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Abstract—Artificial Neural Network (ANN) design has long 

been a complex problem because its performance depends 

heavily on the network topology and algorithm to train the set of 

synaptic weights. Particle Swarm Optimization (PSO) has been 

the favored optimization algorithm to complement ANN, but a 

thorough literature study has shown that there are gaps with 

current approaches which integrate PSO with ANN, including 

the optimization of network topology and the unreliable weight 

training process. These gaps have caused inferior effect on 

critical Artificial Intelligence (AI) applications and systems, 

particularly when predicting plant machinery and piping failure 

due to corrosion. The problem of corrosion prediction in the oil 

and gas domain remains unanswered due to the lack of a flexible 

prediction method which targets specific damage mechanisms 

that caused corrosion. This paper proposes a hybrid prediction 

method known as the Adaptive Multilayered Particle Swarm 

Optimized Neural Network (AMPSONN), which integrates 

several layers of PSO to optimize different parameters of the 

ANN. The multilayered PSO enables the method to optimize the 

network topology and train the set of synaptic weights at the 

same time using a hierarchical optimization approach. Through 

detailed discussion and literature study, the damage mechanism 

focused in this research is the CO2 corrosion and the dataset for 

this research is obtained from the NORSOK empirical model. 

The proposed AMPSONN method is tested against BP, MPSO 

and PSOBP methods on an industrial corrosion dataset for 

different test conditions. The results showed that AMPSONN 

performs best on all three problems, exhibiting high classification 

accuracies and time efficiency. 

Keywords—Corrosion; damage mechanism; prediction method; 

artificial neural network; particle swarm optimization 

I. INTRODUCTION 

According to the American Petroleum Institute (API), the 
oil and gas industry is one of the largest and most capital-
intensive industries in the world. There are currently more 
than tens of millions of kilometers of oil and gas pipelines 
being installed and used daily across the globe [1], [2]. Most 
of the pipelines in use are made of steel as they deliver the 
safest means to transport large quantities of oil and gas related 
products. Despite the use of insulation on these steel pipelines, 
they are still prone to deterioration when exposed to various 
damage mechanisms over time [2]-[4]. Damage mechanisms 

affecting a certain pipeline depends on the environment in 
which the pipeline is installed and also the material being 
transported. 

Throughout the years, the API has documented a list of 
over 60 of these damage mechanisms under API RP 571, 
which includes CO2 corrosion, sulfidation corrosion, amine 
acid corrosion and many more. Damage mechanisms 
eventually lead to corrosion and the pipeline is subjected to 
leakages and ruptures, resulting in major financial losses and 
poses substantial health, environment and safety hazards to the 
surrounding ecosystem [5], [6]. 

Therefore, operators have for a long time practiced regular 
inspection on pipelines to ensure that they operate smoothly 
and to minimize the risk of accidents [7], [8]. These 
inspections make use of historical corrosion data and 
prediction methods are used to predict and monitor the state of 
pipelines to determine preventive actions to be taken ahead of 
a potential incident. Despite the effort, pipelines are still 
failing and pipeline incidents are still occurring throughout the 
globe, bringing about deadly consequences [9]. 

 

Fig. 1. Pipeline incident count from years 1997-2016 [10]. 

Fig. 1 shows the annual total of oil and gas pipeline 
incidents that happened between the years 1997 to 2016, as 
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collected by [10]. Although there is an intermittent pattern of 
increase and decline, it can be seen that the overall trend of 
pipeline incidents is increasing. During an expert interview 
with Staff Corrosion Engineer from a Malaysian oil and gas 
company [11], he stated that pipeline corrosion affects 
Malaysia severely and accounts for over 35% of pipeline 
failures and incidents. It was revealed that the main reason 
behind the failure of existing prediction methods used in the 
oil and gas domain to address the problem of corrosion is due 
to the different forms of damage mechanisms. Each damage 
mechanism affects corrosion in their own unique way, which 
makes it difficult to model their relationship. 

Pipeline incidents always bring about casualties and it is 
therefore of paramount importance to have a solid and good 
way to monitor and predict the state of corrosion. Thus, this 
project hopes to develop the AMPSONN method which could 
adapt to design the most optimum ANN to predict the 
corrosion severity caused by different damage mechanisms. 

II. LITERATURE REVIEW 

A. Artificial Neural Networks 

Artificial Neural Networks (ANN) are powerful 
mathematical models and universal approximators that have 
been used to solve various real-world problems. Among all 
types of ANNs, multilayered perceptron (MLP) is considered 
as the best, and consists of three layers; the input layer, hidden 
layer and output layer, with every layer comprising of several 
neurons. The neurons are connected to each other by a set of 
synaptic weights, which consists of values representing the 
strength of the connection. During the training process, the 
ANN continuously adjusts the values of these weights until a 
certain termination condition is achieved, usually measured by 
the error value of the network or the number of maximum 
iterations. 

Although various learning algorithms have been suggested 
for the training of ANNs, the most popular technique used to 
train the ANN is still the backpropagation (BP) algorithm 
[12]-[14]. The BP algorithm has a good acceptance by the 
community because of its robustness and versatility while 
providing the most efficient learning procedure for MLP 
networks [15], [16]. In addition, it is a gradient-descent 
algorithm which adjusts the weights of ANN by using 
gradients of their error. Hence, the adjustments done on every 
weight depends on how much they affect the final output, and 
this offers a more refined local searching capability while 
looking for the global minimum [17]. The BP algorithm 
iterates through the same dataset over and over again until the 
network converges. Generally, as the number of trained 
epochs increases, the accuracy of the ANN to predict the 
output increases, at the cost of a longer training time. 

B. Existing Works on ANN 

Table 1 shows the comparison between six recent works 
on the ANN model for prediction in various domains. From all 

the six papers [12]-[14], [18]-[20], there is an agreement that a 
major problem that most ANN researchers are facing is in 
initializing the ANN topology. According to Saima et al. [20], 
the influence of the network topology on the final output is 
tremendous despite not having a direct interaction with the 
external environment. The influence the network topology on 
the output is consequently reflected in the form of other 
problems such as the slow convergence [12], [13], [19] and 
getting trapped in a local minimum [18], [19]. Currently, there 
have been no formally established methods to determine the 
optimal topology of an ANN for any given problem, 
especially in the number of neurons in the hidden layer. If the 
number of neurons is inadequate, it may result in underfitting, 
meaning that the neural network is unable to learn all the 
information contained in the dataset. Conversely, an 
overabundance of neurons in the hidden layer leads to 
overfitting, a situation in which the neural network captures 
the noise of the training data, negatively impacting its ability 
to predict new data [20]. Some literature [21]-[24] offer rules 
of thumb methods or guidelines for selecting the number of 
hidden neurons by using any value between the number of 
input and output neurons, but a good topology cannot be 
decided solely based on the number of inputs and outputs. 

TABLE I.  TABLE OF COMPARISON BETWEEN EXISTING WORKS ON ANN 

Authors Domain Problems Identified 
Suggested Future 

Work 

Supriyatman 

et al. [13] 

Oil and 

gas 

Manual selection of 
topology. 

Slow convergence. 

Identify related 
parameters to be used 

to improve accuracy. 

Ren et al. 
[14] 

Oil and 
gas 

Manual selection of 
topology. 

- 

Sinha & 

Pandey [12] 

Oil and 

gas 

Manual selection of 

topology. 
Slow convergence. 

Improve convergence 

rate. 

Zhang et al. 

[18] 
General 

Number of nodes in 

the hidden layer 

affects accuracy and 
time efficiency. 

BP algorithm can 

easily get trapped in 
a local minimum. 

Improve convergence 

rate by implementing 

global search 

algorithms. 

Mohammadi 

& 
Mirabedini 

[19] 

General 

BP algorithm can get 

trapped in a local 
minimum. 

Slow convergence. 

Improve convergence 

rate by implementing 
exploration 

algorithms. 

Saima et al. 

[20] 
General 

There is a major 
problem in 

establishing the 

ANN topology. 

- 
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Fig. 2. The learning curve of ANN models of varying topologies [25]. 

Thus, in all three researches within the oil and gas domain 
[12]-[14], the selection of ANN topology has been done 
manually, through trial and error of all possible topologies, 
and selecting the best performing ANN. Another highlighted 
problem is the slow convergence of the ANN model [12], 
[13]. Zhang et al. [18] referred to this problem as an inherent 
problem of the BP algorithm, as it exhibits a very strong local 
but poor global searching capability. Thus, the BP algorithm 
has a high tendency to get trapped in a local minimum while 
searching for the global minimum [17]. Even in cases when 
global minimum can be achieved, the entire training process 
takes a long time to complete and the convergence rate is low. 
A research [25] has shown that different network topologies 
affect how long an ANN takes to learn. 

Fig. 2 shows the learning curve of four different ANN 
models with varying topologies. Despite being given the same 
number of training epochs, each model has different average 
errors and they learn at different rates. It is therefore possible 
to implement a form of optimization algorithm that can 
perform selection of an optimal network topology which 
converges faster, instead of a manual selection [25]. In [12], 
[13], [18], [19], authors have proposed several suggestions for 
future work, such as to have a better research that identifies 
the right input parameters for specific damage mechanisms 
when training the neural network and to improve the 
convergence rate of the model. 

C. Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is chosen as the global 
optimization algorithm to be employed in this research. 
Although various optimization algorithms were developed in 
the recent years, population-based evolutionary algorithms 
remain the most popular, due to their reliability in 
approximating non-linear problems [26], [27]. PSO has 
particularly been the favored algorithm as interaction between 
the swarm particles has shown to be highly effective in finding 
the global optimum in high-dimensional search spaces [28], 

[29]. PSO has also been found to be faster and exhibit a higher 
computational efficiency as compared to other optimization 
algorithms [30]-[32]. However, researchers [29], [33], [34] 
argue that the performance of optimization algorithms depend 
on several factors, such as the data set involved, type of 
problem to be optimized, and the selection of parameters. 
Therefore, there is no way to generalize the performance of 
different optimization algorithms. Hence, the choice of PSO in 
this research is heavily weighted with respect to ANN 
optimization. We have selected PSO to be employed because 
research done on integrating PSO to optimize various aspects 
of the ANN is more active compared to other optimization 
algorithms such as Genetic Algorithm (GA) and Ant Colony 
Optimization (ACO) [35]. This enables a more thorough 
literature study to be done when studying existing hybrid 
methods that have been developed. In addition, PSO is 
increasingly being used alongside ANN and machine learning 
applications because it is relatively easier to implement and 
provides more robustness [28], [36]. 

The PSO algorithm [37], [38] is a bioinspired optimization 
method for continuous nonlinear functions as originally 
proposed by Eberhart et al. [39]. It is based on the behavior of 
bird flocks in search of food in a search space, and every 
individual move with respect to their personal best experience 
and the social best experience of the entire flock. The 
population can be thought of as a collection of particles 
  where each represents a position,    in a multidimensional 
search space as denoted by the dimensionality, D. At every 
iteration, the particles are evaluated based on a fitness 
function, to identify the global best position   , and also their 

personal best position    so far. Based on these components, 
all the particles would update their position within the search 
space using a velocity function,    at every iteration until an 
optimum position or solution is found. The velocity function is 
given as 

  (   )      ( )       [  ( )    ( )]       [  ( )  

  ( )]         (1) 

where   is inertia weight which governs the rate of search 
space exploration;    and    are acceleration coefficients;    
and    are uniformly distributed random numbers between [0, 
1]. The velocity,    is controlled between the range of 
[         ]. By updating their velocity in this way, particles 
are able move to a more optimized position,   (   ) by the 
formula 

  (   )     ( )    (   )    (2) 

In the case of using PSO for ANN weight training, every 
particle represents a set of synaptic weights, which are 
encoded into a vector as shown in Fig. 3. 

 
Fig. 3. A vector containing the set of synaptic weights. 

  is the dimensionality, or the total number of synaptic 
weights in the ANN, and can be calculated with the equation 
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below, with  ,   and   representing the number of input 
neurons, hidden neurons and output neurons respectively. 

  (     )  (     )    (3) 

D. Existing Work on PSO with ANN 

The first paper by Armaghani et al. uses PSO to 
completely replace BP as the training algorithm for ANN in 
the field of geoscience. The findings of their research showed 
that PSO can evolve the set of optimal weights to achieve an 
accuracy of 93% on the test dataset. However, the authors did 
not incorporate any forms of topology optimization in their 
research and the selection of topology is done via trial and 
error. 

In the second paper, Dang & Hoshino introduced an 
improved version of PSO, which shall be referred to as 
Modified Particle Swarm Optimization (MPSO).  In their 
research, MPSO incorporates a method proposed by Shi & 
Eberhart [41] which reduces the inertia weight,   linearly 
over the course of iterations, to further improve the searching 
capability of PSO. By promoting exploration in early 
iterations and convergence in later iterations, it has been 
experimentally proven to increase the swarm performance 
when trying to look for the optimum solution [41]. The 
equation below shows how the inertia weight can be reduced 
linearly, given that    and    are the largest and smallest 
values for the inertia weight respectively,         is the 
maximum number of iterations, and      is the current 
iteration number. 

  (     )    
            

       
       (4) 

Besides, Dang & Hoshino proposed for a new component 
to be added into the velocity update equation in (1), which is 
called a seed factor,      . Seed factors of all particles are 
randomly generated when the algorithm is initialized, and 
would help to pull the particles to the initial positions of the 
seeds. The main purpose of adding the seed factor as a third 
component in the velocity update equation is to help reduce 
the possibility of the PSO algorithm from getting trapped in a 
local minimum [40]. The new velocity update equation used in 
the MPSO algorithm is shown below: 

  (   )      ( )       [  ( )    ( )]       [  ( )  

  ( )]       [      ( )    ( )]   (5) 

From the results of their paper, Dang & Hoshino have 
proven that their proposed MPSO method outperforms the 
basic PSO method in terms of accuracy and time efficiency. 

The third paper by Koohi & Groza [35], studies the 
integration between PSO and BP in terms of the weight 
training process under a method known as Particle Swarm 
Optimization with Backpropagation (PSOBP). Instead of 
using classical BP or classical PSO to fully train an ANN, 
Koohi & Groza divided the ANN training phase into two, the 
initial and final phases. The initial training phase is done 
solely using PSO and terminates at an accuracy of 90%, which 
is a common threshold which most researchers consider a 
method to have high accuracy [17], [18], [35]. The final 
training phase is then done using the BP algorithm to perform 

a local search around the promising particle to further improve 
its accuracy. In their study, the ANN was able to exhibit a 
final accuracy of 98%. The authors have proved that the 
performance of ANN can be improved by adopting the strong 
global search capability of PSO to speed up the earlier stage of 
training and the strong local search capability of BP to refine 
the final training stage. 

TABLE II.  COMPARISON BETWEEN EXISTING WORKS ON PSO WITH  ANN 

Authors Novelty Findings Gaps 

Armaghani 

et al. [17] 

Uses PSO to 

perform weight 

training on ANN 
instead of BP. 

ANN trained 

using PSO has a 

higher 

convergence 

rate than ANN 

trained using 
BP. 

Topology selection is 

still unoptimized. 

Training done using 

PSO may get trapped 

in a local minimum. 

Dang & 
Hoshino 

[40] 

Introduces 
Modified 

Particle Swarm 

Optimization 
(MPSO), which 

includes a seed 

component into 
the velocity 

update equation. 

MPSO 
displayed a 

better 

performance 
than classical 

PSO. 

Topology selection is 

still unoptimized. 
Training done using 

PSO may get trapped 

in a local minimum. 

Koohi & 
Groza [35] 

Introduces 

Particle Swarm 

Optimization 

with 
Backpropagation 

(PSOBP). 

PSO is used in 
initial phase of 

training, which 

then is then 
switched to BP. 

PSO helps to 

speed up the 

earlier stages of 

training, and 
improves the 

overall 

convergence 
rate. 

Topology selection is 
still unoptimized. 

Training done using 

PSO may get trapped in 
a local minimum. 

After studying all three papers, several gaps in the 
literature have been identified, as shown in Table 2. Firstly, all 
the authors, Armaghani et al. [17], Dang & Hoshino [40] and 
Koohi & Groza [35] included the implementation of PSO for 
weight training purposes and did not implement any form of 
ANN topology optimization. In their studies, the best ANN 
topology is still decided by using trial and error, with multiple 
ANN models of varying topologies being developed and 
trained to find the one with the best performance. Besides, the 
range of number of hidden neurons used to develop the 
multiple ANNs during the trial and error is limited to (3, 
   ), where     is the maximum number of hidden 
neurons that the ANN can have. The equation to calculate 
    is given by (6) [38], [42]. 

    (   )          (6) 

However, no studies have shown that the optimum number 
of hidden neurons resides within the range (3,   ) and ANN 
initialized within this range might not yield the best possible 
result. Therefore, our proposed method would implement a 
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layer of topology optimization using PSO within a larger 
search space than what is used in these three studies. 

Secondly, in all three studies, there exists a training 
component which is solely done using PSO. In the first and 
second paper, the authors have used PSO to completely 
replace the original BP algorithm as the training method, 
while in the third paper, PSO is used solely to initially train 
the ANN until 90% accuracy. Although PSO has reported 
success in various problems, there are researches which have 
shown negative results for PSO used in training. Several 
studies [18], [19] have shown that while PSO demonstrates 
strong global searching capabilities, its local searching 
capability around that global optimum is poor. It is proven that 
ANN training done solely using PSO achieve convergence 
very slowly during the later stages of training and would 
exhibit a poor overall time efficiency. The PSO algorithm also 
has a disadvantage of easily getting into a local minimum 
when applied in a high-dimensional search space due to its 
poor local searching capability around the most optimum 
particles [18], [20]. This shows that training done solely using 
PSO in high-dimensional search spaces may not be fully 
reliable. Thus, our proposed method will involve 
modifications done within the PSO itself to improve its local 
searching capability. 

E. Significance of Study 

According to a report by the Institute of Energy 
Technology, most oil and gas corporations and operators base 
their current predictions on mechanistic and empirical models 
[43]. These are developed using data from laboratory testing 
as well as field data for calibration, and have an advantage 
which lies in the thorough calibration of the model from 
laboratory experiments and are verified over a range of data to 
be safely used with a high confidence within this range of 
data. 

However, mechanistic and empirical models require a long 
time to be developed and must be backed with years of field 
experience. A good example of such model is the NORSOK-
506 empirical model, which is currently used as a standard for 
Norwegian oil and gas corporations to predict corrosion under 
CO2 corrosion damage mechanism, which has been developed 
over the past 40 years [43]. Due to the long and thorough 
process needed to calibrate mechanistic and empirical models, 
researchers have started to shift their focus towards ANN, 
which learns faster and does not require as much 
understanding of the phenomenon.  However, as studied in 
Section II (B), even the most current ANN models developed 
for corrosion in the oil and gas domain [12]-[14] still depend 
on trial and error for the establishment of an optimum 
topology. 

Therefore, current prediction methods in the oil and gas 
domain are still unable to address the problem of having 
multiple damage mechanisms due the limitations of methods 
used and researchers chose to target only the more critical 
damage mechanisms in their studies [5]. The fact that over 60 
damage mechanisms exist to cause corrosion [44] should not 
be overlooked and corrosion prediction for a particular 
pipeline must be done while taking into account the specific 

damage mechanism which is affecting the pipeline. This is 
because different damage mechanisms affect corrosion in 
different ways and the number of operational parameters to 
inspect individual mechanisms varies. Hence, corrosion 
prediction for a damage mechanism must be done using a 
model that has been trained for it [11]. 

This research would be significant for the oil and gas 
industry by developing a flexible prediction method that can 
adapt to target different corrosion damage mechanisms to 
produce an accurate prediction for whichever damage 
mechanism that requires prediction. A more detailed analysis 
of this method will be discussed in Section III. 

III. METHODOLOGY 

A. Proposed Methodology 

As studied in Section II, there are gaps in the literature 
where a novel algorithm and method can be established. To 
overcome these gaps, we have identified several 
improvements that can be made by integrating PSO together 
with ANN in our AMPSONN method. 

Firstly, the problem of manual topology selection can be 
solved by implementing a layer of optimization, where the 
global search capability of the PSO can be used to design 
multiple ANN candidates in a large search space. From 
Section II, we have studied that the main problem in selecting 
a suitable ANN topology lies in the number of hidden 
neurons,   while the number of input neurons,   and output 
neurons,   can be obtained from the dataset used for the 
training. Therefore, every particle in the PSO is an ANN 
which has a different topology depending on the value of   
which it is holding, before being trained to identify its 
performance as compared to all other particles based on 
certain fitness functions. Through PSO iterations, the particles 
would have searched through the search space to find a more 
optimal value of   while maintaining a memory of the best 
value of   so far. When the PSO terminates, the most 
optimum value of   would be used to design the topology of 
the final ANN to serve as the prediction method. 

Secondly, to overcome the unreliability of BP and PSO 
when used separately as ANN training algorithms, we have 
formulated a novel training approach to capitalize the strong 
global searching capability of PSO with the strong local 
searching capability of BP. We propose to improve the 
searching efficiency of the classical PSO algorithm by 
providing it with additional gradient-descent information with 
the use of BP at every single iteration. As mentioned by [18], 
[19], the PSO is a very promising searching algorithm which 
has a weakness when it comes to performing local search to 
attain the global minimum. Although several improvements 
have been proposed to improve the PSO algorithm over the 
years, which includes the MPSO [40] and PSOBP [35] 
algorithms which we have covered in Section II, the capability 
of the PSO to perform on its own remains an issue and the 
tendency to become trapped in some undesirable local 
minimum increases when size of the dimension to be 
optimized increases. This would become a problem in this 
research as the size of the dimension increases as the value of 
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  is increased, due to the increase in number of synaptic 
weights in the ANN. 

Therefore, our proposed training algorithm utilizes BP 
within each PSO iteration as the BP algorithm offers a more 
refined local search, by adjusting every single weight value in 
terms of how much they contribute to the calculated error. We 
believe that by integrating BP within the PSO itself, our 
proposed training algorithm would have a more efficient and 
superior searching capability as compared to PSOBP which 
only utilizes BP after PSO has completed iterating. 

 
Fig. 4. The flowchart of AMPSONN. 

Fig. 4 shows the flowchart of the Adaptive Multilayered 
Particle Swarm Optimized Neural Network (AMPSONN). It 
starts from data preprocessing, where the corrosion data is 
normalized and divided into a training set and a validation set. 
Next, the layered PSO initializes a masterswarm, in which 
every particle of the masterswarm is a swarm by itself, called 
a subswarm. The goal of the subswarms is to provide the best 
initial weight vector, for a given topology that is given by the 
masterswarm particle, through a combination of PSO and BP 
algorithm. The purpose of combining PSO and BP in the 
training is to provide initial weight vector that will not get 
stuck in a local minimum, and is a promising solution to the 
global minimum. In each iteration of the masterswarm, all 
subswarms would complete an entire optimization run on the 
objective function and return their fitness value back to the 
masterswarm. The masterswarm would then continue to iterate 

until the objective function of the masterswarm is satisfied. 
Once the layered PSO has completed its iteration, the obtained 
masterswarm and subswarm global bests would be the 
optimized ANN topology and initial weight vector 
respectively. With that, an optimized ANN will be designed 
for the research. This ANN will then be trained using BP, a 
method guaranteed to stop at the global minimum point to 
fine-tune the weight vectors to achieve an intended level of 
classification accuracy. 

IV. EXPERIMENTATION AND RESULTS 

A. Experimental Setup 

Table 3 shows the selection of parameters used for the 
experiments. The parameters for BP, MPSO, and PSOBP 
algorithms are based on configurations done by their 
respective authors. On the other hand, the parameters for our 
AMPSONN algorithm are adopted partially from other 
authors and through sensitivity analysis. For the masterswarm, 
the number of maximum iterations is set to 10 with a 
population size of 5, which would be enough for all the 
particles to search through most of the search space within the 
range (3,50). For the subswarm, the number of maximum 
iterations is set to 100 as inspired by [35], while the 
population size is set to 10 after performing an optimization 
run using different values. 

TABLE III.  EXPERIMENT PARAMETERS FOR THE TESTED METHODS 

Method BP MPSO PSOBP AMPSONN 

Maximum BP 

Iteration 
5,000 - 2,000 2,000 

Maximum 
PSO Iteration 

- 200 100 
10 (Masterswarm), 
100 (Subswarm) 

Population 

Size 
- 200 200 

5 (Masterswarm), 

10 (Subswarm) 

Initialized 
Weight Range 

(0,1) (-4,4) (-1,1) (-1,1) 

BP Learning 

Rate 
0.3 - 0.3 

0.3 (PSO run), 

0.15 (BP run) 

 
Fig. 5. Sensitivity analysis on the optimal subswarm size. 
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Fig. 5 above shows sensitivity analysis done to determine 
the optimal subswarm population size for our AMPSONN 
method. The increase in subswarm population size shows a 
linear increase in time taken to train the method. The 
performance of the method, as denoted by the classification 
accuracy, shows improvement as the subswarm population 
size is initially increased from 5 to 10, after which further 
increments to the population size show no significant 
improvements in performance. Therefore, the optimum value 
for the subswarm population size is set as 10. 

B. NORSOK Corrosion Test 

The first test is done by testing the performance of the 
AMPSONN, PSOBP, MPSO and BP methods on NORSOK 
corrosion dataset. Since the AMPSONN method optimizes its 
own ANN topology during runtime, which differs from 
PSOBP, MPSO and BP which require manual initialization 
during compile time, several considerations will be taken into 
account for this test. To provide an unbiased result for the BP, 
MPSO and PSOBP methods, all three methods are initialized 
with all possible values of   within the range (3,14). The 
range of (3,14) for the value   is the range of number of 
hidden neurons which the researchers would consider 
initializing their methods with, as determined by [38], [42] in 
(6). The best performances of the three methods out of all of 
their possible topologies are compared to the best performance 
of AMPSONN across 10 repetitions. 

From Table 4 and Fig. 6, we can see that the AMPSONN 
method outperformed the other three methods in terms of 
classification accuracy and also training time. AMPSONN can 
be said to have reached the global minimum by achieving the 
highest, 97.1% accuracy during the training, with the second 
highest being the PSOBP method at 93.85%, followed by BP 
at 91.23% and lastly, MPSO at 86.55%. The close values 
between the accuracies of testing and validation sets of each 
method shows that none have suffered from overfitting. The 
BP, MPSO and PSOBP methods were able to achieve high 
accuracies, but are still far below that of the AMPSONN 
method. This signifies that they may have become trapped in 
local minimums, which supports findings by [18], [19] who 
stated that training done using PSO may not always be 
reliable. This also explains why the three methods took more 
than 40 minutes to train, while AMPSONN completed its 
training in under 12.77 minutes. The long time taken by the 
other methods indicates that their trainings were completed 
after their maximum number of iterations were reached, while 
AMPSONN terminated the training earlier after having met 
the PSO termination conditions. By using PSO to design an 
optimized topology for the base ANN model, the method was 
able to select a value of  , which is neither too large or small. 
The value of   which is selected is optimum, and provides the 
right number of synaptic connections to support the mapping 
of relationships between variables in the NORSOK generated 
dataset. With the right number of synaptic connections, the 
optimized ANN was able to avoid being underfitted or 
overfitted, and produces the best performance over the 
complexity of the network. Therefore, optimization of 
topology has enabled the AMPSONN to improve its accuracy 

and time efficiency in comparison to the other unoptimized 
method. 

TABLE IV.  RESULTS OF THE NORSOK CORROSION TEST 

Method 

Training 

Time 

(m) 

Classification 

Accuracy on 

Validation Set (%) 

Classification 

Accuracy on 

Testing Set (%) 

AMPSOBP 12.77 97.1 96.7 

PSOBP 48.2 93.85 93.37 

MPSO 45.2 86.55 87.67 

BP 50.05 91.23 90.89 

 
Fig. 6. The training curve of all methods showing accuracy improvement 

over time. 

TABLE V.  CALCULATED SPEEDUP PROVIDED BY AMPSONN AGAINST 

OTHER METHODS 

Method Speedup 

PSOBP 
    

     
            

MPSO 
    

     
            

BP 
     

     
            

Table 5 shows the speedup in terms of training time 
provided by the AMPSONN method against the PSOBP, 
MPSO and BP methods. From Table 5, it can be concluded 
that there is a very significant speedup provided by the 
AMPSONN method, calculated at above 3.5 times against the 
other three methods. 

C. Optimized Topology Test 

To further test the improvement in performance of the 
AMPSONN method, an optimized topology test was carried 
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out. The optimized number of hidden neurons, H selected by 
the AMPSONN method will be used to initialize the BP, 
MPSO and PSOBP method for another round of evaluation on 
the NORSOK corrosion dataset. This serves as a test to 
evaluate if the other three methods could perform better than 
the AMPSONN method if they were provided with an 
optimized topology. This test would also be significant to 
show the speedup capability provided by the novel integration 
of BP into every iteration of subswarm in our proposed 
AMPSONN method. 

 
Fig. 7. The number of hidden neurons selected by AMPSONN method 

across 10 tests. 

Fig. 7 shows the optimum number of hidden neurons,   
that was selected by the AMPSONN method across 10 
repeated tests. It can be seen that despite the AMPSONN 
method being given a search space of (3,50), all the selected 
values of   are very close to each other and are optimized 
within the range of (35,39). This indicates that our proposed 
AMPSONN method is consistent across repetitions, and the 
classification accuracy achieved is not purely a case of lucky 
initialization into a position near the global minimum. The 
selected range of   within (35,39) also showed that the 
optimum value of  , is outside the initialization range that 
most researches [18], [21]-[24], [38] have considered in their 
research. 

From Fig. 7, the value of 36 has been selected to be the 
optimum   for 40% of the time, and this value was used to 
initialize the BP, MPSO and PSOBP methods. The best 
performances of the three methods across 10 repetitions are 
recorded and compared against that of the AMPSONN 
method. The results for this test are tabulated in Table 6. 

TABLE VI.  RESULTS OF THE OPTIMIZED TOPOLOGY TEST 

Method 

Training 

Time 

(m) 

Classification 

Accuracy on 

Validation Set (%) 

Classification 

Accuracy on 

Testing Set (%) 

AMPSOBP 12.77 97.1 96.7 

PSOBP 19.62 95.31 95 

MPSO 50.07 81.33 81.7 

BP 58.03 93.57 93.73 

 
Fig. 8. The training curve of all methods during the optimized test. 

Table 6 and Fig. 8 show the results of the BP, MPSO, 
PSOBP and AMPSONN methods with optimized topologies. 
It can still be seen that AMPSONN still performed better than 
the other methods, scoring an accuracy of 97.1%, followed 
closely by PSOBP at 95.31%, BP at 93.57% and MPSO at 
81.33%. By optimizing the topology instead of a manual 
selection, we can see that the performance of BP and PSOBP 
have improved significantly, and have managed to obtain 
accuracies higher than their best accuracies obtained during 
the previous test. This result is fully supported by Saima et al. 
[20], who stated that the topology of an ANN greatly affects 
the performance of the method, regardless of the weight 
training algorithm used. In terms of training time however, the 
optimized BP method ended up taking more time to converge 
in comparison to its unoptimized state, while the optimized 
PSOBP method was able to save time needed to converge than 
previously. This is because the BP method is a standalone 
method while the PSOBP method uses PSO to optimize the 
earlier stages of training. Therefore, as the number of hidden 
neurons,   is increased from within a range of (3,14) to 36, it 
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incurs more computation effort for the classical BP algorithm 
in every epoch of training while not affecting PSOBP as 
much, because the latter only uses BP during the later stage of 
training. On the other hand, the performance of the MPSO 
method has not improved even after an optimized topology 
has been provided. The method is still trapped in a local 
minimum, and is supported by findings from [20], stating that 
purely training an ANN using PSO in a high-dimensional 
search space has a high tendency of getting trapped in a local 
minimum. 

Overall, the proposed AMPSONN method exhibits the 
best performance over the other methods after optimization, 
with the lowest training time of 12.77 minutes, followed by 
PSOBP at 19.62 minutes. This result has proven another 
important point. With BP, MPSO and PSOBP methods 
optimized with an optimum topology, this test has taken the 
AMPSONN masterswarm component out of the picture and 
set all methods on an equal footing. However, their 
performance lag behind the AMPSONN method, proving that 
the weight training (subswarm) component of AMPSONN is 
more optimized than the other three methods. Although both 
AMPSONN and PSOBP integrate the PSO algorithm together 
with BP algorithm, only AMPSONN incorporates BP training 
into the earlier training stage as well as the later stage of 
training. By training the subswarm particles with several 
epochs of BP in every iteration of the subswarm, the particles 
were to learn faster while being able to capitalize on the 
ability of PSO to avoid local minimum. The gradient descent 
information provided by BP has allowed the particles to adjust 
each synaptic weight with respect to their contribution to the 
network error, before the next iteration of PSO. This 
relationship has allowed the method to perform a better local 
search in between global searches. 

With that, the AMPSONN method has shown to be able to 
save on computational time needed in order to converge to the 
global minimum. Therefore, the overall performance of the 
method is attributed to both the topology-optimizing 
masterswarm as well as the weight-optimizing subswarm. 

TABLE VII.  CALCULATED SPEEDUP PROVIDED BY AMPSONN AGAINST 

OTHER METHODS IN THE OPTIMIZED TEST 

Method Speedup 

PSOBP 
     

     
            

MPSO 
     

     
            

BP 
     

     
            

Table 7 shows the speedup in terms of training time 
provided by the AMPSONN method against PSOBP, MPSO 
and BP methods for the optimized topology test. From the 
table, the speedup provided by AMPSONN against MPSO and 
BP is still significant, with 3.92 times against MPSO and 4.54 
times against BP. AMPSONN shows a very positive speedup 
of 1.54 times against PSOBP, even after PSOBP is developed 
with an optimized topology. 

V. CONCLUSION 

This research presented a novel approach to predicting the 
severity of pipeline corrosion by targeting damage 
mechanisms individually. After conducting a thorough 
literature study, a framework which utilizes the combination 
of PSO and ANN algorithms were used to establish a flexible 
hybrid method which adaptively designs and trains an ANN 
until it is fully able to model a given damage mechanism. The 
hybrid model proposed in this research was compared with 
other hybrid prediction models based on their classification 
accuracy and time efficiency. The comparisons are aimed to 
demonstrate that combining PSO and BP algorithms lead to 
improved performance over other prediction models in the 
case of predicting corrosion data of CO2 damage mechanism. 
Results obtained have proven that the proposed AMPSONN 
method has in fact, demonstrated a better performance as 
compared to BP, MPSO and PSOBP methods. The proposed 
use of a masterswarm has been justified when an optimized 
topology allowed the AMPSONN method to achieve accuracy 
rates higher than the other methods, as well as improving the 
performance of the other methods when optimized. The 
proposed use of a subswarm which integrates BP to add 
gradient-based local information into every iteration of PSO 
for ANN weight training has shown to outperform that of a 
pure PSO. The results have also revealed that the AMPSONN 
method shows a better performance even when the topologies 
of all methods are optimized, and when the size of training set 
is reduced. The adaptive multilayered PSO approach has 
proven itself to be a promising solution to target various 
individual damage mechanisms. 

For future directions for this research, we suggest to 
incorporate additional ANN parameters into the masterswarm 
for optimization, such as the transfer function. Although most 
researchers argue that logistic is sufficient for most cases, 
some researchers have started to research into optimizing 
transfer functions [38] for different types of problems. It 
would be interesting to observe the effect on the performance 
of the whole method and the improvement on its adaptiveness 
at the same time. It is also possible to use more datasets in the 
testing of the AMPSONN method to prove its effectiveness in 
other application areas. As the field of data analytics and 
prediction is constantly growing, there is a need to fine-tune 
new algorithms to adapt to more real-world applications, such 
as image processing [45] and prediction in the medical field 
[46]. 
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