
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

44 | P a g e

www.ijacsa.thesai.org

A New Architecture for Real Time Data Stream

Processing

Soumaya Ounacer, Mohamed Amine TALHAOUI, Soufiane Ardchir, Abderrahmane Daif and Mohamed Azouazi

Laboratoire Mathématiques Informatique et Traitement de l‟Information MITI

Hassan II University, Faculty Of Sciences Ben m'Sik Casablanca, Morocco

Abstract—Processing a data stream in real time is a crucial

issue for several applications, however processing a large amount

of data from different sources, such as sensor networks, web

traffic, social media, video streams and other sources, represents

a huge challenge. The main problem is that the big data system is

based on Hadoop technology, especially MapReduce for

processing. This latter is a high scalability and fault tolerant

framework. It also processes a large amount of data in batches

and provides perception blast insight of older data, but it can

only process a limited set of data. MapReduce is not appropriate

for real time stream processing, and is very important to process

data the moment they arrive at a fast response and a good

decision making. Ergo the need for a new architecture that

allows real-time data processing with high speed along with low

latency. The major aim of the paper at hand is to give a clear

survey of the different open sources technologies that exist for

real-time data stream processing including their system

architectures. We shall also provide a brand new architecture

which is mainly based on previous comparisons of real-time

processing powered with machine learning and storm technology.

Keywords—Data stream processing; real-time processing;

Apache Hadoop; Apache spark; Apache storm; Lambda

architecture; Kappa architecture

I. INTRODUCTION

With the exponential growth of the interconnected world to
the internet, a very large amount of data is produced coming in
a form of continuous streams from several sources such as
sensor networks, search engines, e-mail clients, social
networks, e-commerce, computer logs, etc. McKinsey [1]
relates that 5 billion individuals use diverse mobile devices.
The increase of generating data doesn‟t have a limit. This
phenomenon is known as “big data”. According to the study of
IBM on Big data, by 2020 there will be approximately 35 zetta
bytes of data generated annually [2] and the data growth will
be as high as 50 times than it is nowadays [3]. 2.5 quintillion
bytes of data are produced every day [4]. Besides, in every
second data are produced continuously; 34,722 Likes in
Facebook, about 571 new websites, and almost 175 million
tweets. All these multiple internet technology actors generate a
very large data and information in the form of streams. These
data are incremented in real-time according to the 5Vs of
Gartner.

With recent technologies, such as applications of the
Internet of Things, the stream of data is multiplied in volume,
velocity and complexity. In addition to that these streams of
data are processed with high velocity in real time which brings
some unique challenges. The system of big data depends on the

Hadoop framework which is considered as the most effective
processing technique.

Fig. 1. Map reduce jobs.

Hadoop has a proportional performance to the complexity
of large data. It is an effective tool for solving massive data
problems. Despite the success it has had, this model has some
limitations. Among the major limitations, Hadoop, precisely
Map Reduce framework, is not the best tool for processing the
latest version of data; it is limited to process data in batch
mode. In other words, it cannot handle what is happening in
real time. In several cases, it is very important to process data
as created and have knowledge of what is happening in real
time.

MapReduce is a simple programming model that permits
processing a fixed amount of data but is not appropriate for real
time stream processing. It is a batch processing system [5]
which means that when the first batch is terminated, the data,
that are offered for the final user, are aged at least until the
second batch is terminated. Furthermore, MapReduce is
appropriate for parallelizing processing on a big amount of
data. However, it relies on a disk based approach. That is to
say, each iteration output is written to disk making it slow. The
following illustration in Fig. 1 shows that MapReduce reads
the data from the disk and writes them back to the disk four
times. There is one more disk read/write operation. In every
MapReduce job, the disk reads and writes twice which makes
the complete stream very slow and downgrades the
performance. Hence, the need to create a tool that processes
data immediately and gets a response of a query in real time
with low latency.

In this paper we present an overview of some fundamental
notions of big data, stream processing and the increasing
volume of data. Then, we describe different tools and systems
that permit processing data in real time. A thorough
comparison is also taken into account in the following
section. In addition, we propose a new architecture based on

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

45 | P a g e

www.ijacsa.thesai.org

the previous comparison. And last but not least, we compare
our proposed architecture with the two existing architectures.

II. BIG DATA

Nowadays the term “big data” is frequently used in
industry, science and so many other fields. Big data is a broad
concept which refers to the explosion of large data sets that
traditional database cannot process and manage due to the high
volume and complexity of data generated in any time.

O‟Reilly describes Big Data as [6] “data that exceeds the
processing capacity of conventional database systems. The data
is too big, moves too fast, or does not fit the structures of
existing database architectures. To gain value from these data,
there must be an alternative way to process it”. According to
McKinsey Global Institute [1], “Big Data” refers to datasets
whose size is beyond the ability of typical database software
tools to capture, store, manage and analyze. IDC‟s definition of
Big Data technologies describes a new generation of
technologies and architectures designed to economically
extract value from very large volumes of a wide variety of data
by enabling high-velocity capture, discovery, and/or analysis
[7]. According to these definitions, big data refers to
technologies that allow companies to quickly analyze a very
large volume of data and get a synoptic view by mixing
storage, integration, predictive analysis and applications. The
Big data allows gaining time, efficiency and quality in data
interpretation.

Gartner sees that this concept uses a set of tools and
technologies to solve the problematic of the five Vs of Big data
which include: Volume, Variety, Velocity, Veracity and Value.
Volume stands for the very large quantity of data gathered by
an organization, from datasets with sizes of terabytes to zetta
bytes and beyond. Data comes from everywhere and the size
continues to increase; by 2020 data will have become 44 times
bigger (about 40 ZB) than that of 2009 [8]. Data come from a
variety of sources and in many types. This is the second aspect
of big data „variety‟ [9] which refers to the various data types
including structured, unstructured, or semi-structured data such
as textual database, streaming data, sensor data, images,
audios, videos, log files and more. These various types of data
are going to be combined and analyzed together for producing
a new insight. Velocity represents the speed of processing,
analyzing and visualizing data for immediate response.
Veracity stands for the reliability of data; the user must have
confidence in the data to use for the right decision making.
This characteristic is very hard to achieve with big data and
represents an important challenge. Last but not least, Value
which indicates the insights we can reveal within the data. It is
not necessary to analyze and process a large data without
value; rather we must focus on data with real value.

To summarize, big data do not refer to a huge volume of
data and complex analysis, but on how to process, analyze and
store rapidly at the moment this great size of information
coming from different sources and in the shape of streams.
This is done in order to obtain the right answer and make the
best decision.

Unlike the traditional data processing systems, stream
processing systems can process an unbounded source of events.

It can also transform the streams of data in real time with low
latency so as to get real time response and make processed data
directly accessible for the final user. SQL Stream defines
“stream processing [as] the real-time processing of data
continuously, concurrently, and in a record-by-record
fashion. It treats data not as static tables or files, but as a
continuous infinite stream of data integrated from both live and
historical sources”.

Stream processing systems are invented to deal with big
data in real time with a high scalability, high availability, and
high fault tolerance architecture [10]. It permits to process data
in motion as it is produced. We can say that a stream
processing is a real time processing of continuous series of data
stream by implementing a series of operations on every data
point. The objectives of Stream processing are to collect,
integrate, process, analyze and visualize the data as they arrive
in real time to extract a greater insight. Processing streams of
data in real time brings some challenges.

In the following section, we will give an overview of some
tools of data stream processing and compare them so as to
choose the best tool that satisfies the constraint of real time.

III. DATA PROCESSING TOOLS

In this section, we are going to present an overview of data
stream processing tools including; Apache Hadoop, Apache
spark and Apache storm to better understand very the
difference between systems. Based on this description, we will
show that older methods, precisely MapReduce, do not allow
the processing in real time as it has the possibility to process a
very large volume of data regardless of the speed with which
the data arrives.

A. Apache Hadoop

The Apache Hadoop is a project of apache foundation,
created by Doug Cutting in 2009, which is an open source
software framework designed for scalable, reliable, and
distributed computing. This framework allows the distributed
processing of big data sets on clusters of computers. The
Hadoop Framework includes several modules: Hadoop
common, Hadoop Distributed files system (HDFS), Hadoop
yarn, and Hadoop MapReduce. Fig. 2 represents the Hadoop
ecosystem and shows the core components of this framework,
namely, HDFS for storing a large volume of data sets and
MapReduce for processing big data in batch mode.

Fig. 2. Hadoop Ecosystem [11].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

46 | P a g e

www.ijacsa.thesai.org

Fig. 3. Architecture of Hadoop [12].

Hadoop has a master/slave architecture that consists of two
servers which are the basics of MapReduce framework, a
single master node and several worker nodes [13]. A master
node namely Job Tracker is responsible of accepting jobs from
customers, dividing jobs into tasks, assigning tasks to worker
nodes and re-executing failed tasks. Every worker executes a
task tracker process which is responsible to execute and
manage the tasks assigned by Job Tracker on a single
computation node in the cluster as shown in Fig. 3. HDFS [14]
is designed to be a distributed, scalable and resilient storage
system that is designed to interact easily with MapReduce. It
provides an important aggregation bandwidth throughout the
network. HDFS is composed of a master node called
Namenode and data servers called Datanodes. The structure of
the HDFS file is divided into blocks of 128 MB.

MapReduce, which was first developed in 2004 by Google,
is a framework whose role is to facilitate processing vast
amount of data in parallel on large clusters of commodity
hardware in a fault tolerant manner [12]. It is divided into two
separate steps, namely, map phase and reduce phase [15], [16].
First, the user defines a map function to process the input data
and produce a group of intermediate key/value pairs. Second,
the intermediate values with the same intermediate key are
grouped together by MapReduce library and transferred to the
reduce function. And finally, the reduce function processes the
intermediate results and finishes the job. Fig. 4 indicates the
execution workflow of MapReduce job. The MapReduce
library splits the input data into M disjunctive partitions for the
parallel execution of map operation about 16-64 MB per piece
[16]. The copies of program are launched on computer of the
cluster. The Master assigns map and reduce tasks to running
worker instance, the worker with map task reads assigned
partition, processes all input pairs with map function, buffers
output pairs in local main memory and flushes buffer
periodically to disk. Storage location is reported to the master,
which coordinates hand-over to reducers. Worker with reduce
task gets the location of intermediate results and reads them.
Shuffle means sorting pairs by key to group them and write
results of reduce function into the output file that is associated
with reducer‟s input partition. After all map and reduce task
have been processed completely the master returns to wake up
the user program [16].

Fig. 4. Map reduce model.

MapReduce is a fault tolerant framework that processes a
big amount of data due to its elasticity and scalability, but it is
not a perfect way for real time data processing. The
MapReduce programming model has some limitations. These
limitations are presented as follows:

1) Only suitable for processing data on batch

2) No real time

3) Stock data on disk which makes Disk intensive

4) No repetitive queries

5) Not efficient for caching; MapReduce can't maintain

the intermediate results in memory

6) Not efficient for iterative algorithms and interactive

data querying

7) One-input and two-stage data flow is extremely rigid

8) Common operations must be coded at hand

9) Semantics hidden inside map reduce functions, difficult

to maintain, extend and optimize

B. Apache Spark

Spark is an open source framework for distributed
computing [17]. It is a set of tools and software components
structured according to a defined architecture. It is developed
and designed at the University of California at Berkeley by
AMPLab. Spark is now a project of the Apache Foundation.
This product, which is an application framework of big data
processing to Spark, performs a data read at the cluster level
(cluster of servers on a network), and performs all necessary
analysis operations by writing the results at this same level.
Despite the fact that it is written with Scala, Java and Python
languages, it makes the best use of its capabilities with its
native language „Scala‟.

The main difference between MapReduce and spark is that
MapReduce from Hadoop works on stages while Spark works
on all the data at the same time. It is up to ten times faster for
batch processing and up to a hundred times faster for
performing in-memory analysis. Spark performs all the data
analysis operations in memory and in real time [18]. It relies on
disks only when its memory is no longer sufficient.
Conversely, with Hadoop the data are written to disk after each
operation. This work in memory reduces latency between
treatments which explains such rapidity.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

47 | P a g e

www.ijacsa.thesai.org

Fig. 5. Spark framework ecosystem.

Fig. 6. Spark streaming.

However, Spark does not have a file management system of
its own. It is necessary to provide one, e.g. Hadoop Distributed
File System, Informix, Cassandra, OpenStack Swift or
Amazon. It is recommended to use it with Hadoop which is
currently the best overall storage solution thanks to its more
advanced administration, security and monitoring tools. In case
of failure or system failure: Data objects are stored in so-called
resilient distributed datasets (RDDs) distributed over the data
cluster for a complete data recovery.

Spark wants to be a response to the limitations of
MapReduce and allows in the same environment to easily
access a wide variety of use cases, such as SQL, Streaming,
Machine Learning and Graph Analysis, in a more efficient and
interactive way as shown in Fig. 5.

Spark Streaming is a programming interface for processing
data flows on a Spark platform. Data can be received in a
variety of ways: file system transfers, TCP sockets reception
(generic network connections), or Twitter, Kafka, Flume, etc.
Fig. 6 [19] shows several operations that can be directly
applied to the streams. Each stream is being represented by a
DStream, It is a transformation of a stream to obtain another
stream, merging of several streams into one, joining of stream,
joining between a stream and a single RDD, filtering a stream
from another stream, updating a state from a stream, and so on.
These operations can be applied both through spark-shell and
from a program.

C. Apache Storm

Storm [20] is a real-time computing system that is
distributed, fault-tolerant and guarantees data processing.
Storm was created at BackType which is a company acquired
by Twitter in 2011. It is an open source and open source
project under the Eclipse Public License. The EPL is a very
permissive license, allowing you to use Storm either in open
source or for proprietary purposes. Storm makes the processing
of unlimited data flows clear and reliable, making for real-time
processing what Hadoop has done for batch processing. Storm
is very simple and has been designed from the ground up to be
usable with any programming language.

Storm can be used for some different use cases:

 Streams/flows processing: Storm can be used to
process a stream of new data and update databases in
real time.

 Continuous calculation: Storm can make a continuous
query and disseminate the results to customers in real
time.

 Distributed RPC: Storm can be applied to parallelize an
intense request on the fly. If Storm is configured
correctly, it can also be very fast: a frame rate
reference of more than one million tuples treated per
second per node.

A storm cluster consists of three nodes: “Nimbus” which is
equivalent to the Hadoop Job Tracker, “Supervisor” that is
responsible for initiating and terminating the process, and
“Zookeeper” node which is a shared coordination service that
directs the storm cluster as explained in Fig. 7.

Instead of using “MapReduce jobs” like in Hadoop, we use
“topologies” in Apache Storm. It consists of spouts and bolts
with bonds among them to show how streams are passing
encompassing. We describe it as a data processing Directed
Acyclic Graph (DAG) which draws the entire stream
processing method. A topology design is presented below in
Fig. 8.

Fig. 7. Storm architecture.

Fig. 8. Topology of storm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

48 | P a g e

www.ijacsa.thesai.org

IV. A COMPARISON OF DATA PROCESSING TECHNOLOGIES

In this section, we differentiate between the different tools
used for the real-time stream processing and based on this
comparison; we will determine the most suitable tool.

TABLE I. DATA PROCESSING TECHNOLOGIES

Tools

Criteria
Hadoop Spark

Storm

Source Model
Open source Open source Open source

Architecture
Master/slaves Master/slaves Peer

Coordination

tool Zookeeper Zookeeper Zookeeper

API

Programmation
Java-Python
and Scala

Java-Python, R,
and Scala

Any PL

Execution Model
Batch Micro-batch

Real-time(one-
at-a-time)

Big data

processing Batch
Batch and
Streaming

Streaming

achievable

latency High
A few seconds

(< 1s)

Less than a
second

(< 100ms)

Ordering

guarantees Yes Yes No

Guaranteed Data

Processing exactly-once exactly-once
At least once

processing

In memory

processing No Yes Yes

Storage data
yes yes No

Fault tolerance
Yes Yes Yes

The illustration above in Table 1 shows that storm is the
best tool for real-time stream processing, Hadoop performs
batch processing, and spark is able of doing micro-batching.
Storm employs the spouts and bolts to do one-at-a-time
processing to avoid the inherent latency overhead inflicted by
batching and micro-batching.

V. REAL TIME PROCESSING ARCHITECTURES

In this part, we will present two architectures based on real-
time processing called Lambda and Kappa. According to this
description, we will compare them then deduce a more robust
architecture that satisfies the real-time constraint.

A. Lambda Architecture

The lambda architecture unifies real-time and batch
processing in a single framework which provides low latency
and better results. It was founded thanks to Nathan Marz‟s
motivation to build the hybrid system.

The lambda architecture [21], shown in Fig. 9, consists of
three layers and each of these layers can be made using various
large technologies, described as follows:

Batch layer: Stores the master copy of dataset and

computes arbitrary batch views.

Serving layer: Integrates results from the batch and speed
layer.

Speed layer: Only processes the recent data to compensate
the high latency of the services layer updates.

Firstly, all the original data streams are dispatched to the
batch and speed layer for processing. The Batch layer allows
batch processing for pre-computation of large amounts of
datasets. It provides the managing of the Master Dataset; a set
of immutable, append-only and exclusive raw data, but also
provides a pre-computation of arbitrary query functions, called
batch views. This layer doesn‟t update regularly batch views
which lead to latency. MapReduce is a good example of batch
processing that can be used at the level of this layer. Secondly,
the Serving layer means computing in Real-time (Speed time)
to minimize latency by performing real-time calculations as
data arrive. This layer indexes batch views produced by the
batch layer so that they can be queried in Ad-Hoc with low
latency. Typically, technologies such as HBase, Impala, and
Cassandra can be used to implement this layer. And finally,
Speed layer which responses to queries, interfacing, querying
and providing calculation results. This layer accepts all
requests that are subject to low latency requirements, using fast
and incremental algorithms but only deals with recent data. In
this layer, we can use stream processing technologies like
Apache spark, SQLstream, Apache storm. In a high-level point
of view, the figure below shows the basic architecture and how
the Lambda architecture works.

Fig. 9. Lambda generic architecture [22].

The lambda architecture has some flaws [23]:

 The business logic is implemented twice in the real-
time and batch layers. The developers need to maintain
code in two separate distributed systems.

 Lambda is an architecture for asynchronous
processing. Hence, the computed results are not
immediately consistent with the incoming data.

 Resulting operational complexity of systems
implementing the Lambda architecture is huge.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

49 | P a g e

www.ijacsa.thesai.org

 The operational burden of managing and tuning two
operating systems for batch and speed layers is very
high.

 Need for more frameworks to master.

 More straightforward solutions when the need is less
complicated.

B. Kappa Architecture

Kappa architecture [24] is a simplification of lambda
architecture. It was created by Jay Kreps in 2014 by the
experience in LinkedIn and is a software architecture pattern. A
Kappa architecture system is like the lambda architecture with
the batch processing system eliminated. To replace batch
processing, data is transmitted merely through the streaming
system rapidly [24]. Rather than utilizing a relational DB like
SQL or a key-value store similar to Cassandra, the canonical
data store in a Kappa Architecture system is an append-only
permanent log. From the log, data is streamed to a
computational system and forwarded into auxiliary stores for
serving.

Unlike the Lambda architecture, the Kappa architecture is
more dedicated to processing data. It does not allow their
permanent storage. Even though it is limited, the Kappa
employs only a single code path for the two layers which
reduces system complexity [25] as opposed to lambda
architecture, which uses two separate code routes for the batch
and the speed layer. The Kappa architecture illustrated in figure
10 is composed of two layers: The stream processing layer
which executes the stream processing jobs and the serving
layer which is used to query the results.

Fig. 10. Kappa architecture [23].

The advantages of Kappa architecture is allowing users to
develop, test, debug and operate their systems on top of a
particular processing framework. The Kappa architecture can
be implemented using various technologies like Apache Storm,
Spark, Kafka, HBase, HDFS or Samza. This architecture has
been chosen to meet the need for data consistency and
streaming processing because it allows a real-time and reliable
execution of its log system.

Table 2 presents a short comparison of the two
architectures as has been explained before, specifically
Lambda and Kappa, following particular criteria.

TABLE II. A COMPARISON OF LAMBDA AND KAPPA ARCHITECTURES

 Architectures

Criteria

Lambda architecture Kappa architecture

Architecture Immutable Immutable

Layers
Batch, serving and real-

time layer

Stream processing and

serving layer

Processing data Batch and real-time real-time

Processing guarantees

Yes in batch but

approximate in

streaming

Exactly once with
consistency

Re-processing

paradigm
In every batch cycle Just when code change

Scalability Yes Yes

Fault tolerance Yes Yes

permanent storage Yes No

Real-time Isn‟t accurate Accurate

VI. PROPOSED ARCHITECTURE

Many advantages and drawbacks of the two architectures
were presented. Based on what has been noted in previous
paragraphs, we have designed a novel architecture that is open
source and follows a different set of characteristics mainly its
ability to process large data in real time at high speed. In
addition to that, it allows a limitless number of users to set up
several new and creative features as well as applying many
reforms.

Fig. 11. Proposed architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

50 | P a g e

www.ijacsa.thesai.org

The architecture at hand has to gather- organize- integrate-
process-analyze-store and visualizes influent data streams with
low latency. Thus the responding of the system ought to be fast
depending on the used architecture be it spark or storm, or the
amount of the data and the complicatedness of the performed
calculations. Nevertheless, the choice of the most suitable and
efficient medium or tool should be taken into consideration as
it has to be relatively easy to use allowing the analysts or the
developers to deal with infrastructure problems.

Ideally, we aim to create an architecture that permits to
make a transition to scale uncomplicated and visually changing
resource allocation. Moreover, the configured resources must
be chained to the cluster and should deal with changes in load
or traffic without interruption. Finally, this architecture has to
offer a live visualization of streaming data. It should also allow
the creation of dashboards, custom graphics as well as UI
extensions.

Both traditional architectures of big data and the proposed
one are represented in Fig. 11. The traditional architecture
consists of three layers viz. storage, processing, and analysis.
On the other hand, our newly proposed architecture works
differently. That is to say, the data incoming as a stream from
various sources, like social media, cyber-infrastructure, web,
sensors, email, and networks, come with a high speed. These
data are delivered on time as they occur in the integration layer.
This latter acquires the use of a set of tools and functionalities
as is the case of Apache Kafka.

Fig. 12. Real-time processing Layer.

This layer makes it possible for the data to be ingested
whatever are the formats and velocity. The data are going to
be filtered into ELT, extract-transform-load operations (e.g.,
PIG), directly after being ingested. This layer is an important
phase to filter streams of data in real time data processing. That
is to say, the data will be cleaned and their qualities analyzed.
This preprocessing stage, the filtering layer, gets rid of
unwanted fields and special characters to make the processing
and analysis reliable. To filter data streams we are going to use
some algorithms such as sliding window, load shedding and
synopsis data model. All this leads to the preparation of data
for the real-time processing layer which mainly targets the
processing of data in real time and with reduced latency. In this
layer, we need robust and dynamic algorithms to confront the
diversity of data. Fig. 11 represents two technologies that are
used in this layer specifically storm and machine learning. The
use of this latter in the present layer permits to archive the data
and its objective is to visualize recent trends through a
request/respond tool on similar inputs. It learns continuously
from the newly arriving data the thing that makes the
processing easy. On the other hand, in this layer storm is used

to process the data in real time as it uses the so-called topology
which is a network of Spout and Bolt. As mentioned
previously, the streams arrive from Spout which broadcasts
data arriving from external sources in Storm topology.

In Bolts, many functionalities can be used including filters,
functions, joins, aggregations, etc. Consequently, we can apply
map function in Bolt to mark the words of the stream. This
resulting stream which comes from Bolt „Map‟ proceeds into
the following Bolt which implements the „Reduce‟ function to
aggregate the words into numbers as shows Fig. 12.

After the processing phase meets an end, the storage layer
takes over. The storage is performed at the level of HBase.
After the database is prepared and configured, region servers
are created, and finally, backup and tables are mastered. The
main role of the visualization layer is to present to the user the
final data and results in streaming mode. This layer can give a
quick response if all phases are achieved successfully.

VII. COMPARISON WITH RELATED ARCHITECTURES

The proposed architecture has been put in place to deal
with some problems at the level of both lambda and
Kappa architectures. Lambda allows providing customers with
the freshest vision possible. However the business logic is
implemented at the level of both layers, two different sources
of the same data are needed namely files and Web Services,
and several frameworks are necessary to set up this
architecture. Consequently, Kappa architecture was born in
response to the complexity of lambda architecture. Unlike
lambda, Kappa brings an evolution in a way that it is more
dedicated to data processing even though it does not permit the
permanent storage of data. This architecture is more
straightforward than lambda and gives the user the freedom to
single out the composers of implementation. Nevertheless,
Kappa does not have a separation between the needs and is not
a magical spell to solve all the problems in big data. In addition
to that, these two architectures focus on addressing
performance issues by balancing throughput and latency rather
than data quality issues and data analysis results.

Our architecture, on the other hand, is based on the
principle of Kappa architecture. It is a data processing
streaming approach that processes all incoming data as
streaming data and allows permanent data storage. It can also
provide real-time processing by using storm and machine
learning. Storm, which is a distributed real-time computing
system, is fault tolerant as it manages the errors happening in
working procedure and nodes. This method does for real-time
processing what Hadoop does for batch processing. Storm can
quickly compile and expand complicated real-time
computation in a computer cluster and permit to process
endless streams of data reliably.

Topologies of storm should be created inside it to realize
real-time computation. In this layer, we integrate a distributed
machine learning algorithms. Traditional supervised machine
learning algorithms form data models based on historical and
static data, whereas Traditional unsupervised machine learning
re-examines all datasets if new data analysis is needed to detect
the pattern.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

51 | P a g e

www.ijacsa.thesai.org

Conversely, our architecture is going to use both supervised
and unsupervised approaches to implement the distributed
streaming version of adopted machine learning algorithms. The
supervised learning in streaming approach learns continuously
as new data arrives and is labeled. Unlike the traditional one,
unsupervised learning in streaming approach can detect
unusual patterns in streaming data in real time without any
reexamination of the data that were analyzed before.

VIII. CONCLUSION

With the recent evolution of big data, processing a large
amount of data becomes a big challenge. Map-reduce
technology provides a distributed computing platform for
processing a large dataset on larger clusters. Nevertheless, it
does not satisfy the real-time processing capacity, hence the
need for a strong system that meets these expectations to
overcome the limitations of the traditional system.

The main goal of this paper is to propose a real-time
processing architecture that builds on the storm technology as
well as machine learning. Storm allows processing a very large
volume of data with low latency and high velocity. Machine
learning, on the other hand, learns continuously from new
coming data which facilitates processing. Furthermore, this
proposed architecture is based on a survey of open-source real-
time processing systems, including Hadoop, spark, and storm.
Two major architectures, namely lambda and kappa, were
compared to create a brand new strong one.

In this proposed architecture, we suggested giving priority
to real-time processing layer, and we tried our best to enhance
it by integrating storm and machine learning. This new
architecture was mainly inspired by the advantages of lambda
and kappa. Our next step is to validate and evaluate its
performance. We also decided to analyze the same dataset with
several machine learning techniques. In addition to that, we
intend to build a real-time stream processing framework for
IoT and sensing environment. Most studies are constrained by
a few limitations, and this research is no exception. However,
we cannot talk about its limitations until the validation stage is
finished.

REFERENCES

[1] “Big data : The next frontier for innovation, competition, and
productivity,” no. June 2011.

[2] “Driving marketing effectiveness by managing the blood of big data,”
IBM Corp., 2012.

[3] F. Pivec, The global information technology report 2003–2004, vol. 8,
no. 4. 2003.

[4] BSA, “What‟s the Big Deal With Data?,” Bsa, 2015.

[5] T. White, Hadoop: The definitive guide, vol. 54. 2015.

[6] E. Dumbill, “What is big data? - O‟Reilly Media.” pp. 1–9, 2012.

[7] P. Carter, “Big Data Analytics: Future Architectures , Skills and
Roadmaps for the CIO,” IDC White Pap., no. September 2011, p. 14,
2011.

[8] N. Khan et al., “Big Data: Survey, Technologies, Opportunities, and
Challenges,” Sci. World J., vol. 2014, pp. 1–18, 2014.

[9] H. J. Hadi, A. H. Shnain, S. Hadishaheed, and A. H. Ahmad, “Big Data
and Five V ‟ S Characteristics,” no. November, pp. 29–36, 2014.

[10] K. Wähner, “Real-Time Stream Processing as Game Changer in a Big
Data World with Hadoop and Data Warehouse,” InfoQ. pp. 1–9, 2014.

[11] A. C. Murphy and V. K. Vavilapalli, “Apache Hadoop YARN,” p. 2015,
2009.

[12] The Apache Software Foundation, “Apache Hadoop,” 2007.

[13] M. de Kruijf and K. Sankaralingam, “MapReduce Online,” IBM J. Res.
Dev., vol. 53, no. 5, p. 10:1-10:12, 2009.

[14] A. Hadoop and C. Spotlight, “Apache Hadoop * Community Spotlight
Apache * HDFS *,” no. October, 2012.

[15] T. Chen, D. Dai, Y. Huang, and X. Zhou, “MapReduce On Stream
Processing,” pp. 337–341.

[16] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” Proc. 6th Symp. Oper. Syst. Des. Implement., pp. 137–
149, 2004.

[17] S. Salloum, R. Dautov, X. Chen, P. X. Peng, and J. Z. Huang, “Big data
analytics on Apache Spark,” Int. J. Data Sci. Anal., vol. 1, no. 3–4, pp.
145–164, 2016.

[18] I. Ganelin, E. Orhian, K. Sasaki, and B. York, Spark: Big Data Cluster
Computing in Production. 2016.

[19] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized Streams: Fault-Tolerant Streaming Computation at Scale,”
Sosp, no. 1, pp. 423–438, 2013.

[20] S. Landset, T. M. Khoshgoftaar, A. N. Richter, and T. Hasanin, “A
survey of open source tools for machine learning with big data in the
Hadoop ecosystem,” J. Big Data, vol. 2, no. 1, p. 24, 2015.

[21] N. Marz, Big Data - Principles and best practices of scalable realtime
data systems. 2012.

[22] “Lambda Architecture » λ lambda-architecture.net.” 2014.

[23] B. Lakhe, Practical Hadoop Migration. 2016.

[24] “Kappa Architecture - Where Every Thing Is A Stream.” .

[25] J. Kreps, “Questioning the Lambda Architecture,” O‟Reilly. pp. 1–10,
2014.

