
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

531 | P a g e

www.ijacsa.thesai.org

Model Driven Development Transformations using

Inductive Logic Programming

Hamdi A. Al-Jamimi and Moataz A. Ahmed

Information and Computer Science Department

King Fahd University of Petroleum and Minerals,

Dhahran, 31261, Kingdom of Saudi Arabia

Abstract—Model transformation by example is a novel

approach in model-driven software engineering. The rationale

behind the approach is to derive transformation rules from an

initial set of interrelated source and target models; e.g.,

requirements analysis and software design models. The derived

rules describe different transformation steps in a purely

declarative way. Inductive Logic Programming utilizes the power

of machine learning and the capability of logic programming to

induce valid hypotheses from given examples. In this paper, we

use Inductive Logic Programming to derive transformation rules

from given examples of analysis-design pairs. As a proof concept,

we applied the approach to two major software design tasks:

class packaging and introducing Façade design. Various analysis-

design model pairs collected from different sources were used as

case studies. The resultant performance measures show that the

approach is promising.

Keywords—Transformation model; software design models;

transformation rules; inductive logic programming

I. INTRODUCTION

The problem of transforming the requirement analysis
models into software design models can be viewed as a model
transformation problem. Designers utilize their engineering
knowledge to perform this specific kind of transformation. In
this paper, we capture such knowledge through learning the
transformation rules from available pairs of requirement
analysis models (e.g., domain model or conceptual class
diagram) and corresponding software design models (e.g.,
component diagram or package diagram). The approach of
learning a model transformation from provided examples is
referred to as Model Transformation by Example (MTBE) [1].
The examples, in this context, represent pairs of the
transformation requirements/design models.

Model Driven Development (MDD) considers a sequence
of several kinds of models as the primary artifacts of the
development process as they contain the needed information
that supports its different phases. Those models may be derived
from each other via automated transformation. The models are
structured conforming to particular models called meta-models.
Implementing models transformation requires an intense
knowledge about MDD including the meta-models and the
environment of the model transformation.

Practically, machine learning (ML) techniques can be used
to deduce the transformation rules from the available set of
examples [2]. ML techniques have been applied in different
domains, including software engineering [3]-[8]. Inductive

logic programming (ILP) is one of the machine learning
techniques that provide mechanisms for inducing valid
hypotheses from given examples and background knowledge
of the domain of interest [9], [10]. Rules have been used
widely as a powerful way for representing knowledge.
However, in the domain of model transformation, authoring the
transformation rules is not a trivial task. It might be easier for
the domain expert to provide examples of the transformation
rather than introducing consistent and complete rules. Thus, it
is desirable to utilize the accumulated experience by
automatically capturing the transformation rules from
examples [11].

The primary contribution of this paper is to define a
methodology, with an associated tools-chain, for the
incremental design of model transformation rules. The
increments in the rule design are automatically derived by
defining positive and negative examples on a given training set
of models (i.e. learning models). As a secondary contribution,
we propose the application of such an inferred set of model
transformation rules in order to refactor actual
domain/conceptual artifacts (referred as “analysis models”)
toward design solutions. These contributions are interesting for
both the communities working on Model Driven Engineering
and on Software Engineering, and the context defined here
with their solution may be worth for the attention also to a
wider audience from others communities.

In a particular, we use ILP to automatically capture the
expertise manifested in previous analysis-design pairs, and
consequently, represent such expertise in a form of declarative
rules. These rules can be applied to a new design problem to
suggest a possible design to given analysis models. Such
design suggestion can be adopted “as is” by the designer or at
least be reviewed and refined by the designer before adoption.
In either cases, this would offer effort saving and, accordingly,
cost reduction. Moreover, this would offer indirect reuse of
best practice that would in turn improve quality. We applied
the approach to various case studies collected from different
sources. A considerable part of the data have been used for
training to induce rules regarding two major software design
tasks: class packaging and introducing Façade design.

The rest of this paper is organized as follows. Section II
introduces the needed technical background. Section III
reviews the literature survey, while Section IV introduces the
proposed transformation system. Section V describes the
transformations tasks. While Section VI demonstrates the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

532 | P a g e

www.ijacsa.thesai.org

conducted experiments, Section VII discusses the findings and
the open issues. Finally, Section VIII concludes the paper.

II. TECHNICAL BACKGROUND

In this section, we give the background necessary to follow
the rest of the paper.

A. Model Driven Development Transformations

The goal of this work is to facilitate the transformation
from the analysis models toward the software design models by
reusing previous experience. That is, based on the given
requirements, the existing requirement-design pairs from
previous systems can be utilized to build the new system’s
design. Indeed rule-based transformation approaches rely on
transformation rules that were obtained empirically [12].
However, it might be a difficult task to define, express, and
maintain the transformation rules, particularly for non-widely
used formalisms. That is, it is most important to gather the
knowledge in a form of rules, not only to decide about the
transformation language [13], [14]. Thus, the objective of this
paper is to use ILP, discussed next, to capture such
transformation rules.

B. Inductive Logic Programming

ILP can be seen as the intersection of machine learning and
logic programming. An ILP problem is defined as follows:
Given a background theory B, and a set of examples E
(represented as ground literals) that consists of positive E+ and
negative E- examples, the target is to find a hypothesis H such
that
[9], [10]. Thus, the problem of learning a particular hypothesis
can be designed as a search problem through a space of models
[15]. To perform a search two main strategies were used:
generate-and-test and data-driven. In both, the applied
algorithms can proceed either bottom-up or top-down. A
combination of those strategies and algorithms can be
exploited. Examples of ILP systems are FOIL [16], GOLEM
[17], PROGOL [18], ALEPH [19] and others. ALEPH (A
Learning Engine for Proposing Hypotheses) employed in this
work, has different evaluation functions and search strategies
that can be applied, and it has been applied successfully in
many domains [20]-[25].

III. LITERATURE SURVEY

In this section, we present a literature survey that addresses
two views presented below. It is noteworthy that the terms
transformation links, transformation mappings and
transformation traces have been used interchangeably in the
literature to refer to the links between the artifacts in the source
model and their corresponding artifacts in the target model. In
the rest of the paper, we use the term transformation mapping.

A. Model Transformation by Examples Approaches

MTBE approach has been initiated by Varró [1], where he
derives the transformation rules from an initial set of examples
that includes interrelated source and target models. The user
provides the examples, and then the developers refine the
derived rules. The transformation rules are produced using an
ad-hoc algorithm by utilizing transformation mapping and
corresponding meta-models. Balogh and Varró [21] improve
the original work of Varró by using ILP instead of the original

ad-hoc heuristic. Nevertheless, a semi-automatic process needs
interacting with the ILP inference engine and requires detailed
transformation mappings. Wimmer et al. [26] generates ATL
(ATLAS Transformation Language) rules [27] with using
transformation mappings to assist the derivation of model
transformation rules. Dolques et al. [28] use Relational
Concept Analysis [29] to derive commonalities between the
source and target meta-models and transformation mappings.
However, the transformation patterns cannot be executed
directly. This approach was extended by Saada et al. [30] to
learn transformation patterns from the examples, then those
patterns are analyzed, filtered and transformed into operational
transformation rules. Some MTBE approaches generate n-to-m
transformation rules. In [31], [32], the rules are generated from
meta-models to satisfy some developer constraints. ATL has
been used to implement the generated rules. Another many-to-
many rules generator proposed by Faunes et al. [13]. They
adapted genetic programming to generate transformation rules
expressed in Jess, a fact-based rule language. Jess

1
 is a tool for

building a type of intelligent software i.e., expert systems.

In conclusion, the conducted survey revealed that most of
the approaches that derive transformation rules use
transformation example pairs and, with the exception of one
work [13], all of them use transformation mappings. In
addition, to the best of our knowledge none of the current
approaches address the problem of transforming requirement
analysis models into software design models. Moreover, most
of MTBE approaches require the source, target models and
their meta-models as well as the detailed mapping between
these models to derive the transformation rules. Unlike these
MTBE approaches, our approach aims to use the minimal
inputs, the source and target models only, to derive the
transformation rules. The most similar work to ours is [21];
however they differ in many facets. First, they considered the
problem of transforming class diagrams into relational schema
models that is different from our problem of transforming
analysis models into design models. Second, they also used the
connectivity analysis that is considered as transformation
mappings at the meta-model level. In contrast, the approach
presented in this paper requires only the concrete models
without meta-models or connectivity analysis.

B. Using Inductive Logic Programming to Generate Rules

ILP has been widely utilized for discovery of concept and
classification in data mining algorithms. In concept discovery,
the idea is to induce rules based on the existing data. For
classification, according to the given data, general rules are
generated and used for grouping the unseen data. In reality,
ILP has been successfully applied to a wide range of real-world
problems in different domains since it is concerned with the
induction of logic theories from examples [33]. In particular,
ILP has been used in solving software engineering problems
[21], [34].

IV. ILP-BASED TRANSFORMATION SYSTEM

Our proposed transformation system comprises of three
main components. Fig. 1 demonstrates the system’s
components and other supporting functions. It is a generic

1 http://www.jessrules.com/jess/index.shtml

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

533 | P a g e

www.ijacsa.thesai.org

structure where different ILP systems can be employed to
induce rules [34].

ILP systems often start with a preliminary pre-processing
stage and ends with a post-processing stage [35]. ALEPH
requires that the given information should be in the form of
clauses. Thus, the preprocessing step in our transformation
system focuses on the conversion of the UML models (given in
XMI format) into first order logic predicates. XMI stands for
XML (Extensible Markup Language) Metadata Interchange. It
is an Object Management Group standard for exchanging
metadata information via XML. XMI is considered as the de-
facto standard format used commonly as an interchange format
for UML models.

TABLE I. defines a set of predicates used to represent the
UML models artifacts. In our work, each used example pair
consists of two UML models: source and target. The former is
translated to be the background knowledge, whereas the latter
is used to present the positive examples. The given UML
models have no negative examples. In such cases, Closed
World Assumption (CWA) [36] is used to generate the
negative examples. An intermediate step between the rules
generation and rule application is considered to translate the
rules generalized by ALEPH into fact-based rule language.
Finally, the post-processing stage concentrates on improving
the efficiency by removing the redundant clauses in the
induced theory.

A. Transformation Rules Generation and Generalization

Generally, the transformation problem needs a set of
transformation rules in order to cover all the aspects in the

transformation problem. The transformation rule here is used to
analyze a particular aspect of the analysis requirements given
as input and synthesize the corresponding software design to be
presented as output. In this context, the transformation system
can be encoded as a set of transformation rules R={r1, r2, …,
rn}. Each rule can be encoded as a pair of promise and
conclusion ri={P, C} where P is the analysis artifacts to search
for in the source model and C is the design artifacts to
instantiate when producing the target model.

Algorithm 1 demonstrates the steps we follow to generate
the transformation rules. Using ALEPH system, an
independent run is performed to produce hypothesis or more
for a single predicate from the given examples with
background knowledge. To run the ALEPH system, there is a
need to feed three files containing the knowledge background,
the positive and the negative examples. What is significant
limitation in most of the current ILP systems is the need to
predefine the target predicate before starting the learning
process. Two parts included in the background knowledge
rules structure and artifacts descriptions. The former guides the
construction of a single rule, while the latter describes source
models artifacts. Although the same knowledge background
file can be used in different runs, the modes (modeh and
modeb) declarations need to be adjusted to help determine what
type of rules to learn. While modeh describes the head of the
target hypothesis, modeb describes the atoms expected to
appear in the target body. TABLE II. shows examples of two
different inputs.

Fig. 1. Architecture of the proposed transformation system.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

534 | P a g e

www.ijacsa.thesai.org

TABLE I. PREDICATES FOR THE BACKGROUND KNOWLEDGE

REPRESENTATION

Predicate Meaning

package(p) It defines p as a package.

class(c) It defines c as a class.

packagehasClass (p, c) Class c is located into a package p.

classhasOperation(c, op) Class c has an operation op.

classhasAttribute(c, a) Class c has an attribute a.

inheritance(c1, c2) Class c2 is a subclass of class c1.

association(c1, c2)
Class c1 keeps a reference to class c2
where both classes are located in same

package.

associationAcrossPackages

(p1, c1, p2, c2)

Class c1 keeps a reference to class c2
where both classes are located in

different packages p1 and p2.

packageOfClasses({set of

classes})

A set consists of one or more class

classes located in one package.

interface(p, f)

A package p has an interface f that links
the classes located in package p to the

classes placed outside of package p to

minimize the external relations.

B. Rules Translation and Application

All the induced rules are initially stored in the rule base
(RB) in logic programs form. These are then translated into
jess script. When a new instance of source model (i.e.
requirement analysis) is presented, the models are converted to
logic program.

Applying the translated rules on the new source model
means that rule(s) might fire when some facts satisfy its
conditions. Firing a rule means some facts are asserted or some
others may be retracted. The obtained facts, after application,
are supposed to represent the corresponding software design,
shown in Algorithm 2.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

535 | P a g e

www.ijacsa.thesai.org

(a) (b)

Fig. 2. The UML class diagram for analysis-design pair (a) the source model (requirement analysis) and (b) the target model (software design).

(a) (b)

Fig. 3. Part of class diagram of application (a) the source model and (b) the target model.

C. Rules Evaluation and Refinement

Before and after the rules application, different measures
were used to evaluate their performance. Completeness and
consistency measures refer to the positive and negative
examples covered by the induced rules. This can indicate the
accuracy of the induced rules based on the learning examples.
Furthermore, the transformation designer can validate the
correctness of the produced rules after applying them on
additional test cases. The rule-created target model can be
compared to the actual target for the sake of performance
evaluation of the transformation rules. Several performance
measures, shown in Algorithm 3, are used in this context (more
details are given in Section B).

Human expert evaluation for the resulted design can be
considered. This type of evaluation may help to update the
priority of the rules application. In addition, expert feedback
would help refining. Expert opinions may contribute to the rule
base by adding new rules or relaxing the application of others.
Here, we allow automatic assignment of priorities to the rules
where the higher the application frequency, the higher the
priority. The number of positive examples used to induce the
rule determines the rule priority. That is the higher number of
positive examples the higher the priority. Thus, each rule starts
by initial priority equals to the number of positive examples
used to induce the rule; this priority is then tuned based on the
rule’s application frequency and input from experts.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

536 | P a g e

www.ijacsa.thesai.org

V. SAMPLE TRANSFORMATION TASKS

This section is dedicated to explain the two transformation
problems investigated in this work. In the following, we
describe each case study briefly.

A. Packaging Class Diagram

One of the common tasks when moving from analysis to
design is the task of structuring the system classes into
packages [37]. During the analysis phase, the class diagram
depicts all the classes used in the system and the relations
between them. The aim is to develop highly cohesive and
loosely coupled packages. In this experiment, we use our
proposed approach to learn packaging rules from analysis-
design pair examples. Together Fig. 2(a) and (b) represent a
simple example of the analysis-design pair. They show the
analysis model of one of the used examples along with the
corresponding initial design model respectively. The initial
design model shows the analysis model after introducing the
packages (This example has been used in [28] to introduce the
initial idea).

B. Introducing Façade Design

It is considered another high-level software design activity:
introducing façade design. It is common for a class in a
particular package to have external relations with classes in
other packages. The Façade design pattern is used to simplify
the interaction process and improve the overall design coupling
and cohesion. A façade provides a one “point of contact” to a
package of classes (i.e., component). It hides the
implementation of the component from its clients, making the
component easier to use. In addition, it results in loosely
coupled software. For this design task, we used several
examples to derive a rule for introducing façades to packages.
Fig. 3 depicts one of such examples. It shows a class diagram
that has many inter-packages relationships making the design
highly coupled and less maintainable. To overcome this
problem the designer introduces façades as another step of
transformation from requirement analysis to software design.
Based on the presented examples, ALEPH generalizes a
hypothesis as shown in TABLE III.

VI. EXPERIMENTS

This section is dedicated to the setup of the experiments
performed in this work to produce a set of rules. The objective
of these experiments is to provide a proof-of-concept that the
proposed approach can be used to build a transformation
system from requirement analysis to software design.

A. Problem and Solution Representations

The given UML models are presented in XMI format. To
induce a general hypothesis using ALEPH, we converted the
problem, represented by XMI models, to logic programs
comprised two part: background knowledge and positive
examples. TABLE II. demonstrates the conversion of the
UML model presented in Fig. 2 and 3; with background
knowledge and positive examples, respectively. In addition, the
generated negative examples under CWA.

TABLE II. THE PROBLEM REPRESENTATION WRITTEN IN ALEPH (I.E.,
PROLOG SYNTAX)

Input Type Packaging Class Diagram

Types and

Modes

Declarations

Background
Knowledge

Positive

Examples

Negative

Examples

Input Type Introducing Façade Design

Types and
Modes

Declarations

Background

Knowledge

Positive
Examples

Negative

Examples

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

537 | P a g e

www.ijacsa.thesai.org

TABLE III. THE SOLUTION REPRESENTATION

Example Induced Rule

Packaging

Class
Diagram

When there is an inheritance relation between the classes A
and B, these two classes are grouped together in one

package

When three classes A, B and C have association relations,

such that class A is linked to class B, and Class C, also,
Class B is linked to Class C, and then the three classes can

be grouped in one package.

When three classes A, B, C and D have the presented

relationships, such that class A is the parent of classes B, C
and D then the four classes can be grouped in one package

Introducing

Façades
Example

When there is a class D, which is placed in a package C, has

a reference to another class E placed in a different package
A, a façade interface B is introduced to the destination

package A.

In TABLE III. the second column represents samples of the
rules produced by ALEPH system based on the predefined
modes and given examples. In this set of rules, LHS (left-hand
side) represents the conclusion (introduce a package) in order
to group different classes into a single package wherever RHS
(right-hand side) which is the premise is satisfied.

B. Solution Evaluation

For the problem solved by ILP-based systems, usually the
performance can be measured by grouping the results as true
positive (TP), true negative (TN), false positive (FP) and false
negative (FN). The equations demonstrated in Algorithm 3 are
collected during experimentation. We focused on validating the
generated artifacts. To do that, we compared the generated
artifacts with the actual ones provided as part of the given pair.
As shown in algorithm 3, we used five different measures in
the conducted experiments. Although we considered two
transformation tasks, here is an explanation how we evaluate
the solution in the task of packaging the classes.

TP refers to the correctly placed classes in the created
package while TN refers to the classes that are not placed in

 correctly. FP indicates the extra classes placed in while

they do not exist in . Finally, FN indicates the number of
classes that are exist in but not placed in . As a last step,

we calculate the average across all packages for all the
measures. It is worth mentioning that, for the experiments
related to the second task, it was not applicable to calculate TN
so we exclude some measures.

TABLE IV. DATASETS STATISTICS

Artifacts Min Max

Packages 3 27

Classes and Interfaces 10 151

Relationships 11 188

When validating the generated packages, we need to pay
attention of their content. Let AD= {p1, p2, …, pn} be the
number of packages of the actual design. Let GD= { 1, 2, …,
 m} be the number of packages of the corresponding rule-
created (generated) design, where m could be less than, equal
to, or greater than n. In AD each pi consists of a number of
classes ci1, ci2, …, cik and the corresponding package pj in GD
may consists of the same, more or less classes cj1, cj2, …, cjl.

C. ALEPH Settings

ALEPH has many settings to adjust the search process, and
the ones we perform the experiments with are explained in this
section. We use default ALEPH settings. Different search
strategies (such as heuristic, depth first) have been used;
however the results obtained were comparable. All presented
results in the following came from these settings.

D. Datasets

The datasets used in the experiments comprises around 34
systems. Each system consists of the analysis and design
models. These cases were collected mostly from academic
projects, examples from textbooks, and by reserve engineering.
Each system consists of analysis/design pair. In turn, each
design system comprises at least three packages. The total
number of packages in the base is 217 while the total number
of classes and interfaces is 1540. TABLE IV. shows brief
statistics of the systems’ artifacts i.e., packages, classes,
interfaces, and relationships such as association, generalization,
aggregation and others.

E. Experimental Results / Quantitative Validation

This section shows the results obtained from the two
conducted experiments by using the described datasets. The
available examples were divided into learning set and
validation set in the ratio 2:1. Each set has been selected
randomly with ensuring that no system has been selected twice.

During learning phase, all the 22 learning systems have
been used as input to generalize a set of transformation rules
that have been evaluated later in two ways to select the best
rules. Then the final rules were validated against the validation
set which consists of 12 systems. Samples of the induced
transformation rules are demonstrated in TABLE V.

1) Measuring the packaging rules performance
We measured the performance of the induced rules

individually. The performance of each rule was measured by
applying the rule on all systems in one run. Fig. 5 shows two
types of experiments that were conducted to measure the rules
performance. In one experiment, shown in Fig. 5(a), individual
rule performance was evaluated by applying the rule on all the
learning systems, batched together. The rules showing low
performance have been retracted form the rules base to avoid
impact the overall system performance, e.g. rules 9-10. Then a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

538 | P a g e

www.ijacsa.thesai.org

genetic algorithm-based procedure was used to find subsets of
remaining rules that gives the best results against the learning
systems one by one. Fig. 5(b) presents the accuracy measures
for the learning systems.

This experiment paid attention for the number of times each
rule was considered to give the best accuracy with each system.
Fig. 4 shows the percentage of times the rules applied. We aim
here to provide a kind of score of each rule that assist selecting
the rules in the future when apply the rules on real applications
that have no the actual target model. To rank the rules, we need
for assigning these scores (discussed in Algorithm 3). Then the
rules were applied on the validation systems based on their
ranking.

Fig. 4. Rules ranked accoding to the frquency of application.

TABLE V. SAMPLES OF THE INDUCED TRANSFORMATION RULES

Task Induced Transformation Rule

Packaging
Class

Diagram

Introducing
Façades

(a) (b)

Fig. 5. (a) Individual rule application- overall systems, (b) GA-procedure - learning systems.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

539 | P a g e

www.ijacsa.thesai.org

2) Validating the best induced rules
The final rules resulted from the learning phase have been

validated in this experiment against the set of validation
systems. According to the rules scores, this experiment started
by applying first two rules then added one rule each run. Fig. 6
demonstrates the overall average of accuracy measures resulted
from validation using 12 systems with different number of
rules. Obviously the performance was stable when considering
3, 4 or 5 rules, since we considered the best rules came from
two-ways evaluations. Increasing or decreasing the number of
rules vary form one system to another, i.e., some systems have
a steady accuracy measures starting for different number of
rules, while accuracy measures of others improved/impacted
when adding more rules. However, these changes are slightly
small, thus the overall average shows a comparable values.
When applying all the rules the performance was impacted
because the rules 1 and 2 were included. The two rules can
group classes from different packages together. Thus we
noticed that their applications frequencies equal zero when
using learning samples.

Fig. 6. Average of accuracy measures with different number of rules -

validation systems.

(a)

(b)

Fig. 7. Accuracy measures of applying façade rules (a) learning results, (b)

validation results.

3) Accuracy measures of Façades rules
For introducing Façade design pattern only 13 systems, that

use this practice, have been used for learning and validation in
the ratio 2:1. The learning systems present different forms of
using Façade. Nevertheless, ALPEH induces only one rule for
all training data. When ALEPH generalizes the target clause, it
looks for the minimal number of atoms that can cover the given
examples. When generalizing the given learning examples, the
learner considers only the type of relations not the count. Thus
the problem is seen like this; when a package p has an external
relation linked to one of its classes, add a façade to the package
p. Fig. 7(a) shows the accuracy measures when applying the
induced unique rule on eight learning systems. It is worth
mentioning that, only three measurements used for this
experiment because there are true negatives can be collected
here. In the same way, the induced rule has been applied on the
validation systems. Fig. 7(b) demonstrates the accuracy
measures when applying the rules on the validation systems.

VII. DISCUSSION

Although ALEPH has been used widely in the literature,
the induced hypotheses in the tackled problems have small
arity in their head predicates. For instance, the arity of
packageOfClasses(X,Y) is two. ALEPH requires to specify
each argument type and whether it is input (+) or input (-) as
used in TABLE II. The types should be maintained also in the
body predicates. In our context, the arity of packageOfClasses
changes based on the number of classes located on the
corresponding package. Thus, there is a need to adjust the used
modes and types in each run. This caused a problem when
having a large arity. Owing to the space limitation of this
paper, we ignore these details. During rules induction phase,
we noticed that when providing examples of packages having
five classes or more, it was not possible to generalize
hypotheses for such examples. Another observation is that,
ALEPH needs at least two similar examples to generalize a
hypothesis. If no similar patterns are seen in the given
examples while training, it will not be possible to synthesize
the right output. In reality, for one example has a large arity,
the opportunity to find another example having the same
number and type of relations is low. On the other hand for the
examples consist of two/three classes, all the examples have
been covered. Inversely, the opportunity to find a similar
example is better where the possible relations among the
classes are limited.

Moreover, it is noticeable the measures presented in
Section E vary from one system to another. The reason behind
that is the nature of the used examples to generate the
transformation rules. For example, the performance in case of
Sys 19, presented in the learning, was the worst. This system
has 28 classes placed in 4 packages. When learning the rules it
was not possible to learn such rules as explained above. In the
other hand, the relations among the classes are not easy to be
covered by the already induced rules. The application of the
rules follows their ranking which shows their how many times
they were selected to get the best accuracy. When applying the
rules against the validation set, small set of rules can give a
comparable accuracy measures. When adding more rules
means that, more classes can be grouped in incorrect packages.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

540 | P a g e

www.ijacsa.thesai.org

(a)

(b)

Fig. 8. Example to show the drawback of the derived rule.

Another observation, the number of the rule-created
interfaces in the different learning and validation systems is
either equal or more than the number of interfaces in the actual
design. Thus, we get a full recall in almost all the cases, shown
in Fig. 6. The reason behind that is that the rule will introduce
an interface between two packages whenever there is a relation
between their classes.

A. Threat to Validity

The main threats to validity, as with any software
engineering research, are the data scarcity and the bias of the
datasets selection. Another dimension of scarcity we
encountered is the need to use source/target pairs. It is
noteworthy here different resource have been considered to
collect the datasets (student projects, textbooks, reverse
engineering). Using different sources helps ensuring that the
datasets are collected in unbiased manner. In addition, selecting
randomly learning systems that are different from the
validation set would give the results of the experiments some
credibility as not being biased. Nevertheless, this does not
necessarily mean that the derived transformation rules are
complete. Another threat to validity of this work is the
incompleteness in terms of transformation problems coverage.
We have considered two major designs activities to show the
power of ILP in generalizing rules in MDD context. Future
effort will try to make contact with some potential software
houses to allow using their repositories and expertise in
evolving a generic transformation system. The scalability of
the approach will be tested more realistically in this case.

B. Open Issues and Future Work

In this section, we discuss some open issues related to the
usage of ALEPH system to derive analysis-design
transformation rules. Almost all the current ILP systems,
including ALEPH, enforce modes declarations for any clause
hypothesized by the ILP system. That is, it is supposed to
predefine the head and body of the target hypothesis.

ALEPH system uses the given background knowledge
along with the given examples to generalize rules. Thus, it
expects more than one positive example to learn the rule,
otherwise it returns the unique positive example as it is (i.e.,
without induction of rules). However, occasionally, generating
a rule from just one example might be desirable for future
improvement as more examples emerge, as with the case of
incremental learning. In the conducted experiments, many
examples have not been covered using ALEPH because the
relations represented are unique i.e. no similar example
especially for the packages have many classes.

Our experiments revealed that when two artifacts have
more than one relation of the same type (e.g. association).
ALEPH induces a rule that considers only the type of the rule
regardless of the number of instances. That is, when two
artifacts (packages or classes) have two (or more) associations
connecting each other, ALEPH shows only the type of the
relation not their counts. This has an impact on the generated
mappings since the number of associations among a set of
artifacts surely influences corresponding design decisions. A
simple example is shown in Fig. 8 to give a glance of this
shortcoming. Fig. 8(a) (source model) depicts that there are
four relations linking “Package1” to “Package 2”. Based on
these relations, a façade is introduced shown in Fig. 8(b) (target
model). However, the induced rule by ALEPH considers only
the type of the relation and ignores the count of the relations.
Clearly, as manifested in this example, the count is important
factor for introducing façades. For further discussion of the
recorded limitations in this context, the reader may consultant
our recent work [38]. In future work, there is a need to
investigate more the aforementioned open issues and to find
appropriate solutions.

VIII. CONCLUSION

Different model transformation by examples (MTBE)
approaches have been proposed in the literature. However,
none of the proposed approaches tried to tackle the analysis-
design transformations problem using ILP. Moreover, none of
the proposed approaches considered reusing designers’
expertise manifested in previous design effort in proposing
design options to given software requirements. In this work,
we target building a software design-support system by using
ILP to induce transformation rules from available
requirement/design pairs. The idea is to use existing knowledge
(manifested in the given examples) to automatically derive a
set of model transformation rules.

We conducted experiments using 34 systems with different
sizes and form different sources. The systems were divided
into learning and validation sets. The obtained performance

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

541 | P a g e

www.ijacsa.thesai.org

measures show that the approach is promising. The more
examples presented to the system, the more trustful rules the
system can generate.

ACKNOWLEDGMENT

The authors would like to acknowledge the support
provided by King Abdulaziz City for Science and Technology
(KACST) through the Science & Technology Unit at King
Fahd University of Petroleum & Minerals (KFUPM) for
funding this work through project No.11-INF1633-04. as part
of the National Science, Technology and Innovation Plan.

REFERENCES

[1] Varró, "Model Transformation by Example," in In: Wang, J., Whittle, J.,
Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, 2006, pp. 410-424.

[2] X. Dolques, et al., "Learning transformation rules from transformation
examples: An approach based on Relational Concept Analysis," in
published in EDOC 2010: 14th International Enterprise Distributed
Object Computing Conference, Vittoria : Brazil, 2010.

[3] D. Zhang and J. J. P. Tsai, Machine Learning Applications in Software
Engineering: World Scientific Inc., 2005.

[4] H. A. Al-Jamimi and M. Ahmed, "Machine Learning-based Software
Quality Prediction Models: State of the Art," presented at the The 4th
International Conference on Information Science and Applications, June
24-26, Pattaya, Thailand, 2013

[5] M. A. Ahmed and H. A. Al-Jamimi, "Machine Learning Approaches for
Predicting Software Maintainability: A Fuzzy-based Transparent
Model," IET Software vol. 7, pp. 317-326, 2013.

[6] H. A. Al-Jamimi and M. Ahmed, "Prediction of Software
Maintainability Using Fuzzy Logic," in 3th IEEE International
Conference on Software Engineering and Service Science (ICSESS
2012), Beijing, China, 2012.

[7] H. A. Al-Jamimi and L. Ghouti, "Efficient prediction of software fault
proneness modules using support vector machines and probabilistic
neural networks," in 5th Malaysian Conference in Software Engineering
(MySEC), 2011.

[8] H. A. Al-Jamimi, "Toward comprehensible software defect prediction
models using fuzzy logic," in Software Engineering and Service Science
(ICSESS), 2016 7th IEEE International Conference on, 2016, pp. 127-
130.

[9] S. Muggleton and L. D. Raedt., "Inductive logic programming: Theory
and methods," The Journal of Logic Programming, vol. 19 pp. 629-679,
1994.

[10] S. Muggleton, "Inductive logic programming," New Generation
Computing, vol. 8, pp. 295-317, 1991.

[11] F. A. Lisi, "Learning Onto-Relational Rules with Inductive Logic
Programming," in Proceedings of CoRR, 2012.

[12] K. Czarnecki and S. Helsen, "Feature-Based Survey of Model
Transformation Approaches," IBM Systems Journal, vol. 45, pp. 621-
645, 2006.

[13] M. Faunes, et al., "Genetic-programming approach to learn model
transformation rules from examples," presented at the Theory and
Practice of Model Transformations, 2013.

[14] H. A. Al-Jamimi and M. A. Ahmed, "Transition from Analysis to
Software Design: A Review and New Perspective " The International
Journal of Soft Computing and Software Engineering vol. 3, 2013.

[15] T. M. Mitchell, "Generalization as search," Artificial intelligence vol.
18, pp. 203-226, 1982.

[16] J. R. Quinlan, "Learning logical definitions from relations," Machine
Learning, vol. 5, pp. 239-266, 1990.

[17] S. Muggleton and C. Feng, "Efficient induction of logic programs,"
Inductive logic programming, vol. 38 pp. 281-298, 1992.

[18] S. Muggleton, "Inverse entailment and Progol," New generation
computing, vol. 13, pp. 245-286, 1995.

[19] A. Srinivasan, "The Aleph Manual," University of Oxford, 2007.

[20] W.-J. Hou and H.-Y. Chen, "Rule Extraction in Gene-Disease
Relationship Discovery," Gene vol. 518, pp. 132-138, 2013.

[21] Z. Balogh and D. Varró, "Model transformation by example using
inductive logic programming," Software and Systems Modeling, vol. 8,
pp. 347-364, 2009.

[22] P. Ferreira, et al., "Interpretable models to predict Breast Cancer," in
Bioinformatics and Biomedicine (BIBM), 2016 IEEE International
Conference on, 2016, pp. 1507-1511.

[23] A. Srinivasan and M. Bain, "An empirical study of on-line models for
relational data streams," Machine Learning, vol. 106, pp. 243-276, 2017.

[24] J. Van Haaren, et al., "Analyzing volleyball match data from the 2014
World Championships using machine learning techniques," in
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2016, pp. 627-634.

[25] V. Vercruyssen, et al., "Qualitative spatial reasoning for soccer pass
prediction," 2016.

[26] M. Wimmer, et al., "Towards Model Transformation Generation By-
Example," in In: 40th Hawaiian Int. Conf. on Systems Science (HICSS
2007), 2007.

[27] F. Jouault, et al., "ATL: a model transformation tool," Science of
Computer Programming, vol. 72 pp. 31-39, 2008.

[28] X. Dolques, et al., "From transformation traces to transformation rules:
Assisting Model Driven Engineering approach with Formal Concept
Analysis," in 17th International Conference on Conceptual Structures
(ICCS 2009), Moscow, Russia, 2009, pp. 15-29.

[29] M. Huchard, et al., "Relational concept discovery in structured datasets,"
Annals of Mathematics and Artificial Intelligence, vol. 49, pp. 39-76,
2007.

[30] H. Saada, et al., "Generation of Operational Transformation Rules from
Examples of Model Transformations," presented at the Model Driven
Engineering Languages and Systems, 2012.

[31] I. García-Magariño, et al., "Model Transformation By-Example: An
Algorithm for Generating Many-to-Many Transformation Rules in
Several Model Transformation Languages," in In: Paige, R.F. (ed.)
ICMT 2009. LNCS, 2009, pp. 52-66.

[32] M. Faunes, et al., "Generating Model Transformation Rules from
Examples Using an Evolutionary Algorithm," in The 27th IEEE/ACM
International Conference on Automated Software Engineering, Essen,
Germany, 2012, pp. 250-253.

[33] S. Muggleton, et al., "ILP turns 20," Machine Learning, vol. 86, pp. 3-
23, 2012.

[34] S. Sankaranarayanan, et al., "Mining library specifications using
inductive logic programming," in ACM/IEEE 30th International
Conference on Software Engineering, 2008.(ICSE'08). , Leipzig,
Germany, 2008.

[35] H. A. Al-Jamimi and M. A. Ahmed, "Knowledge acquisition in model
driven development transformations: An inductive logic programming
approach," in TENCON 2014- 2014 IEEE Region 10 Conference, 2014,
pp. 1-6.

[36] M. d. C. Nicoletti, et al., "Learning temporal interval relations using
inductive logic programming," presented at the In Integrated Computing
Technology, 2011.

[37] M. O’Docherty, Object-Oriented Analysis and Design Understanding
System Development with UML 2.0: John Wiley & Sons Ltd, 2005.

[38] H. A. Al-Jamimi and M. A. Ahmed, "Learning Requirements Analysis
to Software Design Transformation Rules By Examples: Limitations of
the Current ILP systems.," in 5th IEEE International Conference on
Software Engineering and Service Science (ICSESS 2014),
Beijing,China, 2014

