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Abstract—Current intrusion detection systems for Wireless 

Sensor Networks (WSNs) which are usually designed to detect a 

specific form of intrusion or only applied for one specific type of 

network structure has apparently restrictions in facing various 

attacks and different network structures. To bridge this gap, 

based on the mechanism that attacks are much likely to be 

deviated from normal features and from different shapes of 

aggregations in feature space, we proposed a knowledge based 

intrusion detection strategy (KBIDS) to detect multiple forms of 

attacks over different network structure. We firstly, in the 

training stage, used a modified unsupervised mean shift 

clustering algorithm to discover clusters in network features. 

Then the discovered clusters were classified as an anomaly if they 

had a certain amount of deviation from the normal cluster 

captured at the initial stage where no attacks could occur at all. 

The training data combined with a weighted support vector 

machine were then used to build the decision function that was 

used to flag network behaviors. The decision function was 

updated periodically after training by merging newly added 

network features to adapt network variability as well as to 

achieve time efficiency. During network running, each node 

uniformly captured their status as feature vector at certain 

interval and forwarded them to the base station on which the 

model was deployed and run. Using this way, our model can 

work independently of network structure in both detection and 

deployment. The efficiency and adaptability of the proposed 

method have been tested and evaluated by simulation 

experiments deployed on QualNet. The simulations were 

conducted as a full-factorial experiment in which all 

combinations of three forms of attacks and two types of WSN 

structures were tested. Results demonstrated that the detection 

accuracy and network structure adaptability of the proposed 

method outperforms the state-of-the-art intrusion detection 

methods for WSN. 

Keywords—Wireless sensor network; intrusion detection 

system; knowledge based detection; clustering algorithm; weighted 
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I. INTRODUCTION 

Wireless Sensor Network (WSN) is usually composed of 
many randomly distributed tiny wireless sensor nodes that 
collect and send sensory data in a coordinated way. In contrast 
to traditional wireless networks, inherent advantages such as 
lower cost and more convenient deployment have largely 
extended WSN application fields, e.g., health care monitoring 

[1], smart home [2] and military surveillance and 
reconnaissance [3]. The security of WSN for those crucial 
fields has been an important demand [4]. Since wireless sensor 
nodes usually are limited by power supply, computation 
capability and communication range [5], traditional 
encryption/decryption techniques that require an uninterrupted 
power supply to retain frequently key management and access 
control are unrealistic to be applied to WSN [6]. Thus, 
establishing an intrusion detection system (IDS) to meet the 
security requirements in WSN is essential. 

In contrast with wired and ad hoc wireless networks, WSNs 
are susceptible to various forms of security threats due to their 
open and unreliable communication channel, dynamic topology 
structure as well as lacking central coordination [7]. In general, 
intrusion can be made by singular or multiple attacks. The 
singular attack, such as flooding attack, black hole attack, 
rushing attack and so on, occurs independently in WSNs 
during a certain interval. In flooding attack, a malicious node 
usually attempts to overwhelm processing capacity and energy 
of the sensor node as well as network bandwidth by constantly 
sending a stream of insignificant packets at a very short 
interval [8]. In black hole attack, an intruder tampers with 
packets by advertising itself as the possible shortest path to the 
destination node, which results in the fact that most of the 
packets are forwarded to the intruder [9]. In rushing attack, the 
attacker forwards RREQ (route request packets) packets 
immediately without processing after received them from other 
nodes, which results in high jitter of the entire network [10]. 
For the multiple attack situations in which various types of 
attacks occur simultaneously, the intrusion features might be 
blurred by the intertwined attacks. For example, if flooding 
attack and black hole attack occurring simultaneously, when 
the relay nodes received the flooding packets, they may 
forward these packets to the black hole attacker instead of 
keeping flooding them, which makes the attacks appearing 
reasonable and thus covers the intrusion. Since multiple-attacks 
is much likely to happen than single ones, it would be benefit 
to have an intrusion detection solution that is capable of 
handling multiple attacks [11]. 

In recent years, many intelligent intrusion detection 
systems that can only deal with singular form of malicious 
attacks have been developed for WSN. Athmani et al. [12] 
protected hierarchical WSN from black hole attack by 
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controlling packets transfer between sensor nodes and the base 
station. Although this lightweight scheme demonstrated 
significant improvement in energy saving, it was unable to 
defend flooding attack that aims to increase packets transfer 
between sensor nodes [13]. In order to minimize energy 
consumption in intrusion detection activities, Di Sarno and 
Garofalo [14] proposed a method in which status of node 
energy was only necessary to detect multi-layer flooding 
attacks. However, this cross-layer intrusion detection approach 
has not shown the ability to detect attacks in which energy is 
irrelevant. For example, in a selective forwarding attack, a 
malicious node either forwards packets of a certain node or not 
does not significantly affect its energy consumption. Lim and 
Huie [15] introduced a Hop-by-Hop Cooperative Detection 
(HCD) method to decrease the probability of misbehavior 
forwarding while achieve more than 95% package delivery. 
However, the paper did not mention how to detect attacks that 
are not misbehavior forwarding revelant, such as flooding 
attack. Sarigiannidis et al. [16] presented an expert system, i.e., 
the RADS (rule-based anomaly detection system), based on an 
ultra-wideband (UWB) ranging-based detection algorithm. It 
seemed promising in detecting sybil attack in large-scale WSN 
with high detection rate and low false alarm rate, while no 
cooperation and data sharing between nodes are needed. 
However, no evidence has been shown that the RADS is able 
to detect unknown attacks. Obado et al. [17] calculated the 
number of hops on the shortest paths between a source node 
and a destination node as input to a Hidden Markov Model 
(HMM) Viterbi algorithm to identify wormhole attack. 
Although the HMM Viterbi algorithm reduced power 
consumption of the sensor nodes, it was unable to recognize 
other attacks that are path independent, such as flooding attack 
and rushing attack. Although these intrusion detection systems 
demonstrated merits in terms of detection capability or 
minimization in resource consumption, the bottleneck is that 
they just can detect singular threat. Researchers have been 
seeking available information that can be helpful to detect 
multiple attacks. According to Butun et al. [7], if a profile 
representing stochastic network behavior is generated in 
feature space based on the captured network traffic, malicious 
behaviors against a WSN could lead profile in the feature space 
to be deviated from the normal range and form different 
aggregations. Thus, different forms of attacks are much likely 
to have different shapes of aggregations in feature space. 

In general, WSN has two types of network structures 
(topologies), i.e., hierarchical (cluster) network and flat 
network [18]. In the hierarchical network, nodes are organized 
into clusters according to their range of transmission. Each 
cluster has a cluster head that is responsible to transmit 
information to the base station. In the flat network, all nodes 
are identical in routing functions, i.e., transmitting packets in a 
multi-hop way [7]. Current intrusion detection systems usually 
take advantage of information of network structures to detect 
attacks [18]. Shamshirband et al. [19] proposed a cooperative 
multi-agent based fuzzy artificial immune system to detect 
DDoS (distributed denial-of-service attack), where the sink 
node and base station work together to choose the best strategy 
for discovering an impending attack. However, the authors did 
not detail the cooperative manner between the common nodes 
and the base station in the flat network as well as the 

implementation. Based on the mechanism that the residual 
energy of nodes around the sinkhole is much less than other 
nodes when a flat network is suffering sinkhole attack, Shafiei 
et al. [20] built a geostatistical hazard model and a distributed 
monitoring method to detect and defend sinkhole attacks. 
However, this strategy does not apply to hierarchical case, 
because it is very difficult to identify sinkhole attack launched 
in a cluster head when there is no significant difference in 
residual energy of nodes around the cluster head between 
normal and attacked situations. Therefore, the information of 
network structure may be helpful to form patterns in intrusion 
detection on one hand, it may also restrict the application scope 
of IDS [21] on the other hand. That means that how to 
efficiently use network structures while not be constrained by 
them, i.e., to make the IDS to be network structure 
independent, is tricky. 

The aim of this research was to develop a network structure 
independent intrusion detection model for WSN. The proposed 
model employed a knowledge-based detection strategy in 
which the mechanism is based on the fact that different forms 
of attacks are much likely to have different shapes of 
aggregations in feature space. Specifically, we captured 
network traffics and projected them into feature space as 
profiles representing stochastic network behaviors, and then 
the shapes of aggregations of the profiles could be regarded as 
an indicator to flag network behavior as normal or abnormal. 
To achieve this goal, we firstly, in the training stage, used a 
modified unsupervised mean shift clustering algorithm to 
discover clusters from the profile in the feature space. Then the 
discovered clusters can be classified as an anomaly if they have 
a certain amount of deviation from the normal cluster 
(behavior) captured at the initial stage where no attacks could 
occur at all. The training data combined with a weighted 
support vector machine were then used to build the decision 
function that was used to flag network behaviors. The decision 
function was updated periodically after training by merging 
newly added network traffic to mitigate the impact of outliers 
and noise as well as improve detection accuracy. During 
network running, each node uniformly captured network 
traffics as profiles at certain interval and forwarded them to the 
based station on which the model was deployed and run. Using 
this way, our model can work independently of network 
structure in both detection and deployment. 

The rest of this paper is organized as follows. Section 2 
briefly describes related work. The proposed model is 
presented in Section 3. Simulation intended to evaluate the 
performance of the model is presented in Section 4. Section 5 
summarizes this paper with indications of future work. 

II. RELATED WORKS 

A typical anomaly detection technique usually identifies 
behavior that has a certain amount of deviation from normal 
behavior as an anomaly. Garofalo et al. [22] utilized decision 
tree classification and lightweight detection techniques to 
achieve trade-off between high detection rate and energy 
saving. However, the paper did not give detail how to deal with 
unknown attacks not described in the reference dataset. A 
lightweight IDS was developed by using a wrapper based 
feature selection algorithm to remove redundant features and 
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employing a neural network based decision tree to optimize 
feature selection [23]. Although this detection paradigm 
increased the generalization ability by incorporating neural 
networks, its ability to identify unseen pattern was incomplete 
due to lacking updated decision function. A bio-inspired 
approach, i.e., the Watchdog based Clonal Selection Algorithm 
(WCSA), was implemented by Nishanthi and Virudhunagar 
[24]. It was successful in detecting known attacks but failed to 
detect unknown ones [4]. While these intrusion detection 
methods were featured as energy saving and high detection 
accuracy, they failed to detect “unknown” attacks. To address 
this problem, we used an unsupervised data mining method to 
classify an anomaly from normal behavior without any prior 
knowledge. In addition, the decision function was updated 
periodically to adapt to changes in network features over time 
to increase the generalization ability. 

Improving detection accuracy can be achieved from two 
directions, i.e., increasing detection rate and decreasing false 
alarm rate. Salmon et al. [25] utilized a tailored Dendritic Cell 
Algorithm (DCA) derived from Danger Theory immune-
inspired techniques in which different input signals can be 
categorized by DCA, i.e., the signals that caused damage were 
regarded as anomalous while others were classified as normal 
signals. Experimental data showed that DCA has high 
detection rate but no low false alarm rate. An agent-based 
artificial immune system was developed by [26]. In their 
method, two types of agents, e.g., the dendritic cells agents and 
the T-cell agents, collaborated with each other to count danger 
value being regarded as indicators to detect malicious attacks. 
This scheme achieved low false alarm rate but still cannot 
obtain enough detection rate [19]. Accordingly, we used a 
weighted support vector machine to maximize the margin 
between clusters of normal and anomaly to minimize the 
classification error, which in turn effectively enhanced 
detection accuracy. 

III. THE MODEL 

In this model, network traffics are discretized by time slice 
defined as     (Fig. 1). Each node captures and sends its status 

as a d-dimensional feature vector    (  
    

      
 ) to the 

base station at interval of   , where d is the number of feature 
types (see Table 3 for detail). 

t0 mn

Normal data

Training data Testing data

Feature vector

 

Fig. 1. Network traffic. Each node captures its status at regular time 

interval  t as a feature vector. Network traffic is divided into training data and 

testing data based on time boundary m. The feature vectors extracted in a 
short period of time [0, n] after WSN initialization are regarded as normal 

data. 

 

Fig. 2. The schematic diagram of processing steps in KBIDS. 

Definition 1: Network traffic is defined as a matrix      
*            +  that contains all feature vectors recorded in 
interval [0, t], where             and N is the total number 
of nodes. 

Definition 2: Normal data is defined as a matrix      
*           +          , which contains all feature 
vectors captured at the initial stage [0, n] where no attacks 
could occur at all. 

Definition 3: Training data is defined as a matrix        
*           +          , which contains all feature 
vectors captured at the training stage [0, m]. 

Definition 4: Testing data is defined as a matrix       
*                 +      (   )   , which contains 
all feature vectors captured at the testing stage (m, t). 

The proposed method is performed at the base station and 
includes the following four steps (Fig. 2): 

1) Preprocessing: Training data are normalized by the 

min-max normalization method. 

2) Training: The normalized training data are grouped 

into a certain number of clusters by a modified mean shift 

clustering algorithm. These clusters are eventually merged 

into two clusters according to the distance between them and 

the center of other clusters. Each feature vector in the training 

data is tagged as normal or anomaly by comparing with the 

normal data and the result of clustering. Further, each feature 

vector is assigned a weight representing the distance between 

it and its cluster center. The training data with labels of 

weights are served as inputs to a weighted support vector 

machine to establish a decision function. 

3) Detecting: The testing data are flagged as normal or 

anomaly by the decision function. 

4) Updating: In the testing stage, the feature vectors that 

has been processed are merged into the training data to rebuild 

the decision function at specific an interval of          
  . 
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The intrusion detection algorithm is deployed on the base 
station of a WSN and other nodes are only responsible for 
capturing and transmitting their own network status. 

A. Preprocessing 

In order to mitigate the effects of extreme value at one or 
several dimensions on final results as well as speed 
convergence of the algorithm [23], training data are normalized 
by the min-max normalization method. Giving the training 
data         
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A set of the minimum and the maximum values for each 
column of         are respectively obtained as        
{    

      
        

 }  and       *    
      

        
 + . 

Each feature vector         is then normalized by (1): 

    
        

           
   (1) 

Where      is a normalized feature vector. 

B. Training 

The feature vectors (points) should be aggregated into a 
certain region in the feature space in the normal situation. But 
they would be deviated from the normal region while being 
attacked. From the perspective of feature space, different forms 
of attacks may result in significant difference in degree of 
deviation from the normal region, and thus generate several 
aggregations. The unsupervised mean shift clustering algorithm 
(MSCA) [27] can effectively discover different concentrated 
regions in the feature space to form arbitrary clusters, which 
represents the aggregation of the features resulted from attacks. 
In this step, the MSCA is employed to cluster training data, 
flag them as normal or anomaly and feeds them into the 
classifier for training. 

Given nr data points                     on a d-

dimensional space    , the initial feature vector     is 
continuously shifted by adding a shifting vector      where 
   can be calculated by (2) (please note that the shifting 
of    results in changes in   ).    stops shifting when    falls 
below a certain threshold. 

    (  )   
∑    (‖

     
 

‖
 
)  

   

∑  (‖
     

 
‖

 
  
   )

     (2) 

Where,   ( )     ( ) .   ( ) and h are respectively the 
derivative and the bandwidth of the kernel profile  ( ) which 
is defined by a multivariate normal kernel function  ( ): 

 ( )  (  ) 
 

    . 
 

 
‖ ‖/       (     

 ) (3) 

Where,       is a normalization constant 

assuring   ( ) integrates to 1. During the process of the 
   shifting, the points that it has traveled are regarded belong to 
the same cluster and the last one is regarded as the cluster 

center   . In the standard MSCA, all data points do the same 
work as    did. However, in order to speed the convergence 
and promote precision of the standard MSCA, a modified 
version that recording the track of shifting of feature vectors is 
given as follows: 

Each point    on the track of     and its shifting 
distances    are recorded to form a similar set   : 

   *(     ) (     )   (     )+        (4) 

For all feature vectors we have the similar sets: 

  *          +          (5) 

The cluster centers are defined as: 

  {          }           (6) 

Based on the track of    , the subsequent each feature 
vector                    is clustered by the following 
two steps: 

Step 1: The Euclidean distances      
 between    and each 

point     in each similar set       is calculated by (7). If 

     
 is less than the shifting distance    , the 

tuple (        
) is added to   ; Otherwise, proceed to step 2. 

     
 √∑ (  

    
 )

  
      (7) 

Step 2:    does the same work as    did to generate a new 
similar set    and a cluster center   . If   has a cluster center    

which is equal to    , then merge    into   :         ; 

Otherwise,    and    are inserted to   and     respectively. 

After the two steps are completed, the training data are 
grouped into several clusters. The cluster including the normal 
data is regarded as the normal cluster. The cluster whose 
cluster center is farthest from the normal cluster is classified as 
the abnormal cluster. The rest of clusters are then merged into 
either the normal or abnormal cluster based on the relative 
distance to them. 

When a feature vector is received after time n, it is 
immediately classified into the nearest cluster thus can be 
flagged as normal or anomaly without extra training. In 
addition, to mitigate the effect of outliers or noise in clustering 
process on final decision and improve the detection accuracy, a 
weighted support vector machine (WSVM) was introduced to 
build a decision function (i.e. the optimal margin hyperplane 
classification) from the clustering results. 

Given tr data points: 

 *     +   
                  *    + 

Where     denotes class labels (i.e. normal or anomaly), the 
classification is defined as: 

 ( )      (       )   (8) 

Where w is a weight vector and b is the bias. In order to 
optimize    and   , the WSVM requires the solution of the 
following optimization problem: 
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Where   is the penalty factor of misclassification.    is the 
slack parameter to control noise. Vectors    is mapped into a 
higher dimensional space by the function  .    is a weight, 
which represents the relative contribution of    to the decision 
function.    assigned to data point    is calculated by (10): 

       ( √∑ (  
    )  

   )  (10) 

Where    is the cluster center of    . Unlike the standard 
SVM, where all training data points in one class are equally 
important, WSVM reduces the effect of outliers and noises by 
setting different weights [28]. According to Lagrangian duality 
theory, the WSVM optimization problem in (9) is converted to 
a quadratic programming problem: 

{
    ∑   

  
    

 

 
∑ ∑           (  )  (  )    

   
  
   

     ∑           
        

 

    
                       

(11) 

where    is the Lagrangian parameter. The Karush–Kuhn–
Tucker conditions of the SVM are defined as: 

{
  ,  (    (  )    )      -              

.
 

    
     /                                                      

(12) 

Finally, the optimal value of   and   are gained by: 

{
  ∑      (  )

  
                                                         

     ∑       (  )  (  )      ,    -  
   

(13) 

Hence, the decision function is obtained by: 

 ( )     (∑       (  )  ( )   ∑        
   

  
   

 (  )  (  )     )  

 {
            

            
  (14) 

C. Detecting 

In this step, each feature vector in testing data is flagged as 
normal or anomaly by the decision function (14). The feature 
vector is then merged into either normal or anomaly cluster 
according to the decision that has been made by the decision 
function. After that, it is used to update the decision function 
afterwards. 

D. Updating 

In order to cope with the possible changes in network 
features over time, the decision function needs to be updated at 
an interval of time    . In this step, the cluster centers are 
reevaluated by MSCA with updated training data, and the 
weight of each feature vector is adjusted as well. After that, the 
decision function is updated accordingly by WSVM. 

The pseudo code of KBIDS is shown in Algorithm 1. 

Algorithm 1: KBIDS 

Input: 

         *           +    feature vectors 

                       interval of updating 

Output:  

  1                    flag of normal  

  -1                   flat of anomaly  

1. Normalize each feature vector                 by (1). 

2. Shift    in feature space constructed by normal data      
*           + by (2) until the shift distance    falls below a 

certain threshold  .  

3. Record the tracks that    has traveled as a similar set    
*(     ) (     )   (     )+          and a cluster 

center     
4. Cluster the training data        *           +  
  For each feature vector           

    If the distance      
 between     and point     in similar 

set      less than     

      Add (        
) into      

Else 

  Generate a new cluster center    and a similar set    by 

MSCA. 

  If    is equal to      

            .  

  Else 

    Add    into   and    into  . 

  End If 

End If 

End For 

5. Merge clusters into two clusters and allocate label for    
        
6. Allocate weights for           by its relative distance to 

cluster center (10). 

7. Generate the decision function by WSVM. 

8. Flag each subsequent feature vector     in        
*                 + as 1 or -1 by decision function. Merge 

the feature vector    and its label into training data. 

  If time                 

Update the cluster center by MSCA.  

Allocate weights for each feature vector    of the training 

data again. 

    Update decision function by WSVM. 

  End If 

IV. SIMULATION EXPERIMENTS 

In order to evaluate the performance of KBIDS, eight 
experiment scenario (Table 1) were simulated by QualNet on a 
PC with Inter(R) Core (TM) i7-4470k, 3.50GHz, 8GB memory 
(RAM). In a flat network, we randomly deployed 30 sensor 
nodes in a region with dimension of 1000(m) x 1000(m) and 
deployed the base station in the center of the region, as shown 
in Fig. 3(a). Ten percent of nodes were designated as malicious 
nodes that performed attack. Compared with the flat network, 
the hierarchical protocol is more suitable for large-scale 
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networks in reducing node energy consumption and 
communication bandwidth [29]. Hence, the number of nodes in 
the hierarchical network was 100, and the number of attackers 
was 10. The relationship between nodes in the hierarchical 
network is given in Fig. 3(b). 

TABLE I.  SIMULATION SCENARIOS 

Experiment Attack type Network structure 

Case 1 Black hole attack Flat network 

Case 2 Flooding attack Flat network 

Case 3 Rushing attack Flat network 

Case 4 Multiple attacks Flat network 

Case 5 Black hole attack Hierarchical network 

Case 6 Flooding attack Hierarchical network 

Case 7 Rushing attack Hierarchical network 

Case 8 Multiple attacks Hierarchical network 

 

 
Fig. 3. QualNet simulation of two types of network structure in WSN. (a) 

Flat network, in which nodes transmit data in a multi-hop way. (b) 
Hierarchical network, in which nodes transmit data to base station in a 

hierarchy way. 

For all types of network structure, the MAC layer and 
routing protocol of all devices were IEEE802.11 and Ad hoc 
On-demand Distance Vector Routing (AODV), respectively. 
Simulation time for each experiment scenario was set as 10000 
seconds. The value of time n was 100 seconds and m was 5000 
seconds. Network traffic flow was simulated by constant bit 
rate (CBR) with packets of 512 bytes. The mobility model of 
nodes was simulated random waypoint (RWP) model with 
pause time of 5 seconds and the maximum speed of 10m/s. The 
statistical data of the energy consumption was counted by 
MicaZ radio energy model [30]. The key parameters of the 
simulation experiments were presented in Table 2. 

In each singular attack scenario, only one type of the three 
attacks, e.g., the black hole attack, flooding attack or rushing 
attack, was lunched during 4000 and 7000 seconds. Unlike 
singular attack scenarios, the three attacks were simultaneously 
lunched during 4000 and 7000 seconds in the multiple attacks 
scenarios. Each of these scenarios was replicated five times by 
setting different initial position of sensor nodes. 

TABLE II.  WSN CONFIGURATION 

Parameter 

Flat network Hierarchical network 

Value Value 

Simulation time 10000(s) 10000(s) 

Field size 1000(m) x 1000(m) 1000(m) x 1000(m) 

Total number of nodes 30 100 

Number of attackers 3 10 

Traffic type CBR CBR 

Traffic size 512(B) 512(B) 

Routing protocol AODV AODV 

MAC protocol IEEE802.11 IEEE802.11 

Mobility model RWP RWP 

Pause time 5(s) 5(s) 

Max moving speed 10(m/s) 10(m/s) 

TABLE III.  FEATURES VECTOR CONSTRUCTED BY 13 VALUES 

REPRESENTING NODE STATUS 

Feature Description 

numRequestRecved Number of route requests received 

numRequestResent 
Number of route requests resent because 
node did not receive a route reply. 

numRequestRecvedAsDest 
Number of route requests received by 

the destination. 

numRequestInitiated 
Number of route request messages 
initiated 

numRequestRelayed 
Number of route request messages 

forwarded by intermediate nodes. 

numReplyInitiatedAsDest 
Number of route replies initiated from 

the destination. 

numReplyInitiatedAsIntermediate 
Number of route replies initiated as an 

intermediate hop. 

numReplyRecved 
Number of route replies received by the 

node. 

numReplyRecvedAsSource 
Number of route replies received as data 

source 

numReplyForwarded 
Number of route replies forwarded by 

intermediate hops 

numDataInitiated 
Number of data packets sent as the 

source of the data. 

numDataRecved 
Number of data packets received as the 

destination of the data 

numHops 
Aggregate sum of the hop counts of all 

routes added to the route cache. 
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A feature vector (Table 3) which is the basic unit of 
information processing in KBIDS was constructed by capturing 
13 types of features representing node status [31]. 

In order to test the efficiency of KBIDS, detection rate and 
false alarm rate were used as index of assessment [32] 
Detection rate was calculated as the percentage of the numbers 
of successfully detected anomalies over the total numbers of 
anomalies. False alarm rate was calculated as the numbers of 
false alarm over the total numbers of normal data [18]. 

V. RESULTS 

Simulation results of KBIDS were compared with 
mainstream intrusion detection methods, such as PCA-based 
centralized approach (PCACID) [33] K-Means, Mean Shift, 
Decision Trees (DT) and Logistic Regression (LR), to evaluate 
efficiency of detection and adaptively of network structure 
(Fig. 4). Results showed that in the eight experiment scenarios, 
the average detection rate and the false alarm rate of KBIDS 
were 97.854% and 1.875% with small standard deviation 
0.922% and 1.069%, respectively, which demonstrated an 
obvious advantage than other mainstream methods. Although 
K-Means, Decision Trees and Logistic Regression obtained 
more than 92% average detection rate and less than 3% 
average false alarm rate at the same situation, their results had 
a large fluctuation, i.e., 4.831% and 4.291%, 1.327% and 
1.348% as well as 3.922% and 2.547%. This exhibited their 
weak capability in dealing with various forms of attacks. In 
some cases, PCACID and Mean Shift achieved lower false 
alarm rate than KBIDS. However, they failed to detect 
anomaly constantly in all scenarios. Overall, KBIDS showed 
advantages over other mainstream detection algorithms in term 
of detection rate and false alarm rate. In addition, KBIDS 
achieved stable performance in all scenarios, particularly in 
scenarios with different network structure. This was a strong 
evidence showing that KBIDS is network independent. 

  
(a) 

 
(b) 

Fig. 4. Comparison of detection rate (a) and false alarm rate (b) between 

KBIDS and other mainstream detection algorithms in eight experiment 
scenarios. 

 
(a) 

 
(b) 
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(c) 

Fig. 5. Performance of KBIDS for different values of   . 

As one of the key parameters, the length of time slice    
might be one important factor affecting results and network 
performance. Fig. 5 revealed the relationship between the 
variations in time slice    and detection accuracy as well as 
energy consumption when the interval of updating     was 
300s. With the increasing of   , the average detection rate and 
the energy consumption of data transmission decreased 
gradually while the average false alarm rate rose steadily for 
these cases. Overall, the time slice         achieved a well 
trade-off between detection accuracy and energy consumption. 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Performance of KBIDS for different values of   . 

Since KBIDS employed a constant updating strategy to 
adapt network variability over time, the impact of update 
interval    on the average running time (ART, i.e., the energy 
cost) of the updating step and the average detection accuracy 
cannot be ignored. When        , although lower    (20s) 
achieved high detection rate and low false alarm rate (Fig. 6), 
its cost, i.e., ART=62.16s was much larger than    
     where ART=1.34s. No surprise, the average detection 
rate and the average false alarm rate respectively decreased and 
increased with the increasing of    . However, the trend 
became stable after        . Overall,         achieved a 
great balance between detection accuracy and energy cost, 
where ART was about 3.83s which was much less than time 
slice       . 

In this algorithm, the computational complexity of the 
clustering step is  (   ), where   is the average number of 
shifting, and    is the number of feature vectors. The 
computational complexity of building WSVM 
is   (   ) where    is the dimension of feature vector. The 
computational complexity of the updating step is  ( (  
 )  ) where M is the number of updates. Overall, the 
computational complexity of the algorithm can be 
approximated as  (  ), which is not significantly affected by 
the number of dimensions of feature vector. We acknowledge 
that with the increasing number of feature vectors, it is 
inevitable to increase the time cost for the updating step, which 
is the main source of energy consumption that delays the 
decision process. We used two strategies to solve this problem. 
First, decision can be made immediately after learning stage 
when WSVM has been established, no full training process is 
necessary at each decision making; Second, old feature vectors 
are removed from training data when new feature vectors come 
in, so that the size of the training data can be kept at a constant 
level. 

VI. CONCLUSION 

In this research, we developed KBIDS, a network structure 
independent intrusion detection model for WSN. KBIDS 
employed knowledge based detection strategy based on the 
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mechanism that attacks are much likely to be deviated from 
normal features and from different shapes of aggregations in 
feature space. In KBIDS, an unsupervised data mining method 
was used to classify an anomaly from normal behavior without 
any prior knowledge. In addition, the decision function was 
updated periodically to adapt to changes in network features 
over time to increase the generalization ability. Further, a 
weighted support vector machine was used to maximize the 
margin between clusters of normal and anomaly to minimize 
the classification error, which in turn effectively enhanced 
detection accuracy. During network running, each node 
uniformly captured their status as feature vector at certain 
interval and forwarded them to its neighbor. The based station 
runs the model to detect attack. Using this way, our model can 
work independently of network structure in both detection and 
deployment. Simulation experiments conducted on QualNet 
platform demonstrated that our model outperformed other 
mainstream algorithms in terms of detection efficiency, 
stability across different network structures and computational 
complexity. Sensitivity analysis gave insights into how model 
performance can be affected by some key parameters, thus 
future improvement can be directed. 
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