
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

456 | P a g e

www.ijacsa.thesai.org

Performances Analysis of a SCADA Architecture for

Industrial Processes

Simona-Anda TCACIUC
1,2

1
Faculty of Electrical Engineering and Computer Science, Department of Computers

2
Integrated Center for Research, Development and Innovation in Advanced Materials,

Nanotechnologies and Distributed Systems for Fabrication and Control (MANSiD)

Stefan cel Mare University of Suceava, Romania

Abstract—SCADA (Supervisory Control And Data

Acquisition) systems are used to monitor and control various

industrial processes, and have been continuously developed in

order to incorporate the new technologies from software

development and field busses areas. The middleware

communication has the most relevant role in the development of

such complex distributed systems as SCADA systems. These

systems are very complex and must be reliable and predictable.

Furthermore, their performance capabilities are very important.

This paper presents a performance analysis of a SCADA system

developed for Windows platform, including Windows Compact

Embedded. The analysis is focused on the performance

difference between computing systems based on Windows

desktop and Windows CE operating systems. The utilization of

the Windows CE is useful on the application with real-time

requirements that cannot be achieved by the Windows desktop.

Testing the application and analyzing the results led to the

validation of the proposed SCADA system.

Keywords—SCADA systems; middleware; data acquisition;

data stream; distributed systems

I. INTRODUCTION

In the last decade, the SCADA systems that are found
anywhere have been developing exponentially by including the
new efficient and reliable technologies from the IT&C field.
The SCADA applications are complex systems that acquired
data from one or more local and remote processes.
Furthermore, a SCADA system can control these processes by
sending commands to the actuators depending on the type of
process [1]. This system has the advantages of increases
efficiency and profits and lowers costs.

A human operator can use this distributed system to remote
monitor and control of the industrial processes, by using the
HMI (Human Machine Interface) [2] provided by the SCADA
system. This interface allows the handling of data related to
that application (data acquired from the processes and the
commands sent to the processes).

The most common areas of applicability for SCADA
systems are the following: telecommunication systems [3], [4],
power distribution systems [5], energy transmission systems
[6], oil industry [7], gas and natural gas extraction, ore
extraction systems, storage systems [8], irrigation systems [9],
water distribution systems [10], sewerage systems, parameters
measuring equipment for fluids, hydroelectric systems [11],
monitoring systems for a production line or an entire company

[12], monitoring systems for a building or a building complex,
etc.

In this paper, it is analyzed a proposed new architecture of
a SCADA system. The analysis focuses on the performance
achieved with different data volumes and different operating
systems.

Furthermore, this paper is organized as follows: Section II
presents the most important specifications launched for the
industrial field and the main manufacturers for the SCADA
applications; Section III describes the architecture of the
SCADA system; Section IV focuses on several considerations
regarding the implementation; Section V highlights the
experimental results obtained, whereas Section VI finalized
with conclusions.

II. RELATED WORK

Over the years, a wide variety of applications have been
developed to achieve the data exchange between two devices
or between a device and a software application using the client-
server or peer-to-peer paradigm (M2M – Machine to Machine
and D2D – Device to Device). These include: COM / DCOM
(Component Object Model/Distributed Component Object
Model) -based classic applications, applications based on the
.NET platform, CORBA (Common Object Request Broker
Architecture) - based applications, Web Services applications,
Adaptive Communication Environment (ACE) applications, or
applications based on other technologies.

In turn, the applications using the specifications launched
by the OPC Foundation have a unified view [13]. These
specifications are the following: OPC (Object Linking and
Embedding for Process Control) Data Access, OPC Alarm and
Events, OPC Historical Data Access, OPC Unified
Architecture, OPC .NET (previously called OPC eXpress
Interface - XI) [14]. Depending on the type of architecture they
use, these specifications have been divided into: OPC classic –
based on DCOM (it includes: OPC Data Access, OPC Alarm
and Events, OPC Historical Data Access), OPC Unified
Architecture and OPC .NET [15].

Due to this unified vision, the OPC specifications have
become widely known and used by most of the production
systems as the following: MES (Manufacturing Execution
System) systems, HMI/SCADA systems and ERP (Enterprise
Resource Planning) systems.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

457 | P a g e

www.ijacsa.thesai.org

Currently, SCADA applications used in industry are being
produced by many manufacturers, such as the following:
Siemens, ABB, Emerson, Rockwell Software, Schneider
Electric, Matrikon, B-Scada, Iconics, Intellution, Indusoft,
Mitsubishi Electric, Yokogawa Electric, Honeywell,
WonderWare, Omron, Citect, GE/Fanuc, USDATA, National
Instruments, and Think & Do. However, each of the
application developed by the manufacturers mentioned above,
is targeted for certain issues and for some devices.

III. ARCHITECTURE OF THE PROPOSED SCADA SYSTEM

In order to implement a monitoring and control system of
some industrial processes, the main functions that a SCADA
application must consider are the following:

1) Data acquisition – It refers generally to acquiring data

from a process, either as inputs or outputs, or even data that

change during the process.

2) Communication/Data transfer over the network – It is

related to the “transport” of data towards the Master station and

vice versa (from the Master station towards the process). An

important role is played by the communication network that

must be well developed, flexible and easy to remodel.

3) Data presentation - It can be seen by the human user

through a graphic interface located on the Master server. It

presents an overview of the monitored process, it alerts the

human operator if certain limits are exceeded, it processes the

data collected from the process, it details the information at the

command of the user, and keeps record of all the logs.

4) System Control - Represents the manual or automated

configuration of the system, depending on the parameters and

events that have been generated. This function can only be

performed with the help of the human operator (the user), and

the communication environment between the operator and the

system is represented precisely by the interface of the SCADA

system. This interface displays real-time process data, and the

system is controlled by entering commands or messages for the

process.
All these four important functions of a control and

monitoring system intertwine at the most important level that is
middleware level. In fact, this is where the data exchange is
performed.

Starting from the proposed architecture presented by the
Gaitan et al. in [16] the system is an industrial process to
monitoring and control, designed and developed to meet the
requirements of a complex system called the Metropolitan
Heterogeneous System for Monitoring Utility-Specific Data
(SMEDU).

The architecture of this system is presented in Fig. 1 and
contains two software modules, namely: the client module and
the server module; the middleware bus connects the two
modules [17], [18].

The client module is an executable software module, called
MCIP (Monitoring and Control of Industrial Processes) [19],
after the role it has to fulfill within the proposed SCADA
system. This is in fact a standard communication interface
through which the user (the manager of an enterprise or a

production line) can create and organize all the objects needed
in the managed industrial process. The MCIP application
presents two working modes:

 The first is the working mode, enabling the
implementation and modification of the project. This
working mode is performed when the application is
unplugged from the servers. Basically, in the editing
mode, the user can add as many graphic objects as he
needs in the process, connecting them to the real
devices to be monitored. Also, he can set certain
features, and has the possibility to change or delete
objects. The types of objects used are: graphic objects
for displaying texts or images, template objects, control
objects and middleware interfacing objects, through
which the human operator can access the values in the
process.

 The second working mode is the execution mode. In
this case, the application executes what has been
designed in the editing mode.

Middleware BUS

Communication Standard Interface between client objects (trigered by events)

SISISI

MI MI MI

Client Application

Client interface

to middleware 1

Data

Server

Alarm

Server

Historical

Server

Events

Server

Communication Standard Interface for servers with SCDA

 Module for data aquisition - MDA

Manager and

configurator of

networks and

equipment

D
a
ta

b
a
s
e

X
M

L
,
E

D
S

 .
..

Communication Standard Interface with protocol drivers

OD

Driver 1 Driver 2 Driver 3 Driver k SIM Client

Server interface

to middleware 1

Software component for

data aquisition - SCDA

Server

Application

DAS - LIN 1

Legend:

NOb – Normal Object

SI – Standard Interface

LIN – Local Industrial Network

DOb – Display Object

MI – Middleware Interface

OB – Objects Dictionary

MOb – Middleware Object

DAS – Data Aquisition System

SIM – Simulator

Client interface

to middleware 2
Client interface

to middleware n

Server interface

to middleware 2

Server

interface to

middleware n

DAS - LIN 2 DAS - LIN 3 DAS - LIN k

SI

DOb

SI

DOb

SI

DOb

MOb MOb MOb

SI

NOb

SI

NOb

SI

NOb

Fig. 1. Architecture for real-time heterogeneous distributed systems oriented

SCADA applications [16].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

458 | P a g e

www.ijacsa.thesai.org

The middleware bus is a software bus connecting the client
mode to the server mode. Here, we can find some middleware
technologies from the ones mentioned above, namely:
COM/DCOM, CORBA, .NET technology, Web Services, but
also others. These technologies must ensure the client-server
communication in all possible cases.

The server module is also an executable software module
that brings together, through standard communication
interface, a variety of servers with the data acquisition software
component, the object dictionary, the network manager, the
database and the device drivers.

Within the server module, there may be several types of
servers that use different specifications, but also serve a wide
range of activities. For example, the most common types of
servers are: data access servers, alarms and events servers and
history servers.

The data dictionary, which can be found at the level of the
data acquisition software, is nothing more than a hierarchical
organization of the process data. Its most important feature is
the uniformity of the data presentation, namely, it remains the
same for any type of server used.

The server application also includes a standard interface for
connecting to the database, as well as to the network manager.

IV. THE IMPLEMENTATION OF THE PROPOSED SYSTEM

As mentioned in the previous sections, the proposed system
has been designed according to the client-server model and
contains two software modules, namely: the MCIP client and
the gpDAServer [19] data server.

Each of these has been designed so that in the end it could
be easily installed and used by any device in the industry.
Therefore, in the end, the two software modules will be
executable.

The server module was developed in C++, and the MCIP
client was developed as an application in C # (using the .NET
platform).

When implementing both modules, the following aspects
have been considered:

 A middleware object can connect to a single server
placed on the same computer as the client application
or any other computer in the network that supports the
same middleware technology. If we are dealing with
different computers, we have two possible cases: the
two devices are in a LAN (local connection) or the two
devices are connected to the Internet (this time, the
connection is remote).

 The data provided by a server can be retrieved by as
many middleware objects need that data.

 A server can connect to as many local industrial
networks as possible.

 At the level of the data dictionary, the most important
thing is the uniformity of the data presentation. In other
words, all servers must have the same data and in the
same mode.

V. EXPERIMENTAL RESULTS

In order to validate the proposed system, a total of four
tests have been performed on two similar star architectures.
The differences between the two test architectures are the type
of system used (real time or not) and the implementation mode
for each individual case.

The first architecture consists of 7 test stations and a Master
station (8 PCs with Windows XP/7/8/10 operating systems)
connected in a TRENDnet TEG224WS+ switch, with a
100Mbps Ethernet interface. This test architecture is presented
in Fig. 2.

The second test architecture consists of 6 embedded eBox
2300 SX systems, 1 embedded PDX 089T system with
Windows CE real-time operating system, a Master desktop PC
(the same as in the first test architecture) and a Super Stack II
Baseline 10/100 Switch. This test architecture is presented in
Fig. 3.

Windows XP

Colasoft

Clasic MCPI Client

Windows XP

Server 3

MCPI Client 3

Windows XP

Server 5

 MCPI Client 5

Switch

Station 1
Windows XP

Server 1

MCPI Client 1

Windows XP

Server 2

MCPI Client 2

Station 2

Station 3

Windows XP

Server 4

 MCPI Client 4

Station 4

Station 5

Station 6

Windows XP

Server 7

 MCPI Client 7

Station 7

Windows XP

Server 6

MCPI Client 6

Master Station

Fig. 2. Test architecture 1 [19].

Windows CE

Server 3

MCPI Client Ported 3

Switch

eBox 6eBox 5

eBox 4

eBox 3

eBox 2

PDX 089T

Windows CE

Server 1

MCPI Client Ported 1

Windows CE

Server 2

MCPI Client Ported 2

Windows CE

Server 5

MCPI Client Ported 5

Windows CE

Server 4

MCPI Client Ported 4

Windows CE

Server 7

MCPI Client Ported 7

Windows CE

Server 6

MCPI Client Ported 6

Windows XP

Colasoft

Clasic MCPI Client

eBox 1

Master Station

Fig. 3. Test architecture 2 [19].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

459 | P a g e

www.ijacsa.thesai.org

In both cases, the Master station was used to monitor the
flow of data sent to the local network. That is why the Colasoft
Capsa Enterprise software (software developed for analyzing
data flow) was installed on the Master station. It allows the
interception and analysis of Ethernet frames in terms of
transmission speed.

A MCIP client application and a server application have
been installed on each of the other 7 systems (either the 7 PCs
in the case of Test Architecture 1, or the 7 embedded eBOX or
PDX embedded systems in the case of Test Architecture 2).
These were launched in execution, and a process and the
objects required for test have been added to each MCIP
application. In this way, the client application has connected to
the server through a OPC middleware object, thus managing to
read or even write data. Through this object, it was possible to
set an update rate required for reading and writing data.

In terms of transmission rates, the test range was of 100ms
(0.1seconds) to 1000ms (1 second). Also, for each OPC object,
the data transfer speed for 1 item, 5 items, 10 items and 15
items has been tested.

Fig. 4 shows the chart of experimental results obtained by
testing the Test Architecture 1 at different refresh rates and for
a different number of items in a group.

Similarly, tests have been performed for Test Architecture
2 and the experimental results are shown in Fig. 5.

In order to facilitate the analysis and interpretation of data
obtained from the experimental tests, a comparison has been
performed between the data resulted from the tests performed
on the two operating systems (Windows XP and Windows
Embedded CE), using identical parameters.

The analysis of the experimental results chart in Fig. 3
shows a tendency to decrease the data transfer speed once with
the increase of the update rate.

The analysis of the experimental results chart in Fig. 4 also
shows a tendency to decrease the data transfer speed once with
the increase of the update rate.

Fig. 4. Results diagram for test architecture 1.

Fig. 5. Result diagram for test architecture 2.

Also, there is a minor difference between the data transfer
speed of the two tested operating systems. This difference may
be due to the fact that the server, at a certain point, might not
perform exactly the update rate, because the CPU is
overloaded. The update rate is performed on the server,
because it calls a callback function in the MCIP client
application.

Another explanation might be the implementation mode of
the TCP/IP stack for the Windows Compact Embedded (CE)
operating system. It can also be noticed that, at high update
rates, the data transfer speeds in the case of Windows CE tests
are close to the values obtained for Windows XP.

In conclusion, following the tests carried out on the two
architectures and the analysis of the experimental results, the
proposed model and solutions have been validated.

VI. CONCLUSIONS

The need to have more and more efficient and reliable
systems led to the rapid development of SCADA systems.
However, there is not yet an architecture pattern that can be
used by all types of SCADA systems and that can meet all
requirements.

The system proposed in this article attempts to satisfy these
needs. This is why it has been designed to be easy to use and
improvable by adding new components or features that might
completely change the context.

This paper presented the performance analysis of a SCADA
application that is executed on a computing device based on
Windows desktop and Windows CE operating systems. We
can conclude that the Windows CE can be used at the
application with real-time requirements, which cannot be
achieved by the computing systems based on Windows
desktop.

As future work, we intend to develop the proposed system
to approach other technologies. We also want to port the server
application on a real-time system (Linux RTAI or Windows
Compact Embedded).

0

50

100

150

200

250

300

350

1
0
0

 m
s.

2
0
0

 m
s.

3
0
0

 m
s.

4
0
0

 m
s.

5
0
0

 m
s.

6
0
0

 m
s.

7
0
0

 m
s.

8
0
0

 m
s.

9
0
0

 m
s.

1
 s

ec
.D

a
ta

 t
ra

n
sf

er
 s

p
ee

d
 (

K
b

p
s)

Refresh rate

1 item 5 items 10 items 15 items

0

100

200

300

400

500

600

D
a

ta
 t

ra
n

sf
er

 s
p

ee
d

 (
K

b
p

s)

Refresh rate

1 item 5 items 10 items 15 items

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

460 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] P. Church, H. Mueller, C. Ryan, S. V. Gogouvitis, A. Goscinski and Z.
Tari, “Migration of a SCADA system to IaaS clouds - a case study”,
Journal of Cloud Computing: Advances, Systems and Application, DOI:
10.1186/s13677-017-0080-5, 2017.

[2] C. P. Carvajal, L. A. Solis, J. A. Tapia and V. H. Andaluz,
“SCADA/HMI System for Learning Processes of Advanced Control
Algorithms”, IT Convergence and Security 2017 (ICITS 2017), Lecture
Notes in Electrical Engineering, vol 450. Springer, Singapore, DOI:
10.1007/978-981-10-6454-8, ISBN: 978-981-10-6453-1, 2017.

[3] S.M.Hosseini and M. Jahanian, “Enhancing security and risk control in
SCADA systems”, International Conference on Engineering & Applied
Sciences, Dubai, March 2016.

[4] R. Radvanovsky and J. Brodsky, “Handbook of SCADA Control
Systems Security - Second Edition”, CRC Press - Taylor & Francis
Group, ISBN-13:978-1-4987-1708-3, 2016.

[5] R. Jackson Tom and S. Sankaranarayanan, “IoT based SCADA
integrated with Fog for power distribution automation”, The 12th Iberian
Conference on Information Systems and Technologies (CISTI), DOI:
10.23919/CISTI.2017.7975732, Electronic ISBN: 978-9-8998-4347-9,
2017.

[6] S. Sebastio, G. D'Agostino and A. Scala, “Adopting the cloud to manage
the electricity grid”, The IEEE International Energy Conference
(ENERGYCON), DOI: 10.1109/ENERGYCON.2016.7513996, ISBN:
978-1-4673-8464-3, 2016.

[7] M. Liu, M. Yuan, F. Wang and C. Sun, “The Oil and Gas Pipiline
Clouding SCADA System and Multiple Data Centers Storage System
Design”, The International Conference on Manufacturing Construction
and Energy Engineering (MCEE), ISBN: 978-1-60595-374-8, pp. 293-
297, 2016.

[8] L. A. Sabri, S. A. Mohammed and M. I. Issa, “Design of SCADA
System for Oil Pipeline Control Using LabVIEW”, Al-Nahrain Journal
for Engineering Scinces (NJES), Vol. 20, No. 3, pp. 600-614, 2017.

[9] E. Zaev and D. Babunski, “SCADA system for real-time measuring and
evaluation of river water quality”, The 5th Mediterranean Conference on
Embedded Computing (MECO), Montenegro, DOI
10.1109/MECO.2016.7525708, ISBN: 978-1-5090-2223-6, 2016.

[10] C. M. Ahmed, V. R. Palleti and Aditya P. Mathur, “WADI: a water
distribution testbed for research in the design of secure cyber physical
systems”, Proceedings of the 3rd International Workshop on Cyber-

Physical Systems for Smart Water Networks, ISBN: 978-1-4503-4975-
8, pp. 25-28, 2017.

[11] F. M. Enescu and N. Bizon, “SCADA Applications for Electric Power
System”, Reactive Power Control in AC Power Systems, Springer,
ISBN: 978-3-319-51117-7, DOI: 10.1007/978-3-319-51118-4, pp.561-
609, 2017.

[12] J. A. Ruiz Carmona, J. C. Munoz Benitez, J. L. Garcia-Gervacio,
“SCADA system design: A proposal for optimizing a production line”,
The International Conference on Electronics, Communications and
Computers (CONIELECOMP), Mexico, DOI: 10.1109/
CONIELECOMP.2016.7438574, Electronic ISBN: 978-5090-0079-1,
2016.

[13] I. Gonzales, A. J. Calderon, A. J. Barragan and J. M. Andujar,
“Integration of Sensors, Controllers and Instruments Using a Novel OPC
Architecture”, MDPI-Sensors, No. 17(7), 1512,
DOI:10.3390/s17071512, 2017.

[14] N.C. Gaitan, , “Real-time Acquisition of the Distributed Data by using
an Intelligent System”, Electronics and Electrical Engineering - Kaunas
Technologija, Vol. 8(104), 2010, pp. 13-18.

[15] M. F. Rohani, N. A. Ahmed, S. Sahibudding and S. M. Daud, “OPC
Protocol Application for Real-Time Carbon Monitoring System for
Industrial Environment”, International Journal of Electrical and
Computer Engineering (IJECE), Vol. 7, No. 2, ISSN: 2088-8708, DOI:
11591/ijece.v7i2.pp1051-1059, pp. 1051-1059, 2017.

[16] N. C. Gaitan, V. G. Gaitan, S. G. Pentiuc, I. Ungurean and E. Dodiu,
“Middleware Based Model of Heterogeneous Systems for SCADA
Distributed Applications” in Advances in Electrical and Computer
Engineering, vol. 10, No. 2, 2010, pp. 121–124.

[17] V. G. Gaitan, M. G. Danila, M. Robu and C. N. Gaitan, “MCIP - a HMI
Application for Monitoring and Controlling the Industrial Processes”,
The 9th International Conference on Development and Application
Systems, ISSN 1844-5020, 2008, pp. 32-37.

[18] N. C. Gaitan, V. G. Gaitan and I. Ungurean, “An IoT Middleware
Framework for Industrial Applications”, International Journal of
Advanced Computer Science and Applications, vol. 7, Issue 9, 2016, pp.
31-41.

[19] S. A.Gherasim and V. G. Gaitan, “Performance Evaluation of a SCADA
System for Monitoring and Controlling the Industrial Processes”,
Buletinul Institutului Politehnic din Iasi, Automatic Control and
Computer Science Section, vol. 1, 2013, pp. 9-20.

