
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

542 | P a g e

www.ijacsa.thesai.org

Software Refactoring Approaches: A Survey

Ismail M. Keshta

Department of Computer Engineering

King Fahd University of Petroleum and Minerals

Dhahran, Saudi Arabia

Abstract—The objective of software refactoring is to improve

the software product’s quality by improving its performance and

understandability. There are also different quality attributes that

software refactoring can improve. This study gives a wide

overview of five primary approaches to software refactoring.

These are two clustering approaches at class level and two at

package level, as well as one graph transformational approach at

class level. The research also compares the approaches using

several evaluation criteria.

Keywords—Software refactoring; refactoring tool; machine

learning; hierarchical clustering; graph transformations

I. INTRODUCTION

Due to its properties in a real-world environment, as well as
changes to requirements, software needs to evolve, leading to
both improvements and alterations. Therefore, the software
becomes increasingly complicated and changes from its
original design in some way. Adding features generally
deteriorates the product’s design, and the program therefore
becomes more complex as it evolves. Consequently, the
product’s quality decreases [1][2][3]. sihT means maintaining
the code is a vital task, as it decreases the software’s
complexity. The maintenance of software is considered one of
software development’s major parts.

A vital kind of maintenance is a process called refactoring.
This is defined as a method for restructuring a current software
system or body of code. This refactoring is carried out in the
system/code of the internal structure to carry out improvements
without altering external behaviour. As a result, software
projects using the refactoring process discover reductions in the
code base’s complexity[2]-[4].

Crucially, there is no single definition of software
refactoring that is universally accepted. It is merely the process
of altering the internal structure of a software system without
changing its external behavior [5][6]. In doing this, the
refactored code can have optimised object-oriented features,
including encapsulation, polymorphism, and inheritance, that
can improve the quality of the code’s maintainability,
reusability, and modifiability. Software refactoring’s key
purpose is, in most cases, to improve the quality of a program
by decreasing any shortcomings in quality, such as code
smells, anti-patterns, and anomalies [7][8][9].

Therefore, the most significant motivation for refactoring is
to increase the software product’s quality. The major quality
aspects of a software product are its understandability,
extensibility, and maintainability, which can be developed by
software refactoring without changing the software product’s
functionality [10].

It is vital to point out that the refactoring process consumes
time. It also reduces the internal complexity of software
because it requires an effort to first identify where to carry out
the process in a given system/code and then a decision about
what refactoring approach is the best to apply [11].
Furthermore, a common concern is the effect the process has
on the program’s performance, as the change may make it run
more slowly [12]. In addition, it means the software is more
capable of performance tuning [13].

Over the past fifteen years, researchers have contributed a
great deal of knowledge and many concepts to the field of
software refactoring, which cover various angles and different
phases of software development activities, such as software
design, requirement analysis, integration ,implementation,
maintenance, and testing [14]. The term software refactoring is
very much associated with, and used regularly in, coding
activity (generally known as code refactoring). It is therefore
necessary to gain the right skills, knowledge, tools, and
techniques to benefit fully from software refactoring [13], [14].

A wide range of techniques and formalisms are proposed in
software refactoring to deal with restructuring and refactoring,
such as software metrics, graph transformations, and
assertions. This refactoring can be carried out either manually
or by using various supporting tools. Many of the available
tools can automate the different aspects of refactoring [15].

A number of recent papers on the three fundamental
software refactoring approaches, including the clustering
approach at class level, the clustering approach at package
level, and the graph transformations approach, will be
presented in this short survey work. In addition, we will
provide a comparison between the represented software
refactoring approaches based on various existing evaluation
criteria.

The structure of this paper is as follows: Section 2 will
provide a literature review of the different software refactoring
approaches and classify them according to their refactoring
levels; Section 3 will list the evaluation characteristics;
Section 4 will provide discussions and a comparison between
the different approaches; and finally, Section 5 will explore a
conclusion and future directions.

II. SOFTWARE REFACTORING APPROACHES

The software refactoring approaches presented here include
a clustering approach at the class level, a clustering approach at
the package level, and a graph transformation approach. We
will both list and summarise them throughout this section. We

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

543 | P a g e

www.ijacsa.thesai.org

will also describe the mechanisms and features for each of the
approaches.

A. Software Refactoring at the Class Level using Clustering

Techniques

There are two important concepts at the software design
stage, which are coupling and cohesion. The first of these,
coupling, represents the various interdependencies among the
software modules. However, a model’s relative functional
strength is indicated by its cohesion. Therefore, a software
design should ideally possess low coupling and high cohesion.

The authors’ objective in [16] was to use clustering
techniques of different kinds that help to both maximise
cohesion and minimise coupling. This means that software
designers can easily refactor the software code at the class
level. To maximise cohesion and minimise the coupling
process, it is necessary to move some of these methods from
one class in a system to another. The authors, therefore, used
two approaches.

The first is refactoring at the class level. This is achieved
by clustering a fixed number of different classes, which means
there is a movement of the method from one class to another.
The total number of classes, however, remains unchanged
before and after refactoring. There are potential changes to the
number of classes in the second approach, therefore, the
number of classes in a system can be different before and after
refactoring.

Clustering is a technique generally used to group all similar
data sets into the same cluster. Other dissimilar entities,
however, are grouped into different clusters. The greatest
advantage of such a technique is that it can help to identify
items that are unstructured.

A method to identify unstructured software code at the
class level was proposed by the authors. In the method, a total
of three different clustering techniques were utilised for
identification. These three are the single linkage algorithm
(SLINK), as well as the complete-linkage algorithm (CLINK)
and the weighted pair group method, which uses arithmetic
averages (WPGMA). An additional algorithm used is the
adaptive k-nearest neighbour (A-KNN), and a comparison
between the A-KNN technique and the other three clustering
techniques (SLINK, CLINK, and WPGMA) was performed by
the authors. The results of this comparison show that software
structuring at the class level that uses A-KNN has a
competitive performance with lower computational complexity
when compared to the other clustering techniques, SLINK,
CLINK, and WPGMA.

1) The authors’ clustering process
All the entities, as well as the attributes, must be specified

in the clustering process. Entities are those items needing to be
grouped. It is considered that the methods are those entities in
software refactoring taking place at the class level process. The
authors decided that the methods are entities, as the main
computational elements of the classes are done in the methods.
The entities are the methods necessary to put them into
clusters.

To put clustering entities into clusters, all the features and
attributes of these entities must be extracted. These features
and attributes are utilised to measure the relationship between
two entities and how closely they are related. The entities and
the methods in the case are all similar if they share more
common features and attributes. The authors consider the class
data members as features for the entities. The number of times
the method has accessed the data members is known as the
feature value.

The authors used an entity-feature matrix to represent the
relationship. The rows found in this matrix represent the
methods and columns that represent the data members. In this
matrix, there are three types of matches utilised for any two of
the entities. The first type is n-0/0-n.This means that the two
entities have no-match, and so are dissimilar. The second type
is n-m. This means that the two entities share at least one
feature. The third type is a 0-0 match. Here, the two entities
have no feature that is accessed by them. Generally, two
methods will be in the same class if they are found to share
many of the features. This means they are closely related to
each other and this process will make the code more cohesive.

To measure the similarity between the two entities/
methods, the authors used a coefficient known as a
resemblance coefficient. This is used to determine the
similarity of the matrix’s values. The formula for the
resemblance coefficient is given by:

Coeff = similarity actor/ (similarity actor/dissimilarity
actor)

The authors used three clustering techniques for the data
clustering, which are SLINK, CLINK, and WPGMA. These
are examples of agglomerative hierarchical clustering methods.
The agglomerative process begins with the entities/methods
taken as individual clusters. At each step, the closest pair of
clusters merges until only one of the clusters is left.

The difference between the three techniques is in the way
the distance between the clusters is computed. The distance
between the nearest pair of elements is the distance between
the clusters in SLINK. The similarity between the two clusters
in CLINK is the similarity between their most
dissimilar members. The average of the various distances
between all the pairs of elements is the distance between the
clusters in WPGMA.

The authors, besides using these clustering techniques, used
the A-KNN algorithm. The first step of A-KNN is the same as
in the previous techniques, as it considers each method as a
cluster. As an additional step, the algorithm utilises a labelling
approach. Thus, each method has a unique label that can be
used as an identifier to the cluster. There are different values of
K that can be utilised in the A-KNN algorithms. The major
advantage of the A-KNN algorithm is that it reduces the
number of computations when compared with the previous
algorithms.

2) Two refactoring approaches at the class level used by

the authors
The authors used two approaches for refactoring at the class

level.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

544 | P a g e

www.ijacsa.thesai.org

a) Refactoring at the class level that uses clustering

with a fixed numberof classes

The total number of classes remains unchanged in the
system with this approach, both before and after refactoring.
The entities are those methods that need to be put in a cluster
and the classes are the clusters. Therefore, the number of
clusters is the number of classes needed in the system. A
method is assigned to a class based on the similarity value. The
value is calculated by the number of instances utilised by the
methods. So, if method X uses a total of three instances from
class A and two instances from class B, method is assigned to
the cluster that represents class A.

As an overview of this similarity matrix, each of the
methods will be in a row and each of the classes will be in a
column. The similarity matrix value between the method and
the corresponding class is the total number of instances of this
class used by this method.

b) Refactoring at class level by utilising clustering with

an adaptive number of classes

There will be potential changes to the number of classes in
this approach. The total number of classes in a system may be
different both before and after refactoring, so there are no
restrictions on the number of classes in this approach.

3) Results
The authors conducted experiments to find out how

effective their proposed approaches proved to be. Both
approaches were software refactoring at the class level. When a
comparison of these two approaches was made, the authors
found that the first approach (Approach1) gave the same
distribution for the methods inside the classes as was the case
in the original source code. This method can, therefore, be used
as an automatic method to check the consistency between the
distribution for the methods inside the classes in the original
source code and the distribution that was produced by
Approach 1.

They found that the second approach (Approach 2)
suggested there was a different distribution for the methods
inside the classes which decreased the value of the lack of
cohesion in methods (LCOM) metric in the system. This
approach, therefore, increases the original code’s quality.

Thus, the first approach is generally both easier and more
simple than the second one. Furthermore, the first approach
does not require any extra effort or computation. The second
approach, however, improves the original code’s quality and
provides better refactoring suggestions than the first one.

B. Software Refactoring at the Package Level using

Clustering Techniques

The authors’ objective in [17] was to carry out an
investigation of software refactoring at the package level,
which was done by utilising clustering techniques. This
research helps to identify any ill-structured packages, and their
approach helps to create a balance between intra-package
cohesion and inter-package coupling. Thus, software designers
who use the authors’ approach can refactor their software
easily at package level. In the same way as the previous

paper [16], a comparison is made of the behaviour of four
differing techniques, which are SLINK, CLINK, WPGMA,
and A-KNN, but this time it is to identify any ill-structure at
the package level instead of the class level.

1) Clustering process
The same clustering process was used as in [16], but with a

different context. Classes are chosen as entities for software
refactoring at the package level. This means that the entities are
the classes that need to be put into clusters. At the class level,
however, the methods are chosen.

The attributes of the entities must be extracted in order to
put these entities into clusters, as stated in [16]. The
relationship between the two entities is indicated by their
features. So, if the two entities share features that are more
common, they will be similar. The authors utilised the methods
as attributes for the entities/classes for refactoring at the
package level, however, they used class data members as
attributes of refactoring at the class level. The number of times
the class accessed the method that was represented by an
attribute was used for the features value, while the number of
times the method accessed data members was the feature value
for refactoring at class level.

With the package, the number of times that class was used
as a class attribute inside it indicates the similarity between a
package and a class. In other words, at class level, the
similarity that exists between a method and a class is the
number of times that class is used by the method.

The authors used the entity-feature matrix to represent the
relationship between the entities and corresponding features.
The rows of this matrix represent the classes in the packages
and the columns represent the methods, but for refactoring at
class level, the rows in this matrix represent the methods and
the columns represent data members. The authors used the
same coefficient as in [16] to measure the similarity between
two classes, which is a resemblance coefficient.

2) Two approaches for refactoring at the package level

used by the authors
The authors used two approaches for refactoring at the

package level:

a) Clustering with a fixed number of packages

There is movement of a class from one package to another
in this approach, but the number of packages is unchanged.
Therefore, the total number of packages is the same in the
system before and after refactoring.

b) Clustering with a variable number of packages

There is movement of classes between the packages in this
approach, with possible changes to the number of packages.
Therefore, the total number of packages in a system may be
different before and after refactoring. There is no restriction on
the number of packages in a system in this approach.
Therefore, new packages can be created and existing packages
deleted after refactoring by this approach. More packages are
necessary if there is a low similarity between the classes, and
fewer are necessary if there is a great deal of similarity
between the classes.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

545 | P a g e

www.ijacsa.thesai.org

3) Results
When the A-KNN algorithm is used in the first approach, it

increases the number of connections inside the package, and
therefore improves cohesion as a result. This algorithm also
decreases the number of connections to other packages, which
means that the amount of coupling between the packages is
reduced. The authors’ conclusion was that A-KNN improves
software quality by both minimising package coupling and
maximising package cohesion.

In the second approach, all three clustering techniques—
SLINK, CLINK, and WPGMA—suggest the same solution.
Also, the number of connections both inside and outside the
packages is not changed by these three different techniques.
The number remains the same both before and after the
refactoring process. In other words, the A-KNN technique
changes this number to increase package cohesion and
decrease package coupling. Thus, software quality is improved
by software refactoring at the package level by using A-KNN
clustering with a variable number of packages. After carrying
out a deep analysis of the results obtained, the authors
concluded that A-KNN shows a competitive performance with
lower computational complexity when compared to the three
clustering techniques, SLINK, CLINK, and WPGMA.

C. Graph Transformation Approach to Refactoring

The paper primarily considers the methods and concepts
from the graph transformation theory to locate the
dependencies between the various refactoring steps. The
graphs are used as abstract representations for most of the
model. As is evident, a graph contains a set of vertices V, as
well as a set of edges E. It is important to highlight here that an
edge in E has both a source and a target in V. Thus, the
programs are represented as graphs to make them more
understandable and refactorings correspond to the graph
transformations’ production rules. The authors point to the use
of graph transformations as a way of reasoning about the
dependence that exists between refactorings. Moreover, the
graph transformation approach aids in the sequential
dependencies analysis between refactorings [18], [19].

To improve the design, we need to discover the correct
sequence of refactorings from a given set of refactorings. To do
this, the construction graph must be set by representing the set
of proposed refactorings as nodes in the graph (G). The edges
of the graph represent the various dependencies or conflicts
that exist between the different refactorings in the set of
refactorings that is proposed. After this construction graph has
been completed, there is a highly formal way to represent all
the potential interactions between the refactorings. This
constructed graph will help by giving a clear summary of the
refactorings proposed. It also enables us to find the
dependencies between them, as well as their form and critical
pair analysis technique.

The graph transformation rules, which are p: L → R, are
used to detect the dependency between the instances of type
graphs. In these rules, L is the left-hand of the rule and R is the
right-hand. L represents the preconditions of the rule in the
transformation rule, while R describes the post conditions.
There is an intersection between L and R that must be very

clearly defined. The preconditions and post conditions have to
be formulated, as was previously mentioned, and then checked
both before and after the refactoring process is applied [20],
[21]. The steps taken by the authors were:

 To represent the system as a graph.

 To represent the model refactoring as a graph
transformation.

 To represent the individual refactoring steps as the
nodes of a graph. “The edges represent the
dependencies or the conflicts between the refactorings
in the proposed set of refactorings.”

 To search for an optimal path that represents the best
possible sequence of the refactoring steps. “Searching
problem for optimal sequence” by using metaheuristic
algorithms.

The authors of this paper [20] have focused on working out
how the refactoring process can be formulated as a graph.
Thus, they have proposed a local formulation of this
refactoring that is based on graph transformation. The authors
used the graphs to represent the software architectures at the
class level in this research work. For the formalisations of the
refactoring operations, the graph transformation was used.
Their primary goal was to provide an automated process to
select refactoring sequences that are appropriate and to
formulate this as an optimisation problem by utilising the ant
colony optimisation (ACO). This is a paradigm for the design
of metaheuristic algorithms for the various combinatorial
optimisation problems.

III. EVALUATION CHARACTERISTICS

In section 2 we described the software refactoring
approaches. In this section, we will list the evaluation
characteristics (see TABLE I) that we used in the comparisons
between the approaches.

A. Objective

This characteristic will determine the objective and aim of
the approach. For example, the authors propose approach X, as
they want to address maintainability, and someone else would
like to address another performance issue.

B. Level of Refactoring

This will determine what the aim of the software
refactoring approach is. It will, therefore, determine whether
this proposed approach will address the appropriate refactoring
level. Here, the approach that is proposed should determine the
appropriate level of refactoring to apply.

C. Tool-Supported “Supportability”

The best way to refactor software code is, in most cases,
manual refactoring because altering these codes requires
human consideration. The refactoring tools can improve the
quality of software, aiding in carrying out automated changes
in the software code. The tool-supported characteristic will,
therefore, indicate whether the proposed approach possesses a
tool support. If so, the main characteristic of this tool is
highlighted, such as its usability or efficiency.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

546 | P a g e

www.ijacsa.thesai.org

TABLE I. DEFINITION OF THE EVALUATION CRITERIA

Characteristic

Brief description

Objective

 Determines both the aim and the objective of the
approach

 What is the author’s main objective in using this
approach?

 What do they aim to reach?

 What performance issues do they want to

achieve with this approach?

Level of

refactoring

 Determines what the proposed approach is
addressing, and at which refactoring level

 At which level is it appropriate to apply the
refactoring?

 Supportability

 Indicates whether the proposed approach
possesses tool support

 Is this is a tool-supported approach?

Constraint

 Describes what occurs to the software artifacts
while the software refactoring processes are

taking place

 How many software artifacts are there before
and after the refactoring process?

Underlying

concepts

 Which algorithm type is used by the approach?

Complexity

 Determines the complexity of an approach; a
higher complexity approach uses both a complex

formula and an algorithm

 How complex are the refactoring steps?

 What is the complexity of the algorithms used?

Validity

 Determines whether the proposed approach is a
valid one or not; explains whether the approach

can be applied to the real system

 Is this a valid approach?

 Can the approach be applied to the real system?

D. Constraint

A software artifact is an element of a software project,
which includes images, class, documentation, modules and
package. This evaluation characteristic, therefore, highlights
the total number of artifacts there are before as well as after
refactoring.

E. Underlying Concepts

This characteristic indicates the algorithm type that is used
in the proposed software refactoring approach.

F. Complexity

If the software refactoring approach uses a complex
formula and algorithm, the approach is said to have a higher
complexity. This means the complexity measures how complex
the refactoring steps are.

G. Validity

The characteristic of validity will determine whether the
proposed approach is a valid one or not. Therefore, it will
explain whether this approach can be applied to the real
system.

IV. DISCUSSION

An important criterion for evaluating the different
approaches is objectivity. This characteristic determines both
the aim and objective of the approach. The main objective of
the clustering approach is similar at both the class and package

levels. The aim of clustering at the class level is to identify the
unstructured software code and then structure it in an improved
way that can make it much more understandable. This would,
as a result, give it high maintainability. The aim of clustering at
the package level is to identify ill-structured packages and find
a balance between package cohesion, on the one hand, and
package coupling, on the other. The primary objective of the
graph transformations approach is to improve the system’s
performance (scalability).

When it comes to the level of refactoring, the first method
proposed in the first paper clearly addresses the software
refactoring done at class level. The authors [16] used two
approaches for refactoring, and both are at class level. The
authors [17] also used two approaches for the second method
of software refactoring, and both were at the package level,
which helped to identify the ill-structured packages. Therefore,
it is at the package level that the graph transformations
approach will most likely address the architectures at class
level.

Generally, the clustering approaches do not have a fully
tooled, supported “supportability” at both the class and
package levels. They are using some tools in the intermediate
steps, but there is no tool to do the whole of the refactoring
process completely. The graph transformations approach uses
the GT tool.

In terms of the constraints, we will highlight what
happened to a number of the software artifacts while the
software refactoring processes were taking place. The total
number of classes remained the same before and after
refactoring when it came to refactoring at class level. In this
instance, clustering was used with a fixed number of classes,
but there is no restriction on the number of classes when
refactoring is done at class level, where clustering is used with
an adaptive number of classes. At package level, where there is
clustering with a fixed number of packages, the total number of
packages remained the same both before and after the
refactoring process. There is, however, no restriction on the
number of packages with a variable number of packages. It is
most likely that the graph transformations approach will
increase the number of classes after the refactoring process has
been completed.

For the underlying concepts, the authors used the clustering
algorithms, SLINK, CLINK, WPGMA, and A-KNN, for the
task of clustering and to compare the behaviour of four
different algorithms. The authors concluded that, in both cases,
A-KNN showed a competitive performance with a
computational complexity that was lower when compared with
SLINK, CLINK, and WPGMA. The graph transformations
approach utilises the theory of graph transformation as one of
its main concepts.

The characteristic of complexity indicates what algorithm
type is used by the software refactoring approach that is
proposed. The first and second methods, with their differing
approaches, are using different clustering algorithms. The
results obtained reveal that the software structuring, by using
A-KNN, shows a competitive performance with a lower
computational complexity when compared with the other
clustering algorithm. The question is still “What is the best

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

547 | P a g e

www.ijacsa.thesai.org

value of k to choose?” The findings indicate that the best
results were achieved with k=3, however, this may not always
be the case. It is difficult to map the class in the graph
transformations approach and to define the precondition and
post condition.

We can see that in the validity aspects, the clustering
approach may not be valid. This is because the approach for
the test at class level was carried out on an open source system.
That project is called CSGestionnaire. Even at the package
level, the test was done on the Trama project. Generally, we
can say that these approaches are still valid for the small
system, but this is not the case when it comes to the real
complex system.

V. CONCLUSIONS

The technique of software refactoring can transform the
different types of software artifacts to enhance the internal
structure of the software without affecting its external
behaviour. Refactoring is usually applied to improve the
quality of the software after several features have been added.
Researchers in this field have studied the various angles of
refactoring and developed the right levels of evidence, skill,
and knowledge. They have also published their findings in
journals and conference papers to make them accessible to
everyone.

This study’s main purpose was to highlight some of the
main challenges faced in software refactoring. Furthermore, the
five refactoring approaches were discussed. These were two
clustering approaches at class level and two at package level,
as well as the graph transformations approach at class level.
The evaluation characteristics that were used to compare the
approaches were also described. Finally, researchers have
contributed a great deal to the software refactoring field over
the last 15 years, but there are many unresolved issues that will
need to be addressed in the future. The gaps that have been
identified and the significant contributions that have been made
can guide researchers regarding the best areas on which to
focus. This can save time and effort as well as resources, and
reduce the need to reinvent the wheel.

REFERENCES

[1] MURPHY-HILL, E., AND BLACK, A. 2008. Refactoring tools: Fitness
for purpose. Software. 25, 5, 38-44.

[2] Fowler, M., & Beck, K. (1999). Refactoring: improving the design of
existing code. Addison-Wesley Professional.

[3] Czibula, I. G., & Serban, G. (2007). Hierarchical clustering for software
systems restructuring. INFOCOMP Journal of Computer Science, 6(4),
43-51.

[4] Qasim, S. Z., & Ismail, M. A. (2017). Research problems in Search-
Based Software Engineering for many-objective optimization.

In Innovations in Electrical Engineering and Computational
Technologies (ICIEECT), 2017 International Conference on (pp. 1-6).
IEEE.

[5] Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (1999).
Refactoring: Improving the design of existing programs.

[6] Chávez, A., Ferreira, I., Fernandes, E., Cedrim, D. and Garcia, A.,
(2017). How does refactoring affect internal quality attributes?: A multi-
project study. In Proceedings of the 31st Brazilian Symposium on
Software Engineering (pp. 74-83). ACM.

[7] Shatnawi, R., & Li, W. (2011). An empirical assessment of refactoring
impact on software quality using a hierarchical quality
model. International Journal of Software Engineering and Its
Applications, 5(4), 127-149.

[8] Ó Cinnéide, M., Yamashita, A., & Counsell, S. (2016, September).
Measuring refactoring benefits: a survey of the evidence. In Proceedings
of the 1st International Workshop on Software Refactoring (pp. 9-12).
ACM. Chicago

[9] Vimaladevi, M., & Zayaraz, G. (2017). Stability Aware Software
Refactoring Using Hybrid Search Based Techniques. In Technical
Advancements in Computers and Communications (ICTACC), 2017
International Conference on(pp. 32-35). IEEE.

[10] Arora, M., Sarangdevot, S. S., Rathore, V. S., Deegwal, J., & Arora, S.
(2011). Refactoring, way for software maintenance. International
Journal of Computer Science Issues, 8(2), 565-570.

[11] Massoni, T., Gheyi, R., & Borba, P. (2005). Formal refactoring for UML
class diagrams. In Proceedings of the 19th Brazilian Symposium on
Software Engineering (pp. 152-167).

[12] https://sourcemaking.com/refactoring

[13] Abebe, M., & Yoo, C. J. (2014). Trends, opportunities and challenges of
software refactoring: A systematic literature review. International
Journal of Software Engineering & Its Applications, 8.

[14] Arnold, R. S. (1986). An introduction to software restructuring (pp. 1-
11). IEEE Computer Society Press, Washington, DC.

[15] Pérez, J. (2006, July). Overview of Refactoring Discovering Problem.
In Doctoral Symposium, 20th edition of the European Conference on
Object-Oriented Programming (ECOOP 2006).

[16] Alkhalid, A., Alshayeb, M., & Mahmoud, S. A. (2011). Software
refactoring at the class level using clustering techniques. Journal of
Research and Practice in Information Technology, 43(4), 285.

[17] Alkhalid, A., Alshayeb, M., & Mahmoud, S. A. (2011). Software
refactoring at the package level using clustering techniques. IET
software, 5(3), 274-286.

[18] Van Eetvelde, N., & Janssens, D. (2003). A hierarchical program
representation for refactoring. Electronic Notes in Theoretical Computer
Science, 82(7), 91-104.

[19] Campbell, D., & Miller, M. (2008). Designing refactoring tools for
developers. In Proceedings of the 2nd Workshop on Refactoring
Tools (p. 9). ACM.

[20] Qayum, F., & Heckel, R. (2009). Local search-based refactoring as
graph transformation. In Search Based Software Engineering, 2009 1st
International Symposium on (pp. 43-46). IEEE.

[21] Katić, M., & Fertalj, K. (2009). Challenges and discussion of software
redesign. In Proceedings of the 4th International Conference on
Information Technology.

