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Abstract—Processing a data stream in real time is a crucial 

issue for several applications, however processing a large amount 

of data from different sources, such as sensor networks, web 

traffic, social media, video streams and other sources, represents 

a huge challenge. The main problem is that the big data system is 

based on Hadoop technology, especially MapReduce for 

processing. This latter is a high scalability and fault tolerant 

framework. It also processes a large amount of data in batches 

and provides perception blast insight of older data, but it can 

only process a limited set of data. MapReduce is not appropriate 

for real time stream processing, and is very important to process 

data the moment they arrive at a fast response and a good 

decision making. Ergo the need for a new architecture that 

allows real-time data processing with high speed along with low 

latency. The major aim of the paper at hand is to give a clear 

survey of the different open sources technologies that exist for 

real-time data stream processing including their system 

architectures. We shall also provide a brand new architecture 

which is mainly based on previous comparisons of real-time 

processing powered with machine learning and storm technology. 
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I. INTRODUCTION 

With the exponential growth of the interconnected world to 
the internet, a very large amount of data is produced coming in 
a form of continuous streams from several sources such as 
sensor networks, search engines, e-mail clients, social 
networks, e-commerce, computer logs, etc. McKinsey [1] 
relates that 5 billion individuals use diverse mobile devices. 
The increase of generating data doesn‟t have a limit. This 
phenomenon is known as “big data”. According to the study of 
IBM on Big data, by 2020 there will be approximately 35 zetta 
bytes of data generated annually [2] and the data growth will 
be as high as 50 times than it is nowadays [3]. 2.5 quintillion 
bytes of data are produced every day [4]. Besides, in every 
second data are produced continuously; 34,722 Likes in 
Facebook, about 571 new websites, and almost 175 million 
tweets. All these multiple internet technology actors generate a 
very large data and information in the form of streams. These 
data are incremented in real-time according to the 5Vs of 
Gartner. 

With recent technologies, such as applications of the 
Internet of Things, the stream of data is multiplied in volume, 
velocity and complexity.  In addition to that these streams of 
data are processed with high velocity in real time which brings 
some unique challenges. The system of big data depends on the 

Hadoop framework which is considered as the most effective 
processing technique. 

 

Fig. 1. Map reduce jobs. 

Hadoop has a proportional performance to the complexity 
of large data. It is an effective tool for solving massive data 
problems. Despite the success it has had, this model has some 
limitations. Among the major limitations, Hadoop, precisely 
Map Reduce framework, is not the best tool for processing the 
latest version of data; it is limited to process data in batch 
mode. In other words, it cannot handle what is happening in 
real time. In several cases, it is very important to process data 
as created and have knowledge of what is happening in real 
time. 

MapReduce is a simple programming model that permits 
processing a fixed amount of data but is not appropriate for real 
time stream processing. It is a batch processing system [5] 
which means that when the first batch is terminated, the data, 
that are offered for the final user, are aged at least until the 
second batch is terminated. Furthermore, MapReduce is 
appropriate for parallelizing processing on a big amount of 
data. However, it relies on a disk based approach. That is to 
say, each iteration output is written to disk making it slow. The 
following illustration in Fig. 1 shows that MapReduce reads 
the data from the disk and writes them back to the disk four 
times. There is one more disk read/write operation. In every 
MapReduce job, the disk reads and writes twice which makes 
the complete stream very slow and downgrades the 
performance. Hence, the need to create a tool that processes 
data immediately and gets a response of a query in real time 
with low latency. 

In this paper we present an overview of some fundamental 
notions of big data, stream processing and the increasing 
volume of data. Then, we describe different tools and systems 
that permit processing data in real time. A thorough 
comparison is also taken into account in the following 
section.  In addition, we propose a new architecture based on 
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the previous comparison. And last but not least, we compare 
our proposed architecture with the two existing architectures. 

II. BIG DATA 

Nowadays the term “big data” is frequently used in 
industry, science and so many other fields. Big data is a broad 
concept which refers to the explosion of large data sets that 
traditional database cannot process and manage due to the high 
volume and complexity of data generated in any time. 

O‟Reilly describes Big Data as [6] “data that exceeds the 
processing capacity of conventional database systems. The data 
is too big, moves too fast, or does not fit the structures of 
existing database architectures. To gain value from these data, 
there must be an alternative way to process it”. According to 
McKinsey Global Institute [1], “Big Data” refers to datasets 
whose size is beyond the ability of typical database software 
tools to capture, store, manage and analyze. IDC‟s definition of 
Big Data technologies describes a new generation of 
technologies and architectures designed to economically 
extract value from very large volumes of a wide variety of data 
by enabling high-velocity capture, discovery, and/or analysis 
[7]. According to these definitions, big data refers to 
technologies that allow companies to quickly analyze a very 
large volume of data and get a synoptic view by mixing 
storage, integration, predictive analysis and applications. The 
Big data allows gaining time, efficiency and quality in data 
interpretation. 

Gartner sees that this concept uses a set of tools and 
technologies to solve the problematic of the five Vs of Big data 
which include: Volume, Variety, Velocity, Veracity and Value. 
Volume stands for the very large quantity of data gathered by 
an organization, from datasets with sizes of terabytes to zetta 
bytes and beyond. Data comes from everywhere and the size 
continues to increase; by 2020 data will have become 44 times 
bigger (about 40 ZB) than that of 2009 [8]. Data come from a 
variety of sources and in many types. This is the second aspect 
of big data „variety‟ [9] which refers to the various data types 
including structured, unstructured, or semi-structured data such 
as textual database, streaming data, sensor data, images, 
audios, videos, log files and more. These various types of data 
are going to be combined and analyzed together for producing 
a new insight. Velocity represents the speed of processing, 
analyzing and visualizing data for immediate response. 
Veracity stands for the reliability of data; the user must have 
confidence in the data to use for the right decision making. 
This characteristic is very hard to achieve with big data and 
represents an important challenge. Last but not least, Value 
which indicates the insights we can reveal within the data. It is 
not necessary to analyze and process a large data without 
value; rather we must focus on data with real value. 

To summarize, big data do not refer to a huge volume of 
data and complex analysis, but on how to process, analyze and 
store rapidly at the moment this great size of information 
coming from different sources and in the shape of streams. 
This is done in order to obtain the right answer and make the 
best decision. 

Unlike the traditional data processing systems, stream 
processing systems can process an unbounded source of events. 

It can also transform the streams of data in real time with low 
latency so as to get real time response and make processed data 
directly accessible for the final user. SQL Stream defines 
“stream processing [as] the real-time processing of data 
continuously, concurrently, and in a record-by-record 
fashion. It treats data not as static tables or files, but as a 
continuous infinite stream of data integrated from both live and 
historical sources”. 

Stream processing systems are invented to deal with big 
data in real time with a high scalability, high availability, and 
high fault tolerance architecture [10]. It permits to process data 
in motion as it is produced. We can say that a stream 
processing is a real time processing of continuous series of data 
stream by implementing a series of operations on every data 
point. The objectives of Stream processing are to collect, 
integrate, process, analyze and visualize the data as they arrive 
in real time to extract a greater insight. Processing streams of 
data in real time brings some challenges. 

In the following section, we will give an overview of some 
tools of data stream processing and compare them so as to 
choose the best tool that satisfies the constraint of real time. 

III. DATA PROCESSING TOOLS 

In this section, we are going to present an overview of data 
stream processing tools including; Apache Hadoop, Apache 
spark and Apache storm to better understand very the 
difference between systems. Based on this description, we will 
show that older methods, precisely MapReduce, do not allow 
the processing in real time as it has the possibility to process a 
very large volume of data regardless of the speed with which 
the data arrives. 

A. Apache Hadoop 

The Apache Hadoop is a project of apache foundation, 
created by Doug Cutting in 2009, which is an open source 
software framework designed for scalable, reliable, and 
distributed computing. This framework allows the distributed 
processing of big data sets on clusters of computers. The 
Hadoop Framework includes several modules: Hadoop 
common, Hadoop Distributed files system (HDFS), Hadoop 
yarn, and Hadoop MapReduce. Fig. 2 represents the Hadoop 
ecosystem and shows the core components of this framework, 
namely, HDFS for storing a large volume of data sets and 
MapReduce for processing big data in batch mode. 

 
Fig. 2. Hadoop Ecosystem [11]. 
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Fig. 3. Architecture of Hadoop [12]. 

Hadoop has a master/slave architecture that consists of two 
servers which are the basics of MapReduce framework, a 
single master node and several worker nodes [13]. A master 
node namely Job Tracker is responsible of accepting jobs from 
customers, dividing jobs into tasks, assigning tasks to worker 
nodes and re-executing failed tasks. Every worker executes a 
task tracker process which is responsible to execute and 
manage the tasks assigned by Job Tracker on a single 
computation node in the cluster as shown in Fig. 3. HDFS [14] 
is designed to be a distributed, scalable and resilient storage 
system that is designed to interact easily with MapReduce. It 
provides an important aggregation bandwidth throughout the 
network. HDFS is composed of a master node called 
Namenode and data servers called Datanodes. The structure of 
the HDFS file is divided into blocks of 128 MB. 

MapReduce, which was first developed in 2004 by Google, 
is a framework whose role is to facilitate processing vast 
amount of data in parallel on large clusters of commodity 
hardware in a fault tolerant manner [12]. It is divided into two 
separate steps, namely, map phase and reduce phase [15], [16]. 
First, the user defines a map function to process the input data 
and produce a group of intermediate key/value pairs. Second, 
the intermediate values with the same intermediate key are 
grouped together by MapReduce library and transferred to the 
reduce function. And finally, the reduce function processes the 
intermediate results and finishes the job. Fig. 4 indicates the 
execution workflow of MapReduce job. The MapReduce 
library splits the input data into M disjunctive partitions for the 
parallel execution of map operation about 16-64 MB per piece 
[16]. The copies of program are launched on computer of the 
cluster. The Master assigns map and reduce tasks to running 
worker instance, the worker with map task reads assigned 
partition, processes all input pairs with map function, buffers 
output pairs in local main memory and flushes buffer 
periodically to disk. Storage location is reported to the master, 
which coordinates hand-over to reducers. Worker with reduce 
task gets the location of intermediate results and reads them. 
Shuffle means sorting pairs by key to group them and write 
results of reduce function into the output file that is associated 
with reducer‟s input partition. After all map and reduce task 
have been processed completely the master returns to wake up 
the user program [16]. 

 
Fig. 4. Map reduce model. 

MapReduce is a fault tolerant framework that processes a 
big amount of data due to its elasticity and scalability, but it is 
not a perfect way for real time data processing. The 
MapReduce programming model has some limitations. These 
limitations are presented as follows: 

1) Only suitable for processing data on batch 

2) No real time 

3) Stock data on disk which makes Disk intensive 

4) No repetitive queries 

5) Not efficient for caching; MapReduce can't maintain 

the intermediate results in memory 

6) Not efficient for iterative algorithms and interactive 

data querying 

7) One-input and two-stage data flow is extremely rigid 

8) Common operations must be coded at hand 

9) Semantics hidden inside map reduce functions, difficult 

to maintain, extend and optimize 

B. Apache Spark 

Spark is an open source framework for distributed 
computing [17]. It is a set of tools and software components 
structured according to a defined architecture. It is developed 
and designed at the University of California at Berkeley by 
AMPLab. Spark is now a project of the Apache Foundation. 
This product, which is an application framework of big data 
processing to Spark, performs a data read at the cluster level 
(cluster of servers on a network), and performs all necessary 
analysis operations by writing the results at this same level. 
Despite the fact that it is written with Scala, Java and Python 
languages, it makes the best use of its capabilities with its 
native language „Scala‟. 

The main difference between MapReduce and spark is that 
MapReduce from Hadoop works on stages while Spark works 
on all the data at the same time. It is up to ten times faster for 
batch processing and up to a hundred times faster for 
performing in-memory analysis. Spark performs all the data 
analysis operations in memory and in real time [18]. It relies on 
disks only when its memory is no longer sufficient. 
Conversely, with Hadoop the data are written to disk after each 
operation. This work in memory reduces latency between 
treatments which explains such rapidity. 
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Fig. 5. Spark framework ecosystem. 

 

Fig. 6. Spark streaming. 

However, Spark does not have a file management system of 
its own. It is necessary to provide one, e.g. Hadoop Distributed 
File System, Informix, Cassandra, OpenStack Swift or 
Amazon. It is recommended to use it with Hadoop which is 
currently the best overall storage solution thanks to its more 
advanced administration, security and monitoring tools. In case 
of failure or system failure: Data objects are stored in so-called 
resilient distributed datasets (RDDs) distributed over the data 
cluster for a complete data recovery. 

Spark wants to be a response to the limitations of 
MapReduce and allows in the same environment to easily 
access a wide variety of use cases, such as SQL, Streaming, 
Machine Learning and Graph Analysis, in a more efficient and 
interactive way as shown in Fig. 5. 

Spark Streaming is a programming interface for processing 
data flows on a Spark platform. Data can be received in a 
variety of ways: file system transfers, TCP sockets reception 
(generic network connections), or Twitter, Kafka, Flume, etc. 
Fig. 6 [19] shows several operations that can be directly 
applied to the streams. Each stream is being represented by a 
DStream, It is a transformation of a stream to obtain another 
stream, merging of several streams into one, joining of stream, 
joining between a stream and a single RDD, filtering a stream 
from another stream, updating a state from a stream, and so on. 
These operations can be applied both through spark-shell and 
from a program. 

C. Apache Storm 

Storm [20] is a real-time computing system that is 
distributed, fault-tolerant and guarantees data processing. 
Storm was created at BackType which is a company acquired 
by Twitter in 2011. It is an open source and open source 
project under the Eclipse Public License. The EPL is a very 
permissive license, allowing you to use Storm either in open 
source or for proprietary purposes. Storm makes the processing 
of unlimited data flows clear and reliable, making for real-time 
processing what Hadoop has done for batch processing. Storm 
is very simple and has been designed from the ground up to be 
usable with any programming language. 

Storm can be used for some different use cases: 

 Streams/flows processing: Storm can be used to 
process a stream of new data and update databases in 
real time. 

 Continuous calculation: Storm can make a continuous 
query and disseminate the results to customers in real 
time. 

 Distributed RPC: Storm can be applied to parallelize an 
intense request on the fly. If Storm is configured 
correctly, it can also be very fast: a frame rate 
reference of more than one million tuples treated per 
second per node. 

A storm cluster consists of three nodes: “Nimbus” which is 
equivalent to the Hadoop Job Tracker, “Supervisor” that is 
responsible for initiating and terminating the process, and 
“Zookeeper” node which is a shared coordination service that 
directs the storm cluster as explained in Fig. 7. 

Instead of using “MapReduce jobs” like in Hadoop, we use 
“topologies” in Apache Storm. It consists of spouts and bolts 
with bonds among them to show how streams are passing 
encompassing. We describe it as a data processing Directed 
Acyclic Graph (DAG) which draws the entire stream 
processing method. A topology design is presented below in 
Fig. 8. 

 
Fig. 7. Storm architecture. 

 

Fig. 8. Topology of storm. 
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IV. A COMPARISON OF DATA PROCESSING TECHNOLOGIES 

In this section, we differentiate between the different tools 
used for the real-time stream processing and based on this 
comparison; we will determine the most suitable tool. 

TABLE I.  DATA PROCESSING TECHNOLOGIES 

Tools 

 

Criteria 
Hadoop Spark 

Storm 

Source Model 
Open source Open source Open source 

Architecture 
Master/slaves Master/slaves Peer 

Coordination 

tool Zookeeper Zookeeper Zookeeper 

API 

Programmation 
Java-Python 
and Scala 

Java-Python, R, 
and Scala 

Any PL 

Execution  Model 
Batch Micro-batch 

Real-time(one-
at-a-time) 

Big data 

processing Batch 
Batch and 
Streaming 

Streaming 

achievable 

latency High 
A few seconds  

(< 1s) 

Less than a 
second  

(< 100ms) 

Ordering 

guarantees Yes Yes No 

Guaranteed Data 

Processing exactly-once exactly-once 
At least once 

processing 

In memory 

processing No Yes Yes 

Storage data 
yes yes No 

Fault tolerance 
Yes Yes Yes 

The illustration above in Table 1 shows that storm is the 
best tool for real-time stream processing, Hadoop performs 
batch processing, and spark is able of doing micro-batching. 
Storm employs the spouts and bolts to do one-at-a-time 
processing to avoid the inherent latency overhead inflicted by 
batching and micro-batching. 

V. REAL TIME PROCESSING ARCHITECTURES 

In this part, we will present two architectures based on real-
time processing called Lambda and Kappa. According to this 
description, we will compare them then deduce a more robust 
architecture that satisfies the real-time constraint. 

A. Lambda Architecture 

The lambda architecture unifies real-time and batch 
processing in a single framework which provides low latency 
and better results. It was founded thanks to Nathan Marz‟s 
motivation to build the hybrid system. 

The lambda architecture [21], shown in Fig. 9, consists of 
three layers and each of these layers can be made using various 
large technologies, described as follows: 

Batch layer: Stores the master copy of dataset and 

computes arbitrary batch views. 

Serving layer: Integrates results from the batch and speed 
layer. 

Speed layer: Only processes the recent data to compensate 
the high latency of the services layer updates. 

Firstly, all the original data streams are dispatched to the 
batch and speed layer for processing. The Batch layer allows 
batch processing for pre-computation of large amounts of 
datasets. It provides the managing of the Master Dataset; a set 
of immutable, append-only and exclusive raw data, but also 
provides a pre-computation of arbitrary query functions, called 
batch views.  This layer doesn‟t update regularly batch views 
which lead to latency. MapReduce is a good example of batch 
processing that can be used at the level of this layer. Secondly, 
the Serving layer means computing in Real-time (Speed time) 
to minimize latency by performing real-time calculations as 
data arrive. This layer indexes batch views produced by the 
batch layer so that they can be queried in Ad-Hoc with low 
latency. Typically, technologies such as HBase, Impala, and 
Cassandra can be used to implement this layer. And finally, 
Speed layer which responses to queries, interfacing, querying 
and providing calculation results. This layer accepts all 
requests that are subject to low latency requirements, using fast 
and incremental algorithms but only deals with recent data. In 
this layer, we can use stream processing technologies like 
Apache spark, SQLstream, Apache storm. In a high-level point 
of view, the figure below shows the basic architecture and how 
the Lambda architecture works. 

 
Fig. 9. Lambda generic architecture [22]. 

The lambda architecture has some flaws [23]: 

 The business logic is implemented twice in the real-
time and batch layers. The developers need to maintain 
code in two separate distributed systems. 

 Lambda is an architecture for asynchronous 
processing. Hence, the computed results are not 
immediately consistent with the incoming data. 

 Resulting operational complexity of systems 
implementing the Lambda architecture is huge. 
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 The operational burden of managing and tuning two 
operating systems for batch and speed layers is very 
high. 

 Need for more frameworks to master. 

 More straightforward solutions when the need is less 
complicated. 

B. Kappa Architecture 

Kappa architecture [24] is a simplification of lambda 
architecture. It was created by Jay Kreps in 2014 by the 
experience in LinkedIn and is a software architecture pattern. A 
Kappa architecture system is like the lambda architecture with 
the batch processing system eliminated. To replace batch 
processing, data is transmitted merely through the streaming 
system rapidly [24]. Rather than utilizing a relational DB like 
SQL or a key-value store similar to Cassandra, the canonical 
data store in a Kappa Architecture system is an append-only 
permanent log. From the log, data is streamed to a 
computational system and forwarded into auxiliary stores for 
serving. 

Unlike the Lambda architecture, the Kappa architecture is 
more dedicated to processing data. It does not allow their 
permanent storage. Even though it is limited, the Kappa 
employs only a single code path for the two layers which 
reduces system complexity [25] as opposed to lambda 
architecture, which uses two separate code routes for the batch 
and the speed layer. The Kappa architecture illustrated in figure 
10 is composed of two layers: The stream processing layer 
which executes the stream processing jobs and the serving 
layer which is used to query the results. 

 

Fig. 10. Kappa architecture [23]. 

The advantages of Kappa architecture is allowing users to 
develop, test, debug and operate their systems on top of a 
particular processing framework. The Kappa architecture can 
be implemented using various technologies like Apache Storm, 
Spark, Kafka, HBase, HDFS or Samza. This architecture has 
been chosen to meet the need for data consistency and 
streaming processing because it allows a real-time and reliable 
execution of its log system. 

Table 2 presents a short comparison of the two 
architectures as has been explained before, specifically 
Lambda and Kappa, following particular criteria. 

TABLE II.  A COMPARISON OF LAMBDA AND KAPPA ARCHITECTURES 

             Architectures 

 

Criteria 

Lambda architecture Kappa architecture 

Architecture Immutable Immutable 

Layers 
Batch, serving and real-

time layer 

Stream processing and 

serving layer 

Processing data Batch and real-time real-time 

Processing guarantees 

Yes in batch but 

approximate in 

streaming 

Exactly once with 
consistency 

Re-processing 

paradigm 
In every batch cycle Just when code change 

Scalability Yes Yes 

Fault tolerance Yes Yes 

permanent storage Yes No 

Real-time Isn‟t accurate Accurate 

VI. PROPOSED ARCHITECTURE 

Many advantages and drawbacks of the two architectures 
were presented. Based on what has been noted in previous 
paragraphs, we have designed a novel architecture that is open 
source and follows a different set of characteristics mainly its 
ability to process large data in real time at high speed. In 
addition to that, it allows a limitless number of users to set up 
several new and creative features as well as applying many 
reforms. 

 

Fig. 11. Proposed architecture. 
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The architecture at hand has to gather- organize- integrate-
process-analyze-store and visualizes influent data streams with 
low latency. Thus the responding of the system ought to be fast 
depending on the used architecture be it spark or storm, or the 
amount of the data and the complicatedness of the performed 
calculations. Nevertheless, the choice of the most suitable and 
efficient medium or tool should be taken into consideration as 
it has to be relatively easy to use allowing the analysts or the 
developers to deal with infrastructure problems. 

Ideally, we aim to create an architecture that permits to 
make a transition to scale uncomplicated and visually changing 
resource allocation. Moreover, the configured resources must 
be chained to the cluster and should deal with changes in load 
or traffic without interruption. Finally, this architecture has to 
offer a live visualization of streaming data. It should also allow 
the creation of dashboards, custom graphics as well as UI 
extensions. 

Both traditional architectures of big data and the proposed 
one are represented in Fig. 11. The traditional architecture 
consists of three layers viz. storage, processing, and analysis. 
On the other hand, our newly proposed architecture works 
differently. That is to say, the data incoming as a stream from 
various sources, like social media, cyber-infrastructure, web, 
sensors, email, and networks, come with a high speed. These 
data are delivered on time as they occur in the integration layer. 
This latter acquires the use of a set of tools and functionalities 
as is the case of Apache Kafka. 

 
Fig. 12. Real-time processing Layer. 

This layer makes it possible for the data to be ingested 
whatever are the formats and velocity.  The data are going to 
be filtered into ELT, extract-transform-load operations (e.g., 
PIG), directly after being ingested. This layer is an important 
phase to filter streams of data in real time data processing. That 
is to say, the data will be cleaned and their qualities analyzed. 
This preprocessing stage, the filtering layer, gets rid of 
unwanted fields and special characters to make the processing 
and analysis reliable. To filter data streams we are going to use 
some algorithms such as sliding window, load shedding and 
synopsis data model. All this leads to the preparation of data 
for the real-time processing layer which mainly targets the 
processing of data in real time and with reduced latency. In this 
layer, we need robust and dynamic algorithms to confront the 
diversity of data. Fig. 11 represents two technologies that are 
used in this layer specifically storm and machine learning. The 
use of this latter in the present layer permits to archive the data 
and its objective is to visualize recent trends through a 
request/respond tool on similar inputs. It learns continuously 
from the newly arriving data the thing that makes the 
processing easy. On the other hand, in this layer storm is used 

to process the data in real time as it uses the so-called topology 
which is a network of Spout and Bolt. As mentioned 
previously, the streams arrive from Spout which broadcasts 
data arriving from external sources in Storm topology. 

In Bolts, many functionalities can be used including filters, 
functions, joins, aggregations, etc. Consequently, we can apply 
map function in Bolt to mark the words of the stream. This 
resulting stream which comes from Bolt „Map‟ proceeds into 
the following Bolt which implements the „Reduce‟ function to 
aggregate the words into numbers as shows Fig. 12. 

After the processing phase meets an end, the storage layer 
takes over. The storage is performed at the level of HBase. 
After the database is prepared and configured, region servers 
are created, and finally, backup and tables are mastered. The 
main role of the visualization layer is to present to the user the 
final data and results in streaming mode. This layer can give a 
quick response if all phases are achieved successfully. 

VII. COMPARISON WITH RELATED ARCHITECTURES 

The proposed architecture has been put in place to deal 
with some problems at the level of both lambda and 
Kappa architectures. Lambda allows providing customers with 
the freshest vision possible. However the business logic is 
implemented at the level of both layers, two different sources 
of the same data are needed namely files and Web Services, 
and several frameworks are necessary to set up this 
architecture. Consequently, Kappa architecture was born in 
response to the complexity of lambda architecture. Unlike 
lambda, Kappa brings an evolution in a way that it is more 
dedicated to data processing even though it does not permit the 
permanent storage of data. This architecture is more 
straightforward than lambda and gives the user the freedom to 
single out the composers of implementation. Nevertheless, 
Kappa does not have a separation between the needs and is not 
a magical spell to solve all the problems in big data. In addition 
to that, these two architectures focus on addressing 
performance issues by balancing throughput and latency rather 
than data quality issues and data analysis results. 

Our architecture, on the other hand, is based on the 
principle of Kappa architecture. It is a data processing 
streaming approach that processes all incoming data as 
streaming data and allows permanent data storage. It can also 
provide real-time processing by using storm and machine 
learning. Storm, which is a distributed real-time computing 
system, is fault tolerant as it manages the errors happening in 
working procedure and nodes. This method does for real-time 
processing what Hadoop does for batch processing. Storm can 
quickly compile and expand complicated real-time 
computation in a computer cluster and permit to process 
endless streams of data reliably. 

Topologies of storm should be created inside it to realize 
real-time computation. In this layer, we integrate a distributed 
machine learning algorithms. Traditional supervised machine 
learning algorithms form data models based on historical and 
static data, whereas Traditional unsupervised machine learning 
re-examines all datasets if new data analysis is needed to detect 
the pattern. 
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Conversely, our architecture is going to use both supervised 
and unsupervised approaches to implement the distributed 
streaming version of adopted machine learning algorithms. The 
supervised learning in streaming approach learns continuously 
as new data arrives and is labeled. Unlike the traditional one, 
unsupervised learning in streaming approach can detect 
unusual patterns in streaming data in real time without any 
reexamination of the data that were analyzed before. 

VIII. CONCLUSION 

With the recent evolution of big data, processing a large 
amount of data becomes a big challenge. Map-reduce 
technology provides a distributed computing platform for 
processing a large dataset on larger clusters. Nevertheless, it 
does not satisfy the real-time processing capacity, hence the 
need for a strong system that meets these expectations to 
overcome the limitations of the traditional system. 

The main goal of this paper is to propose a real-time 
processing architecture that builds on the storm technology as 
well as machine learning. Storm allows processing a very large 
volume of data with low latency and high velocity. Machine 
learning, on the other hand, learns continuously from new 
coming data which facilitates processing. Furthermore, this 
proposed architecture is based on a survey of open-source real-
time processing systems, including Hadoop, spark, and storm. 
Two major architectures, namely lambda and kappa, were 
compared to create a brand new strong one. 

In this proposed architecture, we suggested giving priority 
to real-time processing layer, and we tried our best to enhance 
it by integrating storm and machine learning. This new 
architecture was mainly inspired by the advantages of lambda 
and kappa. Our next step is to validate and evaluate its 
performance. We also decided to analyze the same dataset with 
several machine learning techniques. In addition to that, we 
intend to build a real-time stream processing framework for 
IoT and sensing environment. Most studies are constrained by 
a few limitations, and this research is no exception. However, 
we cannot talk about its limitations until the validation stage is 
finished. 
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