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Abstract—In view of the essential role played by dosRS in the 

survival of Mycobacterium in the infected granuloma cells, 

dosRS transcriptional regulatory proteins were considered as a 

validated target for high throughput screening (HTS). However, 

the cost and time factor involved in screening large compound 

libraries are an important hurdle in identifying lead compounds. 

Therefore, the use of computational machine learning techniques 

to build a predictive model for screening putative drug-like 

molecule has gained significance. In this regard, a target-based 

predictive model using machine learning approaches was built to 

develop fast and efficient virtual screening procedures to screen 

anti-dosRS molecules. In the present study, we have used various 

structural and physiochemical attributes of compounds from 

HTS dataset to train and build a chemoinformatics predictive 

model based on four state-of-art supervised classifiers (Random 

forest, SMO, J48, and Naïve Bayes). The trained model was 

applied to test dataset for validating the robustness, accuracy, 

and sensitivity of the predictive model in screening active anti-

dosRS molecules. The Cost-Sensitive Classifier (CSC) with 

Random Forest (RF) algorithm based predictive model showed a 

high sensitivity (100%) and specificity (83.13%) to identify active 

and inactive molecules, respectively from assay dataset (ID: 

1159583). CSC-RF proved to more robust and efficient in 

classifying active molecule from an imbalanced dataset with 

highest Balancing Classification Rate (BCR) (91.57%) and 

maximum Area under the Curve (AUC) value (0.999). 
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I. INTRODUCTION 

Tuberculosis (TB) a highly infectious disease is caused by 
Mycobacterium tuberculosis (Mtb) which affects a substantial 
population across the globe and is among the top 10 causes of 
death especially in low and middle-income countries. As per 
latest World Health Organization (WHO) report, nearly10.4 
million people were infected with Mtb and approximately two 
million death occurred due to TB in 2015 (which includes 
nearly half a million people immunocompromised with Human 
Immunodeficiency Virus (HIV)) [1]. Moreover, propagation 

and evolution of both Multidrug-Resistant (MDR) and 
extensively Drug-Resistant (XDR) species of Mtb across the 
globe have turned into a key problem in combating 
tuberculosis worldwide [2]. An estimated 480000 people have 
developed MDR-TB worldwide in 2015 [3]. Considering the 
prevalence of this epidemic around the world, there is a 
pressing necessity to identify novel efficient and fast hit 
identification approaches. Discovery and development of novel 
drug generally comprise of four steps: 1) identifying the 
target/Screening of molecule from the database; 2) hit 
identification (3) lead finding and optimization; 3) pre-clinical 
studies of the optimized lead molecule; and 4) clinical studies. 
Hit identification is of profound importance for the triumph of 
all drug discovery programs. In this regard, High Throughput 
Screening (HTS) has been routinely used for the screening of 
hit molecule in the most drug discovery protocols. The 
enormous time and cost involved in HTS is a major hurdle in 
the discovery and development of novel drugs [4]. Virtual 
screening methodologies, when compared to traditional 
experimental HTS are comparatively fast, efficient and cost-
effective to screen active hit molecules from thousands of 
molecules from chemical libraries. Structure-based and ligand-
based virtual screening protocols have been adapted to screen 
and prioritize active hit molecules during early-phase of drug 
discovery protocols [5]. Moreover, the virtual screening 
protocol could further be improved using faster and robust 
algorithm to screen active hit molecules from a huge chemical 
dataset with higher accuracy and sensitivity. 

Machine learning (ML) methods are predominantly robust 
and effective algorithms. ML algorithms can make an 
intelligent decision on an independent dataset based on their 
ability to recognize and learn complex attributes from multi-
dimensional bioactivity input data, therefore, they have been 
recently employed to screen hit molecule during the hit 
identification phase of drug discovery program [6]-[13]. Since 
the bioactivity data obtained through HTS provides the 
necessary attributes both in binary (active/inactive) and a 
numerical value (namely, IC50). Therefore, the ML algorithms 
can be trained with binary and numerical values of various 
attributes of bioactivity dataset to classify molecules as active 
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and inactive from bioactivity data procured from experimental 
HTS. Recent studies have shown the application of ML 
algorithms to build predictive computational chemoinformatics 
model to classify molecule as active or inactive from the 
bioassay data available on public domain derived from HTS 
[14]-[16]. These HTS data derived from the biological activity 
of molecule screened against targets critical for the survival of 
infectious agents within host cells. The present objective of our 
study is to develop a binary predictive classification model for 
screening active anti-dosRS molecules using the fast and 
efficient ML algorithms. The classification algorithm based 
chemoinformatics models when subjected to in silico selection 
of novel hit against dosRS molecule from large compound 
libraries will definitely fast-track the anti-tubercular agents’ 
discovery process. The structure of the paper is as follows: 
Section II describes the material and method employed in this 
article. Section III describes the obtained results and the 
required discussion for the same and Section IV provides the 
concluding remarks about the present work. An overview of 
the approach that is employed in this study is represented in 
Fig. 1. 

II. MATERIALS AND METHODS 

This section describes the data source, the techniques for 
molecular descriptors generation and pre-processing the 
biological dataset. It also presents the ML algorithms for model 
building and appending Cost-sensitive learning methodology. 

Moreover, this section also describes the model performance 
statistical evaluators of Weka used in evaluating the currently 
proposed classification model. 

A. Data Source 

The HTS data for small molecule against dosRS activity 
(Assay ID: 1159583) was obtained from PubChem a chemical 
library of National Center for Biotechnology Information 
(NCBI) [17]. The HTS dataset was built based on the 
bioactivity of the small molecule against hypoxia-regulated 
(i.e., dosRS) fluorescent biosensor in Mycobacterium 
tuberculosis CDC1551 (hspX’:: GFP) full-grown in 
Middlebrook 7H9 medium with a pH 7.0 and further screened 
using 384-well microtiter plates format. A Compound library 
consisting of 328,633 small molecules were screened for anti-
dosRS activity. According to the protocol definition, molecules 
that showed > 50 % inhibition of both growth and fluorescence 
were considered as general inhibitors (active molecule) of 
dosRS. Moreover, the activity of the molecules under study 
was scaled from 100 to 0, the scaling values were derived from 
normalized percentage inhibition, with values 100 or more than 
100 corresponding to  100% inhibition (active molecule) and 
zero or less than zero corresponding to no inhibition (inactive 
molecule). The Structure-Data File (SDF) of both active and 
inactive molecules were downloaded from 
https://pubchem.ncbi.nlm.nih.gov/bioassay/1159583#section=
Top.

 
Fig. 1. Workflow for in silico virtual screening of active molecule from HTS dataset using a predictive classification model.
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B. Molecular Descriptors Generation and Biological Dataset 

Pre-Processing 

PowerMV [18] publicly available windows based software 
was used for generating and viewing, 2D molecular descriptors 
from the available biological dataset (Assay ID: 1159583). 
Since the number of molecules to be screened in the dataset 
were large (approximately 3 million) and with a capacity of 
PowerMV to process a huge data is limited by available 
memory. Therefore, using a Perl script SplitSDFiles available 
in MayaChemTools [19], the entire biological HTS dataset was 
divided into smaller files. Consequently, each SDF files were 
successively uploaded and processed in PowerMV. Overall, 
179 2D molecular descriptors representing the molecular 
attributes of each compound in the dataset AID1159583 were 
generated. Details of the complete list of various descriptors 
used for the construction of a predictive chemoinformatics 
model are provided in supplementary file 1 (Table III). The 
molecular descriptors files of each SDF subfile were joined 
into a lone Comma Separated Values (CSV) file. The 
bioactivity for each molecule in the dataset was appended to 
the last column labeled as “outcome” representing an 
additional feature “class” and a nominal value active or 
inactive was appended. The merged single CSV file of the 
descriptors was pre-processed to remove the non-informative 
or uninstructive descriptors having only zero and one-bit string 
all through the dataset were filtered out by using un-supervised 
filter present the Weka software tool [20]. Removal of the 
attributes having only one value throughout the dataset 
(uninstructive descriptors) decreased the size of the available 
bioactivity HTS dataset. Lastly, the instances of the bioactivity 
dataset were systematically arranged as per class and the 
processed data was split using a Perl script into 80 % training-
cum validation set to build the classification model and 20 % 
as an independent test set to check the accuracy of the 
classification predictive model. In cross-validation (CV) a 5-
fold CV is assigned to the training dataset for model 
generation. The processed descriptor file of the training cum 
validation set was randomly rearranged and split into “n” (here 
n=5) equal size folds. In successive iteration, one fold of the 
training cum validation dataset was used for testing and the 
remaining n-1folds for training the machine learning 
classifiers. An average of each test fold result was calculated. 
The mean test value provides cross-validated estimated 
accuracy of the proposed predictive chemoinformatics model. 
Finally, the present trained classification based predictive 
intelligent system was tried with 20 % separate test dataset 
comprising of molecule entirely unfamiliar to the trained 
intelligent system (proposed classification model). The test 
value obtained from 20 % independent test dataset provides the 
efficacy of the classification model to predict active molecule 
(inhibitors of dosRS) from an untrained dataset with higher 
accuracy and sensitivity. 

C. Machine Learning Algorithms for Model Building 

An algorithm is a procedure to assign a specific class to a 
given input value. In this context, the classification algorithm 
based predictive model requires assigning a class (active 
/inactive) to input molecule well characterized by many 
Molecular attributes. In the present study, the classification 
based model was build using Weka work platform. The Weka 

platform which is a java based open source software required 
to implement classification and clustering algorithm for data 
analysis and visualization. In order to build a chemoinformatics 
classification model with higher accuracy and sensitivity to 
assign a class (active/inactive) to an independent set of test 
data, we compared the predictive efficiency of each of the four 
best-known ML classification algorithm such as J48, Naive 
Bayes (NB), Sequential minimal optimization (SMO), and 
Random Forest (RF). A brief description of the above-
mentioned ML algorithms is mentioned below: 

1) Random Forest: Random forest (RF) algorithm [21] is 

a collection of learning methods for categorization and that 

functions by generating a combination of decision trees during 

the training period. Arbitrary vector generated by arbitrarily 

choosing a subgroup of features to generate each tree. Once all 

the trees are generated, each tree in the ensemble chooses a 

class and the most voted class provides the final classification 

“class” for a given subset of attributes (i.e., individual tree). 

Random decision forests are fast as well as have the potential 

to handle huge input variables of the training set without over-

fitting. The basic steps involved in the execution of the 

random forest algorithm are as follows: 

Step 1: RF is a function with different parameter namely test, train, 
min_size, max_depth, sample_size, n_features n_trees.  

 def RF (test, train, min_size, max_depth, sample_size, 
n_features n_trees) 

 Step 2: Create list to store data in the form of tree structure  

        trees = list() 

Step 3: Start the iterative loop to generate a random sub-instances from the 
dataset with substitution and build a decision tree and eventually generate 
a prediction with a given content of bagged trees 

 for i in range(n_trees): 

        sample = subsample(train, sample_size) 

        tree = build_tree(sample, n_features, min_size, max_depth) 

        trees.append(tree) 

 predictions = [bagging_predict(trees, row) for row in test] 

return (predictions) 

2) Naïve Bayes: Naïve Bayes (NB) [22] relies on the 

assumption that each descriptor (attribute) in the processed 

training dataset is statistically independent. The NB classifier 

obtains from the training data, the conditional probability of 

all molecular features depending upon the class label. 

Classification is performed based on the principles of Bayes 

theorem which evaluate the possibility of an outcome 

happening based on the probability of a previous event. The 

likelihood of a compound to be either categorized into the 

active or inactive class is proportional to the percentage of 

molecules in one or the other class which has similar attribute 

value. The general likelihood of the activity (active/inactive) 

of a molecule is evaluated via multiplying their individual 

probabilities. NB algorithm is one of the simplest and 

effective classifiers. The NB algorithm can be explained as 

follows: 
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Suppose: The probability that a document “c” with vector y 
= < y1,...,yn> belongs to hypothesis h1 is: 

    
  

  
  

  
  
  

      

  
  
  

         
  
  

      
 

In this case, P(h1) is the previous probability linked with 
hypothesis h1, while P(h1|yi) is a posterior probability. 

Hence, now for “m” different hypotheses, we have 
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3) J48: The principle of C4.5 is a decision tree algorithm 

is implemented in J48 [23]. A decision tree model is created 

which moves in a top-down fashion from root to leaves by 

selecting an appropriate attribute at each decision node. The 

selection of an appropriate attribute at decision node helps us 

to decide which branch one should travel from any specific 

node. The leaf node in a decision tree specifies a class label. 

The functioning of the algorithm can be represented as 

follows: 

Input: X //Training data  

Output: Y //Decision tree  

XYBUILD (*X)  

{  

Y= ;  

Y= Make a root node and tag the same using splitting parameters;  

Y= for each split predicate augment arc to root node and name it; 

 For each arc perform  

X= Database made by implementing spreading out predicate to X;  

If decision point is attained for this path, then  

X’= generate a leaf node and tag it with suitable class;  

Else  

X’= XYBUILD(X);  

Y= add Y’ to arc;  

}  

4) Sequential Minimal Optimization (SMO): The 

algorithm SMO is applied for solving Quadratic Programming 

(QP) that arises during the training of Support Vector Machine 

(SVM) [24]. A hyperplane (i.e., SVM) divides members 

belonging to two distinct classes fairly apart from each other 

thus enabling proper classification. Contrary to the typical 

SVM that uses numerical QP optimization as an inner loop to 

solve large QP optimization problem, which arises all through 

the training of SVM with the training dataset. SMO 

breakdowns the large QP optimization case into minor QP 

case. These small QP cases are eventually resolved by SMO in 

an analytical manner. Therefore, SMO is comparatively is 

cost-effective in terms of computation time for solving large 

QP and also the ability to handle large dataset. The execution 

of SMO algorithm in sequential form is summarized as 

follow: 

Step 1: Initialize               Dual=0, i=0, 1,…,     

Where     is the Lagrange multiplier which needs optimization and 

   ∑      (     )    
 
       (4) 

          Step 2: Work out DualityGap,                   

Where                          (5)   

Here          denotes the guide of training data patterns 

                        , 
                            ,                   

DualityGap, representing the difference between the dual objective 
function and the primal  

Until DualityGap   |    | 

           Where        

1. Optimize             ; 

2. Update                   

3. Calculate                 , DualityGap and update Dual. 

Repeat 

D. Cost-Sensitive Learning 

Cost-sensitive learning (CSL) is used to train classification 
model against imbalance class problem associated with HTS 
bioassay data. Imbalance class problem arises when at least 
one of the classes in a dataset are represented by much less 
number of instances when compared to others. In case of HTS 
biological data, the dataset is termed imbalance since the 
number of molecules that are active is less in number when 
compared to the number of inactive molecules. The minority 
class is represented by active compounds and while the 
majority class is associated with inactive compounds. This 
imbalance class problem in HTS dataset adds more complexity 
to the classification process [25]. Consequently, when machine 
learning classification algorithms are applied to imbalanced 
HTS biological dataset may result in biased prediction 
resulting in higher False Negative (FN) rate. Hence, many 
strategies in the past were offered and implemented to develop 
appropriate classification rules for class imbalance dataset. 
Since the interest of the present study was to correctly classify 
the minority class (True positives (TP)). Therefore, 
implementation of misclassification cost on FN instances 
makes the currently available original base classifiers cost-
sensitive and enhances the TP predictive capability of the 
classifiers. There is no generalized rule for setting 
misclassification cost and is always subjective to user’s desired 
threshold. There are primarily two techniques of introducing 
misclassification cost in error-based base classifiers to 
overcome the problem of class imbalance problem in a given 
HTS biological dataset. The first method is to create either 
cost-sensitive classifier (CSC) namely Inexpensive 
Classification with Expensive Tests (ICET) [26] or decision 
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tree algorithms proposed by Ling et al. [27] and the other 
method is to build a wrapper class which can convert the 
current available error-based base classifier into cost-sensitive 
one namely cost-sensitive classifier [28] and MetaCost [29]. 
The second method is generally referred to as meta-learning 
and is used in Weka software tool to introduce cost-sensitive 
learning in base classifiers. Meta-learning methods introduce a 
bias by setting a high misclassification cost for FN in the cost 
matrix C (a, b), here “a” is the real class and “b” is the 
anticipated class label. We have used meta-learning of Weka 
for implementing cost-sensitivity in the base classifier 
algorithms. MetaCost implements bagging iteration while 
reclassifying training data with minimum expected cost and 
eventually applying the base classifiers to the modified training 
dataset, to generate trustworthy probability calculation on the 
training dataset. This implementation works well for imbalance 
class problem associated with HTS biological dataset. On the 
other hand, CSC employs two measures to implement cost 
sensitivity: (1) prediction of classes with minimum expected 
misclassification cost and (2) the training data are reweighted 
depending upon the total cost associated with individual 
classes. 

In the present study, we have applied meta-cost method 
were the unpruning option was set to true for implementing 
cost sensitivity in the J48 base classifier. On the other hand, we 
have used CSC with the MinimizedExpectedCost option set to 
be false for NB, RF, and SMO. While in SMO an additional 
option of buildlogisticmodels was employed. Previous studies 
have shown that these setting (J48-unpruning option-true and 
CSC-minimize expected cost-false) have given better accuracy 
with their corresponding cost-sensitive classifiers [30]-[32]. A 
2x2 (for the binary class problem) cost matrix was used for 
implementing cost-sensitivity in base classifiers. The four 
sections of the 2x2 Weka cost matrix are: (1) True Positive 
(TP) – inhibitor compound of HTS dataset accurately predicted 
as active; (2) False Positive (FP) – non-inhibitor (inactive) 
compound of HTS dataset falsely anticipated as active 
compound; (3) True Negative (TN) – non-inhibitor (inactive) 
molecule of HTS dataset appropriately predicted as inactive; 
(4) False Negative (FN) – Inhibitor (active) molecules of HTS 
dataset inaccurately anticipated as inactive. Considering our 
case, if the inhibitors (TP) of dosRS are incorrectly classified 
as inactive molecule (FN) that is more expensive when 
compared to non-inhibitors (TN) of dosRS classified as 
inhibitors (FP). Therefore, the fraction of FN is considered 
more important than the fraction of FP during the development 
of the classification model and the misclassification cost has 
been implemented upon FN. Increasing the misclassification 
cost for FN would enable an enhancement in the number of 
both TP and FP, respectively. For maintaining the percentage 
of FP under check, we limit the FP rate to ≤ 20 %. Until the 
limit for FP is reached we can increase the misclassification 
cost for FN such that maximum number of TP (inhibitors of 
dosRS) are predicted. 

E. Model Performances Estimation 

To estimate the performance of the classification model, 
various statistical performance evaluators were used to 
estimate our results. The fraction of predicted true positive 
(active molecule) to the total number of the active molecule 

(TP/TP+FN) is designated as True Positive Rate (TPR). 
Similarly, the fraction of projected false actives (FP) to a real 
number of inactive molecules (FP/FP+TN) is termed as False 
Positive Rate (FPR). Specificity (TN/TN+FP) is the ability of 
the classification model to screen non-inhibitors compounds 
predicted as true negative and false positives while sensitivity 
is calculated as (TP/TP+FN) which demonstrate the ability of 
the model to screen inhibitors (active) compounds predicted as 
True Positives and False Negatives. A test evaluation showing 
higher sensitivity and specificity values always have a 
minimum error percentage. Accuracy specifies the overall 
nearness of measured test value to its factual value. In this 
case, accuracy is the overall evaluation of correctly predicted 
active and inactive molecule from an independent test dataset. 
It is generally estimated as ([TP + TN] / [TP+TN+FP+FN]). 
Balance Classifier Rate (BCR) calculated as an average of 
specificity and sensitivity (0.5x (sensitivity + specificity)) and 
the observed BCR values provides a stable accuracy while 
classifying a class bias dataset. Receiver Operating 
Characteristic (ROC) plot is used to assess the reliability of a 
classifier by using the Area under the Curve (AUC) value. The 
AUC values are obtained by plotting a graph between the False 
Positive Rate (FPR) plotted in the “x” axis and True Positive 
Rate (TPR) in “y” axis. AUC value is a probability that a 
classifier will give a greater score to a randomly chosen 
positive instance (active molecule) as compared to a randomly 
chosen negative instance (inactive molecule). 

III. RESULTS AND DISCUSSION 

A confirmatory high throughput screen bioassay dataset 
(AID 1159583) performed to screen active dosRS inhibitors. 
The AID 1159583 dataset containing 312 active 300891 
inactive were used to generate 179 molecular descriptors using 
PowerMV (supplementary file 1). A set of twenty-five 
noninformative molecular descriptors were deleted during the 
preprocessing of the dataset as mentioned in prior in the 
methodology section. Finally, the remaining 154 molecular 
descriptors were employed for building classification based 
model. The descriptors deleted during the preprocessing of the 
dataset are enlisted in supplementary file 1. Consequently, after 
preprocessing the dataset was divided into 20% independent 
test data and the remaining 80% of the dataset was employed 
for training-cum validation. The test and the training dataset 
were transformed into Attribute-Relation File Format (arff) 
using Weka. Initially, the training data in .arff format was 
loaded and processed in Weka. Since the training dataset file 
was large therefore a heap size of 8 GB was used to initiate the 
processing of the dataset in Weka. Firstly, standard base 
classifiers were employed to build the classification based 
predictive model. The predictive models built using base 
classification algorithm had a low number of TP due to the 
imbalanced nature of HTS dataset where the base classifier 
showed a preference for the majority class i.e., inactive 
compounds. Therefore, cost-sensitive learning was introduced 
using cost matrix where misclassification cost for FN was 
raised keeping the false positive rate under a threshold limit of 
≤ 20%. Thus a number of classification model was trained with 
incremental FN cost. The FN misclassification cost of the best-
trained model for each classifier is tabulated in Table I. As per 
Table I, the misclassification cost appended for FN to increase 
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the instances of TP’s keeping the FP under threshold (i.e., ≤ 
20%) was minimum for NB-CSC as compared to other cost-
sensitive base classifiers. 

TABLE I. MISCLASSIFICATION COST ASSIGNED TO FALSE NEGATIVE 

(FN) FOR EACH COST-SENSITIVE CLASSIFIER (CSC) 

Cost-Sensitive Classifier (CSC) 
Misclassification Cost on False 

Negative (FN) 

Random Forest (RF-CSC) 212315 

J48-MetaCost 3228 

Naïve Bayes (NB-CSC) 270 

 
Fig. 2. Comparative study of Balanced Classification Rate (BCR) and 

Accuracy (Ac) of each cost-sensitive classifier based model. 

In our present study, we observed that NB was able to build 
classification model at a faster rate as compared with another 
cost sensitive base classifier. The best-trained model for each 
cost-sensitive classifier was evaluated on 20% independent test 
dataset with different statistical evaluators of Weka. All the 
best-trained models had a controlled rate of FP instances (i.e., 
within 20% of the total number of molecules tested). The 
performance statistics of the best-predicted model for each cost 
sensitive base classifier on independent test data are tabulated 
in Table II. Due to the class imbalance nature of the dataset, the 
overall accuracies alone which were above 80% for all the four 
cost-sensitive classifier may not be sufficient to measure the 
efficacy of the classification model. Therefore, Balanced 
Classification Rate (BCR) another model performance measure 
was used to evaluate the robustness and efficacy of the model. 
BCR provides stability to the classification model by 
calculating the mean of specificity and sensitivity. As shown in 
Fig. 2, BCR value is highest RF-CSC as compared to all other 
cost-sensitive classifiers. 

A measure of specificity and sensitivity was used to access 
the ability of the classification model to accurately predict the 
actual biological activity of the molecule i.e., actual positive 
and negative instances in the dataset. An ideal classification 

model is a system which achieves 100% specificity and 
sensitivity, respectively. As shown in Fig. 3 all the cost-
sensitive classifier were highly specific in predicting negative 
results (predictive specificity ≥ 80%) and in terms of sensitivity 
random forest-CSC was found to be an ideal cost-sensitive 
classifier with a predictive measure of 100%, while Naïve 
Bayes-CSC had the lowest sensitive percentage among all the 
classifier used in the current study. 

 

Fig. 3. Comparative study of sensitivity (Sn) and Specificity (Sp) of each 

cost-sensitive classifier based model. 

Evaluation of the discriminatory power of the predictive 
model using AUC value was generated by drawing a Receiver 
Operating Characteristic (ROC) plotted between FP rate and 
TP rate as shown in Fig. 4. 

 
Fig. 4. Receiver Operating Characteristic (ROC) curve plot represent the 

significant Area Under the curve (AUC) values for Random Forest (RF), J48, 
Naïve Bayes (NB), and Sequential Minimal Optimization (SMO). 

TABLE II. THE PERFORMANCE STATISTICS OF COST-SENSITIVE CLASSIFIERS TESTED ON 20% INDEPENDENT TEST DATASET 

Classifier TN % TP % FP %  FN % Ac ROC Sn Sp BCR 

J48-Metacost 86.9 88.2 13.1  11.8 86.9  0.937 88.24 86.88 87.56 

RF-CSC 83.1 100 16.9  0.0 83.2 0.999 100 83.13 91.57 

NB-CSC 80.2 29.4 19.8  70.6 80.1  0.667 29.41 80.15 54.78 

SMO-CSC 82.0 70.6 18  29.4 82.0 0.736 70.59 82.04 76.31 

Where TN = True Negative; TP = True positive; FP = False Positive; FN = False Negative; Ac = Accuracy; ROC = Receiver Operating Characteristic; Sn = Sensitivity; Sp = Specificity BCR= Balanced Classification 

Rate. 
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The analysis of ROC curve is an appropriate and consistent 
method for evaluating the relative classifier performance in 
virtual screening using predictive classification model. The 
ROC curve analysis shows that random forest spread over a 
maximum area under the curve (AUC value: 0.999) as 
compared to other classifiers. In data analytics, an AUC value 
which is nearer to 1 is considered important. Though all the 
model based on four states of art classifiers were observed to 
have equivalent predictive accuracy, random forest-CSC 
proved to more efficient among all with high specificity, 
sensitivity, highest BCR rate and maximum AUC value. 

The basic idea of performing simulated screening protocol 
is to acquire a substantial number of true positive (active 
molecules) from a chemical dataset of variable sizes. To 
evaluate the enrichment for TP obtained by using in-silico 
screening based on predictive classification model, Enrichment 
Factor (EF) was calculated on a dataset of variable sizes. 
Generally, EFs are calculated at 1%, 2%, 5% and 10% of the 
dataset to be screened. The EF with random forest-CSC was 
found to be 3.5 (EF 1%), 4.6 (EF 2%), 3.4 (EF 5%) and 3.2 
(EF 10%). These EF values show that our best classification 
model (random forest) could achieve an enrichment of 3-4 
folds for TP’s as compared with any random screening 
protocol. Therefore, Random Forest is suggested to be a 
reliable and efficient classifier for screening inhibitors of 
dosRS from HTS dataset. 

IV. CONCLUSION AND FUTURE SCOPE 

In this study, we have shown that ML algorithms can be 
effectively used to construct a supervised classification model 
for screening inhibitors (active molecule) of dosRS from the 
publicly available chemical compound dataset. Comparative 
study of various statistical performance evaluators on four 
important base classifiers such as Random Forest, Naïve 
Bayes, SMO, and J48 show that random forest shows the 
highest sensitivity, BCR rate, and AUC value, thus RF is 
statistically efficient in screening active molecule (inhibitor of 
dosRS) from the independent imbalance chemical dataset. This 
study also suggests through a supervised cost-sensitive 
machine learning algorithm i.e., Random forest, in this case, 
can cause 3-4 folds enrichment of screening true positives 
(active inhibitors of dosRS) from large chemical libraries 
(dataset). Therefore, the future scope of the current proposed 
cost-sensitive learning-based model can be employed in virtual 
screening approaches which will speed up the target based anti-
tubercular drug discovery program against tuberculosis. 
Further, substructure analysis of the screened lead chemical 
molecules can be performed to identify important substructure 
which would allow us to screen more potent inhibitors of 
dosRS target macromolecule from chemical libraries will be 
implemented in future studies. 
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SUPPLEMENTARY FILE 1 

TABLE III. DIVISION OF MOLECULAR DESCRIPTORS CALCULATED FOR THE DATASET (ID: 1159583) 

Sl. 

No. 

Molecular 

Descriptor 

category* 

Number of 

molecular 

descriptors 

generated  

 

Molecular Descriptors prior to data processing 

Molecular Descriptors 

deleted after data 

processing 

1. 
Pharmacophore 

fingerprints  
147 

NEG_01_NEG – NEG_07_NEG 
NEG_01_POS – NEG_07_POS 

NEG_01_HBD – NEG_07_HBD 

NEG_01_HBA – NEG_07_HBA 
NEG_01_ARC – NEG_07_ARC 

NEG_01_HYP – NEG_07_HYP 

POS_01_POS – POS_07_POS 
POS_01_HBD – POS_07_HBD 

POS_01_HBA – POS_07_HBA 

POS_01_ARC – POS_07_ARC 
POS_01_HYP – POS_07_HYP 

HBD_01_HBD – HBD_07_HBD 

HBD_01_HBA – HBD_07_HBA 
HBD_01_ARC – HBD_07_ARC 

HBD_01_HYP – HBD_07_HYP 

HBA_01_HBA – HBA_07_HBA 
HBA_01_ARC – HBA_07_ARC 

HBA_01_HYP – HBA_07_HYP 

HYP_01_HYP – HYP_07_HYP 

NEG_01_POS 
NEG_02_POS 

NEG_01_HBA 

NEG_02_HBA 
NEG_01_ARC 

NEG_01_HYP 

POS_01_POS 
POS_02_POS 

POS_01_HBD 

POS_01_HBA 
POS_02_HBA 

POS_01_ARC 

POS_01_HYP 
HBD_01_HBD 

HBD_02_HBD 

HBD_01_HBA 
HBD_02_HBA 

HBD_01_ARC 

HBD_01_HYP 
HBA_01_HBA 

HBA_02_HBA 

HBA_01_ARC 
HBA_02_ARC 

HBA_01_HYP 

ARC_01_HYP 

2. 

 
Weighted Burden 

Number  
24 

WBN_GC_L_0.25  

WBN_GC_H_0.25 

WBN_GC_L_0.50 
WBN_GC_H_0.50 

WBN_GC_L_0.75 

WBN_GC_H_0.75 
WBN_GC_L_1.00 

WBN_GC_H_1.00 

WBN_EN_L_0.25  

WBN_EN_H_0.25 

WBN_EN_L_0.50 
WBN_EN_H_0.50 

WBN_EN_L_0.75 

WBN_EN_H_0.75 
WBN_EN_L_1.00 

WBN_EN_H_1.00 

WBN_LP_L_0.25  

WBN_LP_H_0.25 

WBN_LP_L_0.50 
WBN_LP_H_0.50 

WBN_LP_L_0.75 

WBN_LP_H_0.75 
WBN_LP_L_1.00 

WBN_LP_H_1.00 

None 

3. Properties  8 XLogP, PSA, NumRot, NumHBA, NumHBD, MW, BBB, BadGroup None 

 


