
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

116 | P a g e

www.ijacsa.thesai.org

Machine Learning based Predictive Model for

Screening Mycobacterium Tuberculosis

Transcriptional Regulatory Protein Inhibitors from

High-Throughput Screening Dataset

Syed Asif Hassan

Department of Computer Science, Faculty of Computing

and Information Technology Rabigh (FCITR)

King Abdulaziz University,

Jeddah, Saudi Arabia

Tabrej Khan

Department of Information Sciences, Faculty of Computing

and Information Technology Rabigh (FCITR)

King Abdulaziz University,

Jeddah, Saudi Arabia

Abstract—In view of the essential role played by dosRS in the

survival of Mycobacterium in the infected granuloma cells,

dosRS transcriptional regulatory proteins were considered as a

validated target for high throughput screening (HTS). However,

the cost and time factor involved in screening large compound

libraries are an important hurdle in identifying lead compounds.

Therefore, the use of computational machine learning techniques

to build a predictive model for screening putative drug-like

molecule has gained significance. In this regard, a target-based

predictive model using machine learning approaches was built to

develop fast and efficient virtual screening procedures to screen

anti-dosRS molecules. In the present study, we have used various

structural and physiochemical attributes of compounds from

HTS dataset to train and build a chemoinformatics predictive

model based on four state-of-art supervised classifiers (Random

forest, SMO, J48, and Naïve Bayes). The trained model was

applied to test dataset for validating the robustness, accuracy,

and sensitivity of the predictive model in screening active anti-

dosRS molecules. The Cost-Sensitive Classifier (CSC) with

Random Forest (RF) algorithm based predictive model showed a

high sensitivity (100%) and specificity (83.13%) to identify active

and inactive molecules, respectively from assay dataset (ID:

1159583). CSC-RF proved to more robust and efficient in

classifying active molecule from an imbalanced dataset with

highest Balancing Classification Rate (BCR) (91.57%) and

maximum Area under the Curve (AUC) value (0.999).

Keywords—Mycobacterium; dosRS-transcriptional regulatory

proteins; High Throughput Screening (HTS); virtual screening;

machine learning algorithms; classification; predictive

chemoinformatics model

I. INTRODUCTION

Tuberculosis (TB) a highly infectious disease is caused by
Mycobacterium tuberculosis (Mtb) which affects a substantial
population across the globe and is among the top 10 causes of
death especially in low and middle-income countries. As per
latest World Health Organization (WHO) report, nearly10.4
million people were infected with Mtb and approximately two
million death occurred due to TB in 2015 (which includes
nearly half a million people immunocompromised with Human
Immunodeficiency Virus (HIV)) [1]. Moreover, propagation

and evolution of both Multidrug-Resistant (MDR) and
extensively Drug-Resistant (XDR) species of Mtb across the
globe have turned into a key problem in combating
tuberculosis worldwide [2]. An estimated 480000 people have
developed MDR-TB worldwide in 2015 [3]. Considering the
prevalence of this epidemic around the world, there is a
pressing necessity to identify novel efficient and fast hit
identification approaches. Discovery and development of novel
drug generally comprise of four steps: 1) identifying the
target/Screening of molecule from the database; 2) hit
identification (3) lead finding and optimization; 3) pre-clinical
studies of the optimized lead molecule; and 4) clinical studies.
Hit identification is of profound importance for the triumph of
all drug discovery programs. In this regard, High Throughput
Screening (HTS) has been routinely used for the screening of
hit molecule in the most drug discovery protocols. The
enormous time and cost involved in HTS is a major hurdle in
the discovery and development of novel drugs [4]. Virtual
screening methodologies, when compared to traditional
experimental HTS are comparatively fast, efficient and cost-
effective to screen active hit molecules from thousands of
molecules from chemical libraries. Structure-based and ligand-
based virtual screening protocols have been adapted to screen
and prioritize active hit molecules during early-phase of drug
discovery protocols [5]. Moreover, the virtual screening
protocol could further be improved using faster and robust
algorithm to screen active hit molecules from a huge chemical
dataset with higher accuracy and sensitivity.

Machine learning (ML) methods are predominantly robust
and effective algorithms. ML algorithms can make an
intelligent decision on an independent dataset based on their
ability to recognize and learn complex attributes from multi-
dimensional bioactivity input data, therefore, they have been
recently employed to screen hit molecule during the hit
identification phase of drug discovery program [6]-[13]. Since
the bioactivity data obtained through HTS provides the
necessary attributes both in binary (active/inactive) and a
numerical value (namely, IC50). Therefore, the ML algorithms
can be trained with binary and numerical values of various
attributes of bioactivity dataset to classify molecules as active

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

117 | P a g e

www.ijacsa.thesai.org

and inactive from bioactivity data procured from experimental
HTS. Recent studies have shown the application of ML
algorithms to build predictive computational chemoinformatics
model to classify molecule as active or inactive from the
bioassay data available on public domain derived from HTS
[14]-[16]. These HTS data derived from the biological activity
of molecule screened against targets critical for the survival of
infectious agents within host cells. The present objective of our
study is to develop a binary predictive classification model for
screening active anti-dosRS molecules using the fast and
efficient ML algorithms. The classification algorithm based
chemoinformatics models when subjected to in silico selection
of novel hit against dosRS molecule from large compound
libraries will definitely fast-track the anti-tubercular agents’
discovery process. The structure of the paper is as follows:
Section II describes the material and method employed in this
article. Section III describes the obtained results and the
required discussion for the same and Section IV provides the
concluding remarks about the present work. An overview of
the approach that is employed in this study is represented in
Fig. 1.

II. MATERIALS AND METHODS

This section describes the data source, the techniques for
molecular descriptors generation and pre-processing the
biological dataset. It also presents the ML algorithms for model
building and appending Cost-sensitive learning methodology.

Moreover, this section also describes the model performance
statistical evaluators of Weka used in evaluating the currently
proposed classification model.

A. Data Source

The HTS data for small molecule against dosRS activity
(Assay ID: 1159583) was obtained from PubChem a chemical
library of National Center for Biotechnology Information
(NCBI) [17]. The HTS dataset was built based on the
bioactivity of the small molecule against hypoxia-regulated
(i.e., dosRS) fluorescent biosensor in Mycobacterium
tuberculosis CDC1551 (hspX’:: GFP) full-grown in
Middlebrook 7H9 medium with a pH 7.0 and further screened
using 384-well microtiter plates format. A Compound library
consisting of 328,633 small molecules were screened for anti-
dosRS activity. According to the protocol definition, molecules
that showed > 50 % inhibition of both growth and fluorescence
were considered as general inhibitors (active molecule) of
dosRS. Moreover, the activity of the molecules under study
was scaled from 100 to 0, the scaling values were derived from
normalized percentage inhibition, with values 100 or more than
100 corresponding to 100% inhibition (active molecule) and
zero or less than zero corresponding to no inhibition (inactive
molecule). The Structure-Data File (SDF) of both active and
inactive molecules were downloaded from
https://pubchem.ncbi.nlm.nih.gov/bioassay/1159583#section=
Top.

Fig. 1. Workflow for in silico virtual screening of active molecule from HTS dataset using a predictive classification model.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

118 | P a g e

www.ijacsa.thesai.org

B. Molecular Descriptors Generation and Biological Dataset

Pre-Processing

PowerMV [18] publicly available windows based software
was used for generating and viewing, 2D molecular descriptors
from the available biological dataset (Assay ID: 1159583).
Since the number of molecules to be screened in the dataset
were large (approximately 3 million) and with a capacity of
PowerMV to process a huge data is limited by available
memory. Therefore, using a Perl script SplitSDFiles available
in MayaChemTools [19], the entire biological HTS dataset was
divided into smaller files. Consequently, each SDF files were
successively uploaded and processed in PowerMV. Overall,
179 2D molecular descriptors representing the molecular
attributes of each compound in the dataset AID1159583 were
generated. Details of the complete list of various descriptors
used for the construction of a predictive chemoinformatics
model are provided in supplementary file 1 (Table III). The
molecular descriptors files of each SDF subfile were joined
into a lone Comma Separated Values (CSV) file. The
bioactivity for each molecule in the dataset was appended to
the last column labeled as “outcome” representing an
additional feature “class” and a nominal value active or
inactive was appended. The merged single CSV file of the
descriptors was pre-processed to remove the non-informative
or uninstructive descriptors having only zero and one-bit string
all through the dataset were filtered out by using un-supervised
filter present the Weka software tool [20]. Removal of the
attributes having only one value throughout the dataset
(uninstructive descriptors) decreased the size of the available
bioactivity HTS dataset. Lastly, the instances of the bioactivity
dataset were systematically arranged as per class and the
processed data was split using a Perl script into 80 % training-
cum validation set to build the classification model and 20 %
as an independent test set to check the accuracy of the
classification predictive model. In cross-validation (CV) a 5-
fold CV is assigned to the training dataset for model
generation. The processed descriptor file of the training cum
validation set was randomly rearranged and split into “n” (here
n=5) equal size folds. In successive iteration, one fold of the
training cum validation dataset was used for testing and the
remaining n-1folds for training the machine learning
classifiers. An average of each test fold result was calculated.
The mean test value provides cross-validated estimated
accuracy of the proposed predictive chemoinformatics model.
Finally, the present trained classification based predictive
intelligent system was tried with 20 % separate test dataset
comprising of molecule entirely unfamiliar to the trained
intelligent system (proposed classification model). The test
value obtained from 20 % independent test dataset provides the
efficacy of the classification model to predict active molecule
(inhibitors of dosRS) from an untrained dataset with higher
accuracy and sensitivity.

C. Machine Learning Algorithms for Model Building

An algorithm is a procedure to assign a specific class to a
given input value. In this context, the classification algorithm
based predictive model requires assigning a class (active
/inactive) to input molecule well characterized by many
Molecular attributes. In the present study, the classification
based model was build using Weka work platform. The Weka

platform which is a java based open source software required
to implement classification and clustering algorithm for data
analysis and visualization. In order to build a chemoinformatics
classification model with higher accuracy and sensitivity to
assign a class (active/inactive) to an independent set of test
data, we compared the predictive efficiency of each of the four
best-known ML classification algorithm such as J48, Naive
Bayes (NB), Sequential minimal optimization (SMO), and
Random Forest (RF). A brief description of the above-
mentioned ML algorithms is mentioned below:

1) Random Forest: Random forest (RF) algorithm [21] is

a collection of learning methods for categorization and that

functions by generating a combination of decision trees during

the training period. Arbitrary vector generated by arbitrarily

choosing a subgroup of features to generate each tree. Once all

the trees are generated, each tree in the ensemble chooses a

class and the most voted class provides the final classification

“class” for a given subset of attributes (i.e., individual tree).

Random decision forests are fast as well as have the potential

to handle huge input variables of the training set without over-

fitting. The basic steps involved in the execution of the

random forest algorithm are as follows:

Step 1: RF is a function with different parameter namely test, train,
min_size, max_depth, sample_size, n_features n_trees.

 def RF (test, train, min_size, max_depth, sample_size,
n_features n_trees)

 Step 2: Create list to store data in the form of tree structure

 trees = list()

Step 3: Start the iterative loop to generate a random sub-instances from the
dataset with substitution and build a decision tree and eventually generate
a prediction with a given content of bagged trees

 for i in range(n_trees):

 sample = subsample(train, sample_size)

 tree = build_tree(sample, n_features, min_size, max_depth)

 trees.append(tree)

 predictions = [bagging_predict(trees, row) for row in test]

return (predictions)

2) Naïve Bayes: Naïve Bayes (NB) [22] relies on the

assumption that each descriptor (attribute) in the processed

training dataset is statistically independent. The NB classifier

obtains from the training data, the conditional probability of

all molecular features depending upon the class label.

Classification is performed based on the principles of Bayes

theorem which evaluate the possibility of an outcome

happening based on the probability of a previous event. The

likelihood of a compound to be either categorized into the

active or inactive class is proportional to the percentage of

molecules in one or the other class which has similar attribute

value. The general likelihood of the activity (active/inactive)

of a molecule is evaluated via multiplying their individual

probabilities. NB algorithm is one of the simplest and

effective classifiers. The NB algorithm can be explained as

follows:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

119 | P a g e

www.ijacsa.thesai.org

Suppose: The probability that a document “c” with vector y
= < y1,...,yn> belongs to hypothesis h1 is:

In this case, P(h1) is the previous probability linked with
hypothesis h1, while P(h1|yi) is a posterior probability.

Hence, now for “m” different hypotheses, we have

 ∑

Therefore, we have

3) J48: The principle of C4.5 is a decision tree algorithm

is implemented in J48 [23]. A decision tree model is created

which moves in a top-down fashion from root to leaves by

selecting an appropriate attribute at each decision node. The

selection of an appropriate attribute at decision node helps us

to decide which branch one should travel from any specific

node. The leaf node in a decision tree specifies a class label.

The functioning of the algorithm can be represented as

follows:

Input: X //Training data

Output: Y //Decision tree

XYBUILD (*X)

{

Y= ;

Y= Make a root node and tag the same using splitting parameters;

Y= for each split predicate augment arc to root node and name it;

 For each arc perform

X= Database made by implementing spreading out predicate to X;

If decision point is attained for this path, then

X’= generate a leaf node and tag it with suitable class;

Else

X’= XYBUILD(X);

Y= add Y’ to arc;

}

4) Sequential Minimal Optimization (SMO): The

algorithm SMO is applied for solving Quadratic Programming

(QP) that arises during the training of Support Vector Machine

(SVM) [24]. A hyperplane (i.e., SVM) divides members

belonging to two distinct classes fairly apart from each other

thus enabling proper classification. Contrary to the typical

SVM that uses numerical QP optimization as an inner loop to

solve large QP optimization problem, which arises all through

the training of SVM with the training dataset. SMO

breakdowns the large QP optimization case into minor QP

case. These small QP cases are eventually resolved by SMO in

an analytical manner. Therefore, SMO is comparatively is

cost-effective in terms of computation time for solving large

QP and also the ability to handle large dataset. The execution

of SMO algorithm in sequential form is summarized as

follow:

Step 1: Initialize Dual=0, i=0, 1,…,

Where is the Lagrange multiplier which needs optimization and

 ∑ ()

 (4)

 Step 2: Work out DualityGap,

Where (5)

Here denotes the guide of training data patterns

 ,
 ,

DualityGap, representing the difference between the dual objective
function and the primal

Until DualityGap | |

 Where

1. Optimize ;

2. Update

3. Calculate , DualityGap and update Dual.

Repeat

D. Cost-Sensitive Learning

Cost-sensitive learning (CSL) is used to train classification
model against imbalance class problem associated with HTS
bioassay data. Imbalance class problem arises when at least
one of the classes in a dataset are represented by much less
number of instances when compared to others. In case of HTS
biological data, the dataset is termed imbalance since the
number of molecules that are active is less in number when
compared to the number of inactive molecules. The minority
class is represented by active compounds and while the
majority class is associated with inactive compounds. This
imbalance class problem in HTS dataset adds more complexity
to the classification process [25]. Consequently, when machine
learning classification algorithms are applied to imbalanced
HTS biological dataset may result in biased prediction
resulting in higher False Negative (FN) rate. Hence, many
strategies in the past were offered and implemented to develop
appropriate classification rules for class imbalance dataset.
Since the interest of the present study was to correctly classify
the minority class (True positives (TP)). Therefore,
implementation of misclassification cost on FN instances
makes the currently available original base classifiers cost-
sensitive and enhances the TP predictive capability of the
classifiers. There is no generalized rule for setting
misclassification cost and is always subjective to user’s desired
threshold. There are primarily two techniques of introducing
misclassification cost in error-based base classifiers to
overcome the problem of class imbalance problem in a given
HTS biological dataset. The first method is to create either
cost-sensitive classifier (CSC) namely Inexpensive
Classification with Expensive Tests (ICET) [26] or decision

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

120 | P a g e

www.ijacsa.thesai.org

tree algorithms proposed by Ling et al. [27] and the other
method is to build a wrapper class which can convert the
current available error-based base classifier into cost-sensitive
one namely cost-sensitive classifier [28] and MetaCost [29].
The second method is generally referred to as meta-learning
and is used in Weka software tool to introduce cost-sensitive
learning in base classifiers. Meta-learning methods introduce a
bias by setting a high misclassification cost for FN in the cost
matrix C (a, b), here “a” is the real class and “b” is the
anticipated class label. We have used meta-learning of Weka
for implementing cost-sensitivity in the base classifier
algorithms. MetaCost implements bagging iteration while
reclassifying training data with minimum expected cost and
eventually applying the base classifiers to the modified training
dataset, to generate trustworthy probability calculation on the
training dataset. This implementation works well for imbalance
class problem associated with HTS biological dataset. On the
other hand, CSC employs two measures to implement cost
sensitivity: (1) prediction of classes with minimum expected
misclassification cost and (2) the training data are reweighted
depending upon the total cost associated with individual
classes.

In the present study, we have applied meta-cost method
were the unpruning option was set to true for implementing
cost sensitivity in the J48 base classifier. On the other hand, we
have used CSC with the MinimizedExpectedCost option set to
be false for NB, RF, and SMO. While in SMO an additional
option of buildlogisticmodels was employed. Previous studies
have shown that these setting (J48-unpruning option-true and
CSC-minimize expected cost-false) have given better accuracy
with their corresponding cost-sensitive classifiers [30]-[32]. A
2x2 (for the binary class problem) cost matrix was used for
implementing cost-sensitivity in base classifiers. The four
sections of the 2x2 Weka cost matrix are: (1) True Positive
(TP) – inhibitor compound of HTS dataset accurately predicted
as active; (2) False Positive (FP) – non-inhibitor (inactive)
compound of HTS dataset falsely anticipated as active
compound; (3) True Negative (TN) – non-inhibitor (inactive)
molecule of HTS dataset appropriately predicted as inactive;
(4) False Negative (FN) – Inhibitor (active) molecules of HTS
dataset inaccurately anticipated as inactive. Considering our
case, if the inhibitors (TP) of dosRS are incorrectly classified
as inactive molecule (FN) that is more expensive when
compared to non-inhibitors (TN) of dosRS classified as
inhibitors (FP). Therefore, the fraction of FN is considered
more important than the fraction of FP during the development
of the classification model and the misclassification cost has
been implemented upon FN. Increasing the misclassification
cost for FN would enable an enhancement in the number of
both TP and FP, respectively. For maintaining the percentage
of FP under check, we limit the FP rate to ≤ 20 %. Until the
limit for FP is reached we can increase the misclassification
cost for FN such that maximum number of TP (inhibitors of
dosRS) are predicted.

E. Model Performances Estimation

To estimate the performance of the classification model,
various statistical performance evaluators were used to
estimate our results. The fraction of predicted true positive
(active molecule) to the total number of the active molecule

(TP/TP+FN) is designated as True Positive Rate (TPR).
Similarly, the fraction of projected false actives (FP) to a real
number of inactive molecules (FP/FP+TN) is termed as False
Positive Rate (FPR). Specificity (TN/TN+FP) is the ability of
the classification model to screen non-inhibitors compounds
predicted as true negative and false positives while sensitivity
is calculated as (TP/TP+FN) which demonstrate the ability of
the model to screen inhibitors (active) compounds predicted as
True Positives and False Negatives. A test evaluation showing
higher sensitivity and specificity values always have a
minimum error percentage. Accuracy specifies the overall
nearness of measured test value to its factual value. In this
case, accuracy is the overall evaluation of correctly predicted
active and inactive molecule from an independent test dataset.
It is generally estimated as ([TP + TN] / [TP+TN+FP+FN]).
Balance Classifier Rate (BCR) calculated as an average of
specificity and sensitivity (0.5x (sensitivity + specificity)) and
the observed BCR values provides a stable accuracy while
classifying a class bias dataset. Receiver Operating
Characteristic (ROC) plot is used to assess the reliability of a
classifier by using the Area under the Curve (AUC) value. The
AUC values are obtained by plotting a graph between the False
Positive Rate (FPR) plotted in the “x” axis and True Positive
Rate (TPR) in “y” axis. AUC value is a probability that a
classifier will give a greater score to a randomly chosen
positive instance (active molecule) as compared to a randomly
chosen negative instance (inactive molecule).

III. RESULTS AND DISCUSSION

A confirmatory high throughput screen bioassay dataset
(AID 1159583) performed to screen active dosRS inhibitors.
The AID 1159583 dataset containing 312 active 300891
inactive were used to generate 179 molecular descriptors using
PowerMV (supplementary file 1). A set of twenty-five
noninformative molecular descriptors were deleted during the
preprocessing of the dataset as mentioned in prior in the
methodology section. Finally, the remaining 154 molecular
descriptors were employed for building classification based
model. The descriptors deleted during the preprocessing of the
dataset are enlisted in supplementary file 1. Consequently, after
preprocessing the dataset was divided into 20% independent
test data and the remaining 80% of the dataset was employed
for training-cum validation. The test and the training dataset
were transformed into Attribute-Relation File Format (arff)
using Weka. Initially, the training data in .arff format was
loaded and processed in Weka. Since the training dataset file
was large therefore a heap size of 8 GB was used to initiate the
processing of the dataset in Weka. Firstly, standard base
classifiers were employed to build the classification based
predictive model. The predictive models built using base
classification algorithm had a low number of TP due to the
imbalanced nature of HTS dataset where the base classifier
showed a preference for the majority class i.e., inactive
compounds. Therefore, cost-sensitive learning was introduced
using cost matrix where misclassification cost for FN was
raised keeping the false positive rate under a threshold limit of
≤ 20%. Thus a number of classification model was trained with
incremental FN cost. The FN misclassification cost of the best-
trained model for each classifier is tabulated in Table I. As per
Table I, the misclassification cost appended for FN to increase

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

121 | P a g e

www.ijacsa.thesai.org

the instances of TP’s keeping the FP under threshold (i.e., ≤
20%) was minimum for NB-CSC as compared to other cost-
sensitive base classifiers.

TABLE I. MISCLASSIFICATION COST ASSIGNED TO FALSE NEGATIVE

(FN) FOR EACH COST-SENSITIVE CLASSIFIER (CSC)

Cost-Sensitive Classifier (CSC)
Misclassification Cost on False

Negative (FN)

Random Forest (RF-CSC) 212315

J48-MetaCost 3228

Naïve Bayes (NB-CSC) 270

Fig. 2. Comparative study of Balanced Classification Rate (BCR) and

Accuracy (Ac) of each cost-sensitive classifier based model.

In our present study, we observed that NB was able to build
classification model at a faster rate as compared with another
cost sensitive base classifier. The best-trained model for each
cost-sensitive classifier was evaluated on 20% independent test
dataset with different statistical evaluators of Weka. All the
best-trained models had a controlled rate of FP instances (i.e.,
within 20% of the total number of molecules tested). The
performance statistics of the best-predicted model for each cost
sensitive base classifier on independent test data are tabulated
in Table II. Due to the class imbalance nature of the dataset, the
overall accuracies alone which were above 80% for all the four
cost-sensitive classifier may not be sufficient to measure the
efficacy of the classification model. Therefore, Balanced
Classification Rate (BCR) another model performance measure
was used to evaluate the robustness and efficacy of the model.
BCR provides stability to the classification model by
calculating the mean of specificity and sensitivity. As shown in
Fig. 2, BCR value is highest RF-CSC as compared to all other
cost-sensitive classifiers.

A measure of specificity and sensitivity was used to access
the ability of the classification model to accurately predict the
actual biological activity of the molecule i.e., actual positive
and negative instances in the dataset. An ideal classification

model is a system which achieves 100% specificity and
sensitivity, respectively. As shown in Fig. 3 all the cost-
sensitive classifier were highly specific in predicting negative
results (predictive specificity ≥ 80%) and in terms of sensitivity
random forest-CSC was found to be an ideal cost-sensitive
classifier with a predictive measure of 100%, while Naïve
Bayes-CSC had the lowest sensitive percentage among all the
classifier used in the current study.

Fig. 3. Comparative study of sensitivity (Sn) and Specificity (Sp) of each

cost-sensitive classifier based model.

Evaluation of the discriminatory power of the predictive
model using AUC value was generated by drawing a Receiver
Operating Characteristic (ROC) plotted between FP rate and
TP rate as shown in Fig. 4.

Fig. 4. Receiver Operating Characteristic (ROC) curve plot represent the

significant Area Under the curve (AUC) values for Random Forest (RF), J48,
Naïve Bayes (NB), and Sequential Minimal Optimization (SMO).

TABLE II. THE PERFORMANCE STATISTICS OF COST-SENSITIVE CLASSIFIERS TESTED ON 20% INDEPENDENT TEST DATASET

Classifier TN % TP % FP % FN % Ac ROC Sn Sp BCR

J48-Metacost 86.9 88.2 13.1 11.8 86.9 0.937 88.24 86.88 87.56

RF-CSC 83.1 100 16.9 0.0 83.2 0.999 100 83.13 91.57

NB-CSC 80.2 29.4 19.8 70.6 80.1 0.667 29.41 80.15 54.78

SMO-CSC 82.0 70.6 18 29.4 82.0 0.736 70.59 82.04 76.31

Where TN = True Negative; TP = True positive; FP = False Positive; FN = False Negative; Ac = Accuracy; ROC = Receiver Operating Characteristic; Sn = Sensitivity; Sp = Specificity BCR= Balanced Classification

Rate.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

122 | P a g e

www.ijacsa.thesai.org

The analysis of ROC curve is an appropriate and consistent
method for evaluating the relative classifier performance in
virtual screening using predictive classification model. The
ROC curve analysis shows that random forest spread over a
maximum area under the curve (AUC value: 0.999) as
compared to other classifiers. In data analytics, an AUC value
which is nearer to 1 is considered important. Though all the
model based on four states of art classifiers were observed to
have equivalent predictive accuracy, random forest-CSC
proved to more efficient among all with high specificity,
sensitivity, highest BCR rate and maximum AUC value.

The basic idea of performing simulated screening protocol
is to acquire a substantial number of true positive (active
molecules) from a chemical dataset of variable sizes. To
evaluate the enrichment for TP obtained by using in-silico
screening based on predictive classification model, Enrichment
Factor (EF) was calculated on a dataset of variable sizes.
Generally, EFs are calculated at 1%, 2%, 5% and 10% of the
dataset to be screened. The EF with random forest-CSC was
found to be 3.5 (EF 1%), 4.6 (EF 2%), 3.4 (EF 5%) and 3.2
(EF 10%). These EF values show that our best classification
model (random forest) could achieve an enrichment of 3-4
folds for TP’s as compared with any random screening
protocol. Therefore, Random Forest is suggested to be a
reliable and efficient classifier for screening inhibitors of
dosRS from HTS dataset.

IV. CONCLUSION AND FUTURE SCOPE

In this study, we have shown that ML algorithms can be
effectively used to construct a supervised classification model
for screening inhibitors (active molecule) of dosRS from the
publicly available chemical compound dataset. Comparative
study of various statistical performance evaluators on four
important base classifiers such as Random Forest, Naïve
Bayes, SMO, and J48 show that random forest shows the
highest sensitivity, BCR rate, and AUC value, thus RF is
statistically efficient in screening active molecule (inhibitor of
dosRS) from the independent imbalance chemical dataset. This
study also suggests through a supervised cost-sensitive
machine learning algorithm i.e., Random forest, in this case,
can cause 3-4 folds enrichment of screening true positives
(active inhibitors of dosRS) from large chemical libraries
(dataset). Therefore, the future scope of the current proposed
cost-sensitive learning-based model can be employed in virtual
screening approaches which will speed up the target based anti-
tubercular drug discovery program against tuberculosis.
Further, substructure analysis of the screened lead chemical
molecules can be performed to identify important substructure
which would allow us to screen more potent inhibitors of
dosRS target macromolecule from chemical libraries will be
implemented in future studies.

ACKNOWLEDGEMENT

We are thankful to the Faculty of Computing and
Information Technology Rabigh (FCITR) of King Abdulaziz
University, Jeddah for providing necessary software, server
and platform to perform our experiments.

REFERENCES

[1] World Health Organization. Communicable Diseases Cluster. Stop TB
Department., Towards universal access to diagnosis and treatment of
multidrug-resistant and extensively drug-resistant tuberculosis by 2015 :
WHO progress report 2011. World Health Organization, 2011.

[2] M. D. Iseman, “Evolution of drug-resistant tuberculosis: a tale of two
species.,” Proc. Natl. Acad. Sci. U. S. A., vol. 91, no. 7, pp. 2428–2429,
Mar. 1994.

[3] “WHO | Towards universal access to diagnosis and treatment of
multidrug-resistant and extensively drug-resistant tuberculosis by 2015,”
WHO, 2015.

[4] Lahana, “How many leads from HTS?,” Drug Discov. Today, vol. 4, no.
10, pp. 447–448, Oct. 1999.

[5] B. Waszkowycz, T. D. J. Perkins, R. A. Sykes, and J. Li, “Large-scale
virtual screening for discovering leads in the postgenomic era,” IBM
Syst. J., vol. 40, no. 2, pp. 360–376, 2001.

[6] J.-P. Vert and L. Jacob, “Machine Learning for In Silico Virtual
Screening and Chemical Genomics: New Strategies,” Comb. Chem.
High Throughput Screen., vol. 11, no. 8, pp. 677–685, Sep. 2008.

[7] 6. J. Melville, E. Burke, and J. Hirst, “Machine Learning in Virtual
Screening,” Comb. Chem. High Throughput Screen., vol. 12, no. 4, pp.
332–343, May 2009.

[8] P. Vasanthanathan, O. Taboureau, C. Oostenbrink, N. P. E. Vermeulen,
L. Olsen, and F. S. Jorgensen, “Classification of Cytochrome P450 1A2
Inhibitors and Noninhibitors by Machine Learning Techniques,” Drug
Metab. Dispos., vol. 37, no. 3, pp. 658–664, Mar. 2009.

[9] R. Lowe, R. C. Glen, and J. B. O. Mitchell, “Predicting Phospholipidosis
Using Machine Learning,” Mol. Pharm., vol. 7, no. 5, pp. 1708–1714,
Oct. 2010.

[10] E. March-Vila, L. Pinzi, N. Sturm, A. Tinivella, O. Engkvist, H. Chen,
and G. Rastelli, “On the Integration of In Silico Drug Design Methods
for Drug Repurposing,” Front. Pharmacol., vol. 8, p. 298, 2017.

[11] M. Wójcikowski, P. J. Ballester, and P. Siedlecki, “Performance of
machine-learning scoring functions in structure-based virtual screening,”
Sci. Rep., vol. 7, p. 46710, Apr. 2017.

[12] M. Wang, P. Li, and P. Qiao, “The Virtual Screening of the Drug
Protein with a Few Crystal Structures Based on the Adaboost-SVM,”
Comput. Math. Methods Med., vol. 2016, pp. 1–9, 2016.

[13] P. B. Jayaraj, M. K. Ajay, M. Nufail, G. Gopakumar, and U. C. A.
Jaleel, “GPURFSCREEN: a GPU based virtual screening tool using
random forest classifier,” J. Cheminform., vol. 8, no. 1, p. 12, Dec.
2016.

[14] C. Schierz, “Virtual screening of bioassay data,” J. Cheminform., vol. 1,
no. 1, p. 21, 2009.

[15] Q. Li, T. Cheng, Y. Wang, and S. H. Bryant, “PubChem as a public
resource for drug discovery,” Drug Discov. Today, vol. 15, no. 23–24,
pp. 1052–1057, Dec. 2010.

[16] B. Chen and D. J. Wild, “PubChem BioAssays as a data source for
predictive models,” J. Mol. Graph. Model., vol. 28, no. 5, pp. 420–426,
Jan. 2010.

[17] National Center for Biotechnology Information. PubChem BioAssay
Database; AID=1159583,
https://pubchem.ncbi.nlm.nih.gov/bioassay/1159583.

[18] K. Liu, J. Feng, and S. S. Young, “PowerMV: A Software Environment
for Molecular Viewing, Descriptor Generation, Data Analysis and Hit
Evaluation,” J. Chem. Inf. Model., vol. 45, no. 2, pp. 515–522, Mar.
2005.

[19] M. Sud, “MayaChemTools.” 2010.

[20] R. R. Bouckaert, E. Frank, M. a Hall, G. Holmes, B. Pfahringer, P.
Reutemann, and I. H. Witten, “WEKA - Experiences with a Java Open
Source Project,” J. Mach. Learn. Res., vol. 11, pp. 2533–2541, 2010.

[21] R. E. Schapire, L. Breiman, and R. E. Schapire, “Random forests,”
Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001.

[22] N. Friedman, “Bayesian Network Classifiers,” Mach. Learn., vol. 163,
no. 29, pp. 131–163, 1997.

[23] J. R. Quinlan, “C4. 5: Programs for machine learning Morgan Kaufmann
Publishers San Francisco,” CA Google Sch., 1993.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

123 | P a g e

www.ijacsa.thesai.org

[24] J. Platt, “Sequential minimal optimization: A fast algorithm for training
support vector machines,” 1998.

[25] N. Japkowicz, “The class imbalance problem: Significance and
strategies,” in Proc. of the Int’l Conf. on Artificial Intelligence, 2000.

[26] P. D. Turney, “Cost-sensitive classification: Empirical evaluation of a
hybrid genetic decision tree induction algorithm,” J. Artif. Intell. Res.,
vol. 2, pp. 369–409, 1995.

[27] C. X. Ling, Q. Yang, J. Wang, and S. Zhang, “Decision trees with
minimal costs,” in Proceedings of the twenty-first international
conference on Machine learning, 2004, p. 69.

[28] H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann, 2016.

[29] P. Domingos, “Metacost: A general method for making classifiers cost-
sensitive,” in Proceedings of the fifth ACM SIGKDD international

conference on Knowledge discovery and data mining, 1999, pp. 155–
164.

[30] S. Jamal, V. Periwal, V. Scaria, O. Consortium, and others,
“Computational analysis and predictive modeling of small molecule
modulators of microRNA,” J. Cheminform., vol. 4, no. 1, p. 16, 2012.

[31] V. Periwal, S. Kishtapuram, and V. Scaria, “Computational models for
in-vitro anti-tubercular activity of molecules based on high-throughput
chemical biology screening datasets,” BMC Pharmacol., vol. 12, no. 1,
p. 1, 2012.

[32] H. Kaur, M. Ahmad, and V. Scaria, “Computational Analysis and In
silico Predictive Modeling for Inhibitors of PhoP Regulon in S. typhi on
High-Throughput Screening Bioassay Dataset,” Interdiscip. Sci.
Comput. Life Sci., vol. 8, no. 1, pp. 95–101, 2016.

SUPPLEMENTARY FILE 1

TABLE III. DIVISION OF MOLECULAR DESCRIPTORS CALCULATED FOR THE DATASET (ID: 1159583)

Sl.

No.

Molecular

Descriptor

category*

Number of

molecular

descriptors

generated

Molecular Descriptors prior to data processing

Molecular Descriptors

deleted after data

processing

1.
Pharmacophore

fingerprints
147

NEG_01_NEG – NEG_07_NEG
NEG_01_POS – NEG_07_POS

NEG_01_HBD – NEG_07_HBD

NEG_01_HBA – NEG_07_HBA
NEG_01_ARC – NEG_07_ARC

NEG_01_HYP – NEG_07_HYP

POS_01_POS – POS_07_POS
POS_01_HBD – POS_07_HBD

POS_01_HBA – POS_07_HBA

POS_01_ARC – POS_07_ARC
POS_01_HYP – POS_07_HYP

HBD_01_HBD – HBD_07_HBD

HBD_01_HBA – HBD_07_HBA
HBD_01_ARC – HBD_07_ARC

HBD_01_HYP – HBD_07_HYP

HBA_01_HBA – HBA_07_HBA
HBA_01_ARC – HBA_07_ARC

HBA_01_HYP – HBA_07_HYP

HYP_01_HYP – HYP_07_HYP

NEG_01_POS
NEG_02_POS

NEG_01_HBA

NEG_02_HBA
NEG_01_ARC

NEG_01_HYP

POS_01_POS
POS_02_POS

POS_01_HBD

POS_01_HBA
POS_02_HBA

POS_01_ARC

POS_01_HYP
HBD_01_HBD

HBD_02_HBD

HBD_01_HBA
HBD_02_HBA

HBD_01_ARC

HBD_01_HYP
HBA_01_HBA

HBA_02_HBA

HBA_01_ARC
HBA_02_ARC

HBA_01_HYP

ARC_01_HYP

2.

Weighted Burden

Number
24

WBN_GC_L_0.25

WBN_GC_H_0.25

WBN_GC_L_0.50
WBN_GC_H_0.50

WBN_GC_L_0.75

WBN_GC_H_0.75
WBN_GC_L_1.00

WBN_GC_H_1.00

WBN_EN_L_0.25

WBN_EN_H_0.25

WBN_EN_L_0.50
WBN_EN_H_0.50

WBN_EN_L_0.75

WBN_EN_H_0.75
WBN_EN_L_1.00

WBN_EN_H_1.00

WBN_LP_L_0.25

WBN_LP_H_0.25

WBN_LP_L_0.50
WBN_LP_H_0.50

WBN_LP_L_0.75

WBN_LP_H_0.75
WBN_LP_L_1.00

WBN_LP_H_1.00

None

3. Properties 8 XLogP, PSA, NumRot, NumHBA, NumHBD, MW, BBB, BadGroup None

