated Devices

Google Pixel XL 13 19 17

Apple iPhone 7 Plus 3 5 4

0

100

200

300

400

500

600

Samsung

Galaxy

S8+

Apple

iPhone 7

Plus

Google

Pixel XL

(sim)

Apple

iPhone 7

Plus (sim)

lower values = better
MIN (ms) MAX (ms) AVG (ms)

0
5

10
15
20
25
30
35

Samsung

Galaxy

S8+

Apple

iPhone 7

Plus

Google

Pixel XL

(sim)

Apple

iPhone 7

Plus (sim)

lower values = better

MIN (ms)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

181 | P a g e

www.ijacsa.thesai.org

Fig. 5. Draw performance results chart.

The results of the third test, displayed in Table 5 and
Fig. 5, show a distinct advantage of the iOS platform over
Android for the time needed to draw a scene. The performance
difference can mainly be attributed to optimizations at the
operating system level for GPU-accelerated UI elements
draws.

On physical devices, the time needed to update the UI was
relatively close to one display frame, with Android being
slower. Tasks which require more than 16ms (60
frames/second = 16.67ms) will affect the fluidity of the user
interface. When tested in a simulated environment, the iOS
device was significantly faster, taking advantage of the host
hardware.

V. CONCLUSIONS

A set of two basic applications featuring the same
functionality and complexity was developed to run natively on
Android and iOS platform. The tests that were performed and
presented in this paper analyze several important core features
by creating, for each feature, a particular scenario in the
implemented applications and architecture. Tests have not
outlined any operating system to be more efficient than the
other, at least not from an overall application developer
perspective, each platform being more efficient and excelling
for different tasks.

For network related tasks, Android had a clear edge over
iOS, however the time difference was spent mostly on
establishing the connection to the server, while the relevant
data was retrieved in a similar time frame on both operating
systems.

The JSON parsing and decoding test was intended to
display the efficiency of the task scheduling part of the
operating system and the processing speed of big strings. The
results of this test also reflected the hardware differences
between real devices, however, in the end, both platforms
performed similarly, with iOS being ahead by only a few
milliseconds.

On the draw performance test, iOS was clearly faster than
Android with views and UI elements being drawn on the

screen within the time frame limit to not cause user interface
fluidity issues. The emulation process also proved to be much
more efficient with iOS devices.

The design constraints of each application might create a
situation that would benefit more from the device hardware
and the software advantages or limits of one platform over the
other. For example, according to the performed tests, an
application that relies heavily on views being drawn on the
screen as soon as possible will perform better on iOS, while
other application that use a lot of network communications
will behave better on Android.

Consequently, the developed performance tests and their
results can be used to anticipate where the slow or inefficient
parts of the application will be on each device. Developers can
then author applications that will behave and perform
similarly on both operating systems, either by optimizing their
source code or by designing functionality around these limits.

REFERENCES

[1] K. Jamdaade1, A.Khairmode, and S. Kamble, “A Comparative study
between Android & iOS” in International Journal of Current Trends in
Engineering & Research (IJCTER) e-ISSN 2455–1392 vol 2, no. 6, pp.
495 – 501, June 2016

[2] I.Mohamed and D. Patel, “Android vs iOS Security: A [2] Comparative
Study”, in IEEE 12th International Conference on Information
Technology - New Generations (ITNG), INSPEC Accession
Number: 15180414, DOI: 10.1109/ITNG.2015.12, 2015

[3] S. Jaiswal and A. Kumar, “Research on Android app Vs Apple app
Market: Who is Leading?” ISSN: 2319-7242, vol. 3, no. 4, pp. 5553-
5556, April 2014

[4] D. Singla and L. Mendiratta, “ANDROID VS IOS”, IJIRT, vol. 1, no. 5,
ISSN: 2349-6002, 2014

[5] N. M. Hui, L. B. Chieng, W. Y. Ting, H. H. Mohamed and M. R. H. M.
Arshad, “Cross-Platform Mobile Applications for Android and iOS”,
IFIP WMNC, 2013

[6] S. Annapurna, K.V.S. Pavan Teja, Y. S. Murty, “A Comparative Study
on Mobile Platforms (Android vs. IOS)”, International Journal of
Advanced Research in Computer Engineering & Technology
(IJARCET), vol. 5, no. 3, March 2016

[7] . Phillips, C. Stewart, K. Marsicano, Android Programming: The Big
Nerd Ranch Guide, Big Nerd Ranch Guides, 3rd Edition, 2017

[8] C. Keur, A. Hillegass, iOS Programming: The Big Nerd Ranch Guide,
Big Nerd Ranch Guides, 6th Edition, 2017

[9] Neil Smyth, Android Studio 2.3 Development Essentials - Android 7,
CreateSpace Independent Publishing Platform; 1st edition, 2017

[10] B. Abazi, Android Development with Java: Step by step guide to build
applications, CreateSpace Independent Publishing Platform, 2017

[11] Apple xCode Introduction – Accessed September 2017 –
https://developer.apple.com/xcode/

[12] S. G. Kochan, Programming in Objective-C (Developer's Library),
Addison-Wesley Professional, 6th edition, 2013

[13] A. Nutile, Laravel 5.x Cookbook , Packt Publishing, 2016

[14] JSON language– Accessed September 2017 –
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/JSON

[15] MySQL Documentation – Accessed September 2017 –
https://dev.mysql.com/doc/

[16] Xamarin developer introduction – Accessed September 2017 -
https://developer.xamarin.com/

[17] Cordova developer introduction – Accessed September 2017 -
https://cordova.apache.org/docs/en/latest/

[18] React Native developer introduction – Accessed September 2017 -
https://facebook.github.io/react-native/docs/getting-started.html

0

5

10

15

20

25

30

Samsung

Galaxy S8+

Apple

iPhone 7

Plus

Google

Pixel XL

(sim)

Apple

iPhone 7

Plus (sim)

lower values = better
MIN (ms) MAX (ms) AVG (ms)

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Blerton+Abazi&search-alias=books&field-author=Blerton+Abazi&sort=relevancerank

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

182 | P a g e

www.ijacsa.thesai.org

[19] E. uck, D. Yacktman, Cocoa Design Patterns, 1st Edition, Addison-
Wesley Professional, 2009

[20] XML language – Accessed September 2017 -
https://developer.mozilla.org/en-US/docs/XML_Introduction

[21] Storyboard developer introduction – Accessed September 2017 -
https://developer.apple.com/library/content/documentation/General/Con
ceptual/Devpedia-CocoaApp/Storyboard.html

[22] AFNetworking Framework introduction – Accessed September 2017 -
https://github.com/AFNetworking/AFNetworking

[23] M. Weiher, iOS and macOS Performance Tuning: Cocoa, Cocoa Touch,
Objective-C, and Swift (Developer's Library), Addison-Wesley
Professional, 1st Edition, 2017

[24] GeekBench iOS and Android benchmark results – Accessed September
2017 – https://browser.geekbench.com/android-benchmarks ,
https://browser.geekbench.com/ios-benchmarks

[25] iOS Simulator – Getting Started – Accessed September 2017 -
https://developer.apple.com/library/content/documentation/IDEs/Concep
tual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStar
tedwithiOSSimulator.html

