
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

255 | P a g e

www.ijacsa.thesai.org

TLM-2 Base Protocol Analysis for Model-Driven

Design

Salaheddine Hamza Sfar and Rached Tourki

Department of physics, electronic and microelectronic lab

Faculty of sciences at Monastir

Monastir, Tunisia

Abstract—The system-on-chip design cost is not only

dependent on implementation and manufacturing techniques,

but also on the used methodologies and design tools. In recent

years, transaction level modelling (TLM) and more specifically

the SystemC TLM-2 library has become the standard in writing

a system-level specification. Even though TLM-2 based models

are more abstract than registry-level ones, they are very

challenging to develop. They are often written manually and

from scratch. In this paper, we expose a more elaborate and

modular structure of transaction level models based on more

predictable semantics. This work will be our first stone of the

building of a model-driven design, a methodology that has

proven itself in software engineering.

Keywords—Electronic system level design; systemC;

transaction level modelling; model-driven engineering

I. INTRODUCTION

Over the years, a race is set to elevate the levels of
abstraction of systems on chip descriptions to cope with their
incessant rise in complexity. This gives birth to a new field of
research called Electronic System Level (ESL). Nowadays
Transaction Level modelling (TLM) is among the most
promising ESL methodology. Transaction level (TL) models
differ from register-transfer level (RTL) models by using
neither clock nor signals. The designer describes the
communication behavior of a module using function calls that
define a set of transactions over a set of channels. Verification,
architecture exploration or early stage software development
and validation are the main use cases of these models [1]-[7].

TLM as a concept is not tied to one language, but
nowadays, SystemC and its TLM-2 library established himself
as the standard when writing TL models [8]-[10]. The
Interoperability is the main value of this library. It is achieved
by defining transactions using core interfaces (blocking, non-
blocking and direct memory interfaces) between an initiator’s
socket and a target’s socket. This establishes a transactional
interconnection in which the data passing is carried in the
generic payload (GP) format defining standards slots for the
information’s attributes. The library defines a set of phases that
mark the beginning and the end of a request-response and
defines a base protocol (BP) that enumerates rules to establish
valid sequences between the initiator and the target. TLM-2
library offers resources to write TL models in two coding
styles that correspond to two timing granularities: loosely-
timed (LT) and approximately-timed (AT). The LT coding
style delimits each transaction with two timing points, marking

the start and the end of the transaction. While the AT coding
style breaks a transaction down into multiple phases, with
explicit timing points marking the transition between phases.

In this paper we focus on our expertise in TLM by detailing
a coherent and a clear structure for the LT and the AT models.
We depict several methods involved in communication and
specify their interactions. This is in order to automate the
generation of partial implementation.

The rest of this paper is organized as follows. Section 2
provides works related to the meet of model-driven design and
ESL design. Section 3 sums our TL models’ structuring
proposal. Sections 4 and 5 focus on TL models using AT
coding style for model driven design. Finally, Section 6
concludes the paper.

II. MOTIVATION AND RELATED WORKS

With our experience in developing TL models summarized
in [11] we can make two essential remarks. On one hand, we
note that the number of line codes easily reaches a few tens of
thousands even if the TL model contains only one processor, a
memory module and two or three hardware modules
interconnected with shared bus. Such model is not easy to write
and take a lot of time to debug since it is written manually from
scratch and the development environment is very rudimentary:
a text editor, a command line compiler and a classic debugger.
On the other hand, we remark that as the TL model is
organized as its source code contains repeatable and/or
predictable parts. We believe that a dedicated tool could
generate them from a schematic representation for example. A
graphical user interface will be, certainly more ergonomic than
the poor and conventional general-purpose programming
environment. It will considerably reduce the efforts of coding
and debugging. Moreover, it will facilitate the integration of
third party module and the model’s verification. This will
surely have a positive impact on productivity and better
teamwork.

One can argue that an industrial electronic design
automation (EDA) tool should do the job. For example, in [12]
the authors promote the capabilities of the Vista Model Builder
from Mentor Graphics. The tool enables developers to express
their designs in terms of general purpose graphical
programming representations, such as state machines and
structure diagrams, Models generated by this tool, delink
functionality, power and timing from each other, in order to
handle a unique modular behavioral description throughout the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

256 | P a g e

www.ijacsa.thesai.org

design flow. A breakdown is given in [3] and the authors show
up that the Mentor’s tool is very exciting. However, it adopts a
proprietary approach, like any commercial tool, which makes
customized models very difficult to develop. As long as we
leave the crosswalks, the tool misinterprets the structure of the
custom model.

Another promising methodology, to address the non-
stoppable complexity, is the model-driven software
engineering (MDSE) or model-driven engineering (MDE).
MDSE is a software engineering paradigm appeared for about
ten years and mainly focused on software development for
specific application domains such as telecom, aerospace,
healthcare, insurance and biology [13]-[23]. MDSE
encompasses three major approach model-driven architecture
(MDA), model-driven software development (MDSD) and
domain-specific modeling (DSM). Although these terms are
based on the same paradigms, there are certain nuances. All
use a computation independent model as the starting model.
Next, the designer captures domains-related specifications to
build a platform-independent model (PIM). PIMs are formal
models intimately linked to the targeted domain; however, they
are completely independent of the later implementation. In the
most case, they are written with UML that has been adapted
via profiles to the targeted domain. A domain-specific
language (DSL) [16] can be used to formalize PIMs. Via model
transformation, usually automated with tools, successive
platform-specific models (PSMs) are created from the PIMs to
get finally a target platform. Such platforms are source code
written, for example, in CORBA, J2EE, .NET, C++ or
proprietary frameworks. The tools used to transform a PIM
into a PSM or a PSM to another PSM or a PSM to code are
transformation engines and generators that analyze certain
aspects of input models and then synthesize various types of
artifacts, such as simulation inputs, XML deployment
descriptions, alternative model representations, or source code.

The separation of PIM and PSM is a key concept the MDA
approach that enables better platform reuse, nevertheless the
code generation is often partial and requires semi-automatic or
manual completion.

Comparing with MDA, MDSD approach presents several
differences. Transformations in MDSE focus for translating
model into code. In this case, PIM contains all necessary
details to be translated into code. The target platform is
decomposed into three parts:

 Generic code: identical for all applications.

 Schematic code: systematically generated from
architecture patterns

 Individual code: application specific.

It is clear that the generic code and the schematic code can
be generated automatically; however, the individual code is
not. MDSD does not aim on hundred percent code generation
like MDA approach.

Finally, DSM approach does not favor the use of UML or
UML extensions, instead the designer specify model with
domain specific language. Similar to MDSD, DSM proposes to

generate the solution from PIM without the need of
intermediate PSM but it aims a full code generation.

After our brief presentation on the MDSE methodology, we
can conclude that it adopts the same philosophy as the modern
system on chip design methodologies, i.e. electronic system
level design such as transaction level modeling. The points of
convergence are listed in Table I.

TABLE I. CONVERGENCE BETWEEN MDSE AND ESL

Concepts MDSE ESL (TLM)

Abstraction

Abstract specific

realization

Abstract details like

signal clock

Interoperability
Not specific of any
language

Assumed by
SystemC standard

Separation of

concerns

Application code

and infrastructure
code

Communication and

computation

During the past years, numerous works, such as in [24]-
[30], were made to adopt the MDE approach to the embedded
systems and system-on-chip design. The key points of success
of MDE approach is that the syntax and semantics of used
models are clearly defined. Moreover, MDE tools impose
domain-specific constraints and perform model checking that
can detect and prevent many errors early in the life cycle.

In [30], the authors propose customizable system structure
template based transaction level design (SST-TLM). These
templates represent typical system structures that author named
mainstream. They have two timing granularities: time-
approximate and cycle-accurate. The authors develop an
extensible template description (EDT) framework to enable the
designer to customize architecture parameters. TL models are
automatically generated by a house made tool named
TL_Platform Creator. The work presented looks goods but
presents some shortages. On one hand, SST-TLM is limited to
three mainstreams, and the EDT efficiency depends on the
contents of the TemplateDef library. On the other hand, there
are no hints about neither third party block integration nor
about IP-XACT standard support.

MDSD Approach and TL_Platform are the closest to our
work, since automatic generation of TL models is a major
motivation for us.

III. TL MODELS’ STRUCTURING PROPOSAL

This section exposes key ideas that we used to structure our
TL models.

A. Structuring the Module’s Object Classe

As mentioned in the introduction, a TL model is no more
than a set of communicating entities, each on is called a
module. Each one communicates with the outside world
through one or more sockets. To establish a communication, a
module can act as target, initiator or alternating the two roles.
In all cases, we decompose a module into two parts: a core and
a wrapper to get separate communication and computation. The
core implements computation while the wrapper handles the
communication with the other modules. The class diagram of
this organization is shown into Fig. 1.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

257 | P a g e

www.ijacsa.thesai.org

Fig. 1. UML class diagram for a pair Initiator-Target.

Class MyInitiator and class InitiatorCore represents
respectively the initiator’s wrapper and the initiator’s core.
MyInitiator inherits from two classes: sc_module and
tlm::tlm_bw_transport_if<>. The last class is used to set the
public member “socket” as an initiator socket instance. A
Similar hierarchy is used for the target side. We made the
association between a core and its wrapper by binding the
wrapper’s pointer to the core using the attribute “InitiatorCore
instance”. This solution avoids the use of additional SystemC
objects to bind a wrapper to a core; objects such as ports or
FIFOs might distort the model performances. In addition, by
binding the wrapper’s pointers to their respective cores, we
make wrappers the only SystemC modules visible at the top
level of the model.

Autonomous modules are specific modules widely used in
system-on-a-chip design. Hardware acceleration modules are
the typical case of such modules, they have a target socket and
an initiator socket. They operate as target during a
configuration phase and then act as master in the computation
phase. Fig. 2 shows the class diagram of such module. It shows
that the wrapper of such module inherits from the both TLM
interface since it has two types of sockets. We consider
mandatory a specific thread that will allow the autonomous
module to switch between the target mode and the initiator
mode. We chose to implement this thread by a finite state
machine.

Modules with multiple sockets induce the problem of
implementation of TLM-2 methods, since the standard permit
only one implementation with standard signature. For example,
in a module with multiple target sockets, the wrapper permits
only one implementation of a b_transport (). A unique
b_transport () cannot determine through which socket the
method call has arrived and thus cannot identify the caller. One
solution will be the use of a convenience socket. It provide
methods to register callbacks for incoming interface method
calls. Each socket will register its own b_transport method.
Another solution is to define a TLM API class for each socket
in the target, and then each class will inherit from
nb_fw_transport_if and sc_module and implements the

inherited methods. The designer instantiates these classes in the
wrapper and bind them to the corresponding target sockets.
The first solution is strongly advised to get an easy readable
model.

Fig. 2. Class diagram of an autonomous module.

B. Definition of Additional Methods

Among the TL model the one that uses the LT coding style
is the simplest. In addition to the blocking transport methods,
we propose two other methods. We named these proposed
methods “R/W methods” and “Access method”. An R/W
method is implemented in an initiator’s wrapper, whereas an
Access method is implemented in target’s core. All R/W
methods must have a Boolean return value; on the other hand,
the designer must define an enumerated type as a return value
of the Access method. According to these defined values, the
designer adjusts the response status and the delay annotation in
b_transport body before return. If an Access method has
triggered any computation in the target’s core, additional delay
should be considered.

In TL models with the AT coding style, things get
complicated and we introduce more methods. Moreover, the
R/W methods are slightly modified to handle non-blocking
communication, the main feature of the AT coding style. When
using such communication scheme, the designer should adopt
TLM-2 base protocol (BP). This protocol defines a complete
sequence composed of four phases as follows: (BEGIN_REQ

→ END_REQ → BEGIN_RESP → END_RESP). Thus, we

divide the transaction into six methods: R/W methods,
nb_transport_bw and end_response_method implemented in
the initiator’s wrapper, and end_request_method,
begin_response_method and nb_transport_fw implemented
in the target’s wrapper.

As recommended in TLM-2 manual, we use the payload
event queue (PEQ) to manage the exchange of payloads
between the proposed methods. Payloads are injected into a
PEQ with a delay annotation and then they emerge from the
PEQ at a time calculated from the current simulation time plus
the annotated delay. End_response_method,
end_request_method and begin_response_method are made
sensitive respectively to m_end_response_PEQ,
m_request_PEQ and m_response_PEQ. Fig. 3 resumes all
proposed methods.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

258 | P a g e

www.ijacsa.thesai.org

Fig. 3. Additional methods proposal.

IV. PRELIMINARY BP ANALYSIS

In addition to the complete sequence, the BP defines
several valid sequences that omit some phases. Our preliminary
analysis of the basic protocol is based on the phase diagram
shown in Fig. 4. We refer to each method call by Ai where

i {1,2,3,4}. This index marks the phase of the transaction
after calling a TLM-2 non-blocking interface. The values 1, 2,
3 and 4 mark BEGIN_REQ, END_REQ, BEGIN_RESP and
END_RESP, respectively. We used the index value 0 to mark
the beginning of the transaction. The index values 4 and 5
denote the end of a transaction. The value 5 indicates that the
return value is TLM_COMPLETED. Rij refers to the call
returns: indexes i and j refer respectively to the call phase and
the return phase. The diagram of Fig. 4 shows all valid
sequences. We can simply find them by applying the following
rules:

 A valid sequence must begin with a call A1;

 A valid sequence is an alternation between a call and a
call return with the respect the precedence rules
imposed by the complete sequence

 A valid sequence must end by Ri4 or Ri5.

The exposed model is not restrictive to a point-to-point
communication. Multipoint topology can be easily divided into
a multitude of point-to-point interconnections. Fig. 5 gives an
example of typical shared bus topology.

Fig. 4. Base protocol permitted sequences.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

259 | P a g e

www.ijacsa.thesai.org

Fig. 5. Typical shared bus architecture.

V. DEEPER BP ANALYSIS

In the two previous sections, we have shown that the
structuring of the models, that is to say the class diagrams and
the implementation of the different methods, is an essential
step for the automatic code generation. The preliminary study
of the base protocol also shows that the input information will
evidently be one of the fifteen phase diagrams of Fig. 4.

In this section, we will detail what temporal constraints are
concerned in each associated temporal constraints graphs and
how to insert them into the proposed methods. We must keep
in mind that the designer may not “master” the behavior of all
system’s components, especially when he integrates third party
TL modules in his design. For example, when an R/W method
carries out the A1 call, it advances transaction phase to
BEGIN_REQ. Next, the interface of the forward path can
accept the transaction, change the transaction phase or
complete the transaction. Therefore, the designer of the target
will have the choice between four situations. Every choice, he
makes, will have an impact on the progress of the transaction.
We say that BEGIN_REQ is the first point of divergence that
offers several possible evolutions of the transaction. Similarly,
BEGIN_RESP is the second point of divergence and
END_RESP is the third one. So A1 return call can move the
transaction from the first point of divergence to the second or

the third one, or terminates the transaction. If the transaction is
moving towards its second point of divergence, it is up to the
designer of the initiator who decides how the transaction has to
evolve. That is to say, he can decide to move to the third point
of divergence or complete the transaction. It is obvious that if a
transaction is in his third point of divergence, it is still the
interface of the forward path in the target’s wrapper, which
then decides how to finish the transaction.

Fig. 6 reorganizes all possible transaction sequences of BP
by taking into account the key ideas mentioned above. It shows
that there are only eight possible graphs of temporal
constraints.

The base protocol involves three timing constraints, the
target sets two and the initiator sets only one. The target sets
the request_accept_delay: it is the minimum time that the
initiator must comply before sending another request. It
separates BEGIN_REQ and END_REQ. Suppose we have a
transaction with write command, and then BEGIN_REQ marks
the moment when the data is ready to be transferred from the
initiator to the target. Thus, it marks the moment of sending the
first byte. It is then natural that the target will delay END_REQ
until it receives the last byte. Nevertheless, according to BP
rules, the target is not obliged to notify END_REQ, it may skip
this phase to go directly notify the BEGIN_RESP. In this case,
the target sets the latency: it is the delay between BEGIN_REQ
and BEGIN_RESP. It is the minimum time required for the
target to react to the requested order. If the target has already
notified the END_REQ, it can delay the BEGIN_RESP with a
read_delay or write_delay. Therefore, we can say that:

<target> latency=<target>request_accept_delay+<target>

delay

The initiator configures a single time constraint called
response_accept_delay: it separates BEGIN_RESP and
END_RESP. To understand the meaning of this delay, consider
a transaction with read command. BEGIN_RESP marks the
moment when the data is made available to the initiator. This
is, also, the moment when the first byte starting to transit to the
initiator. Therefore, the initiator notifies the end of the response
when receiving the last byte. Of course, relying on the BP’s
rules, this is not an obligation. Fig. 7 and 8 give code details of
the eight sequences.

Fig. 6. All permitted transaction sequences in TLM-2 base protocol.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

260 | P a g e

www.ijacsa.thesai.org

Fig. 7. Implementations of temporal constraints.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

261 | P a g e

www.ijacsa.thesai.org

Fig. 8. Implementations of temporal constraints (cont.).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

262 | P a g e

www.ijacsa.thesai.org

The sequence N° 1 represents the complete sequence. In
this case, all methods are mandatory. The
request_accept_delay delays end_request_method against
R/W method and so against nb_transport_fw. This later
annotates request_accept_delay when the transaction is
injected in m_end_request_PEQ. This PEQ is in the list of
sensitivity of end_request_method. In turn,
end_request_method annotates read or write delay when the
transaction is injected in m_response_PEQ. In the initiator
side, it is nb_transport_bw that annotates
response_accept_delay when the transaction is injected in
m_end_response_PEQ. Finally, it is end_response_method
that makes the second call of nb_transport_fw and then
restores the transaction object to the memory manager.

Sequence N° 2 is similar to Sequence N° 1, but here no
need to end_response_method and it is
begin_response_method that restores the transaction object to
the memory manager.

In sequence N°4, target omits the end request phase and
starts directly the response phase. The target, then, injects
payload in m_response_PEQ with an annotation equal to its
latency.

In the sequence N°5, we are in the situation where
nb_transport_fw changes the phase of the transaction to
END_REQ and at the same time the target calls
begin_response_method with a delay equal to its latency.
Therefore, the target injects payload in m_response_PEQ with
an annotation equal to its latency and at the same time, it
annotates request_accept_delay. The initiator will honor this
constraint by calling wait () within the R/W method. This
situation must not be confused with sequence N°3 where
nb_transport_fw returns TLM_ACCEPTED.

Situations N°7 and N°8 are particular, since there are no
calls of backward interface and R/W function deals directly
with the target. In the first case, it is in charge to inject payload
in m_end_response_PEQ. The delay annotated is the delay
returned by nb_transport_fw plus response_accept_delay. In
the second case, no injection in PEQ is needed, since
transaction is completed. After calling nb_transport_fw, the
R/W method just calls wait to fulfil a global delay equal to the
target’s latency plus response_accept_delay.

VI. CONCLUSIONS

In this paper, we presented a well-structured transaction
level model based on SystemC TLM-2 library. Our structuring
expertise shows us that many semantics can be easily
integrated into a model driven design flow. We must keep in
mind that SystemC is none other than a set of STL added to the
C ++ language, so class diagrams can be converted into
SystemC code. On the other hand, if the designer chooses one
of the allowed sequences of the base protocol for a socket pair,
the code of all proposed methods is predictable, as is the
temporal annotation scheme.

We believe that we have established a detailed specification
of the tool that will automatize the generation of our TL model.

REFERENCES

[1] M. Glasser, “Transaction-Level Modeling,” Open Verification
Methodology Cookbook, pp. 49–68, 2009.

[2] J. Hu, T. Li, and S. Li, “Equivalence checking between SLM and TLM
using coverage directed simulation,” Front. Comput. Sci., vol. 9, no. 6,
pp. 934–943, Oct. 2015.

[3] B. Bailey and G. Martin, “Transaction-Level Platform Creation,” ESL
Models and their Application, pp. 309–359, Nov. 2009.

[4] G. B. Vece, M. Conti, and S. Orcioni, “Transaction-level power analysis
of VLSI digital systems,” Integration, the VLSI Journal, vol. 50, pp.
116–126, Jun. 2015.

[5] K. Popovici, F. Rousseau, A. A. Jerraya, and M. Wolf, “Transaction-
Accurate Architecture Design,” Embedded Software Design and
Programming of Multiprocessor System-on-Chip, pp. 151–182, 2010.

[6] S. Kundu, S. Lerner, and R. K. Gupta, “Translation Validation of High-
Level Synthesis,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 29, no. 4, pp. 566–579, Apr. 2010.

[7] V. Lahtinen, J. Siirtola, and T. Mäkeläinen, “Transaction-Level
Modeling in Communication Engine Design: A Case Study,” Advances
in Design and Specification Languages for Embedded Systems, pp. 145–
156.

[8] S. Rigo, B. Albertini, and R. Azevedo, “Transaction Level Modeling,”
Electronic System Level Design, pp. 25–36, 2011.

[9] A. Banerjee and B. Sur, “SystemC and SystemC-AMS in Practice,”
2014.

[10] “IEEE Standard for Standard SystemC Language Reference Manual.”

[11] S. H. Sfar, I. Bennour et R. Tourki “Stepwise SystemC/TLM-2 models
structuring and optimizations”, Proceeding de IDT 2016, 11th
International Design & Test Symposium, 18-20 december 2016,
Hammamet, Tunisia

[12] Y. Vellery and R. Rachamim,”Realizing ESL with Scalable Transaction
Level Models”,2010.

[13] T. Stahl and M. Völter, “Model-Driven Software Development”, Wiley,
2006.

[14] D. Frankel, “Model Driven Architecture”, Wiley, 2003.

[15] S. Kelly and J. Tolvanen, “Domain-Specific Modeling – Enabling Full
Code Generation”, Wiley, 2008.

[16] K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits, and S.
Neema, “Developing Applications Using Model-Driven Design
Environments,” Computer, vol. 39, no. 2, pp. 33–40, Feb. 2006.

[17] A. Childs, J. Greenwald, G. Jung, M. Hoosier, and J. Hatcliff, “CALM
and Cadena: Metamodeling for Component-Based Product-Line
Development,” Computer, vol. 39, no. 2, pp. 42–50, Feb. 2006.

[18] J. Gray, Yuehua Lin, and Jing Zhang, “Automating Change Evolution in
Model-Driven Engineering,” Computer, vol. 39, no. 2, pp. 51–58, Feb.
2006.

[19] R. B. France, S. Ghosh, T. Dinh-Trong, and A. Solberg, “Model-Driven
Development Using UML 2.0: Promises and Pitfalls,” Computer, vol.
39, no. 2, pp. 59–66, Feb. 2006.

[20] G. A. Moreno and P. Merson, “Model-Driven Performance Analysis,”
Lecture Notes in Computer Science, pp. 135–151, 2008

[21] K. Balasubramanian, D. C. Schmidt, Z. Molnár, and Á. Lédeczi,
“System Integration Using Model-Driven Engineering,” Designing
Software-Intensive Systems, Designing Software-Intensive Systems:
Methods and Principles, pp. 474–504, 2009.

[22] P. S. Kaliappan, H. König, and S. Schmerl, “Model-Driven Protocol
Design Based on Component Oriented Modeling,” Lecture Notes in
Computer Science, pp. 613–629, 2010.

[23] V. G. Diaz, J. M.C. Lovelle, B.C. P Garcia-Bustelo and O. S. Martinez,
“Progressions and Innovations in Model-Driven Software Engineering”,
IGI Global, 2013.

[24] Y. Jiang, H. Liu, H. Song, H. Kong, M. Gu, J. Sun, and L. Sha, “Safety-
Assured Formal Model-Driven Design of the Multifunction Vehicle Bus
Controller,” Lecture Notes in Computer Science, pp. 757–763, 2016.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

263 | P a g e

www.ijacsa.thesai.org

[25] G. Martin and W. Müller, Eds., “UML for SOC Design,” 2005.

[26] E. Riccobene, P. Scandurra, S. Bocchio, A. Rosti, L. Lavazza, and L.
Mantellini, “SystemC/C-based model-driven design for embedded
systems,” ACM Transactions on Embedded Computing Systems, vol. 8,
no. 4, pp. 1–37, Jul. 2009.

[27] I. Ben-Hafaiedh, S. Graf, and M. Jaber, “Model-based design and
distributed implementation of bus arbiter for multiprocessors,” 2011
18th IEEE International Conference on Electronics, Circuits, and
Systems, Dec. 2011.

[28] C. Teodorov, D. Picard, and L. Lagadec, “FPGA physical-design
automation using Model-Driven Engineering”, 6th International

Workshop on Reconfigurable Communication-Centric Systems-on-Chip
(ReCoSoC), Jun. 2011.

[29] E. Riccobene and P. Scandurra, “Integrating the SysML and the
SystemC-UML profiles in a model-driven embedded system design
flow”, Design Automation for Embedded Systems, vol. 16, no. 3, pp.
53–91, Sep. 2012.

[30] D. Wang, Y. Ye, and S. Li, “System structure template based transaction
level modeling”, 2011 Chinese Control and Decision Conference
(CCDC), May 2011.

