
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

281 | P a g e

www.ijacsa.thesai.org

A Method for Analyzing and Designing Microservice

Holistically

Ahmad Tarmizi Abdul Ghani, Mohd. Shanudin Zakaria

Faculty of Information Science and Technology

Universiti Kebangsaan Malaysia

Malaysia

Abstract—Microservice is a new architecture that is getting

attention in the development of service systems. However,

microservice is still at the early stage and the acceptance of this

architecture is overwhelming. Microservice architecture is a

promising architecture in delivering loosely coupled,

decentralized, and scalable system that utilizes the latest

technology, such as container and cloud computing. However, the

traditional method for analyzing and designing system will not be

able to fully utilize the capability of the microservice

architecture. Therefore, a new method for analyzing and

designing the microservice holistically is being proposed in this

paper. The Design Science Research methodology has been

adopted in designing the proposed method. The artifact, which is

the result of the research, is the proposed method. The proposed

method has shown its potential in being used to analyze and

design the microservice holistically and to benefit from the

microservice architecture capabilities.

Keywords—Microservice; service design; promise theory; viable

system model; Viplan method

I. INTRODUCTION

The growth of technology such as cloud computing, the
Internet of Things (IOT) and mobile technology has created a
new challenge in designing information systems, particularly
the service systems [13]. People are using and getting services
out of these technologies. These technologies have challenged
the constraints of space and time as they are being utilized
exponentially and the trend is growing. Previous knowledge
with regard to system analysis and design has come to an end
as the knowledge caters only for systems that are designed in a
manner where they are tightly coupled, non-scalable and
centralized.

Present day systems must be designed in the form of a
more loosely coupled manner that can work together as a unit
[14]. There is no force in making these separate systems to
work together. It is only how the behavior of each separate
system (or subsystems) is perceived, and then by using the
promise (such as the contract used in the web service) provided
by every system, that a whole new system will emerge. This
whole new system, which is made up of loosely coupled parts
(or subsystems), interact and work together voluntarily and will
have its new behaviors [7]. However, this new system cannot
be controlled directly because it consists of so many parts that
work together. In order to help control the system, the use of
constraints to the behavior which can be configured as shown
by the system is thus performed [8]. The use of constraints will
enable the system to have self-control and self-regulation

instead of the need to be controlled and monitored by humans.
This is called the autonomous system.

Humans have the temptation of controlling everything, and
so does the service system. It is easy to control small, not-so-
complex, and predictable systems. However, with the growth
of the present day service system, it is getting more impossible
for humans to control the complex system. Hence, humans
must give up the control and let the system to control itself. It
is rather like a need to adopt the knowledge from the
cybernetics area in order to design this new type of analysis
and design in creating the autonomous system [1]. The results
of letting down of human control of the system are that the
system will become more autonomous, scalable (time and
space), faster, reliable and durable.

II. BACKGROUND

In designing this new method, a number of existing theories
whether old or new, and also theories in other fields have been
revisited and adopted. Among those theories are the
information theory, the control and communication theory,
variety engineering [2], and self-organization [3] theory from
cybernetics, the Viable System Model [4], and the Viplan
method [10] from the organizational theory and the promise
theory [5].

The reason why those theories are adopted is because each
of the theory has its own role in developing the method that is
going to be proposed in the next section. Overall, this method
is based on the Viplan method which provides the foundation
in building the holistic self-organized system. The Viplan
method itself is based on the Viable System Model which is the
model for building an autonomous system which is able to
adapt to its environment and can change accordingly in order
to survive. The Viplan method is an established method that
has been used in designing viable organizational system based
on VSM. The Viplan method on the other hand, provides
knowledge on how organizations can be structured to be viable
based on the identity of the organization, and also the
identification of the primary and the support activities in the
organization that will respond to the environment. Then, the
business processes can be identified and mapped to the primary
and the support activities. Apart from that, the way information
is passed among the business processes must also be
recognized since information is important in ensuring the
viability of the whole organization. There is no centralized
control in the organization developed using the Viplan method.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

282 | P a g e

www.ijacsa.thesai.org

The latest theory adopted for the design of this new method
is the promise theory, which was pioneered by Burgess [8].
This theory is developed based on the knowledge of quantum
physics, and has been successfully implemented as a
configuration software known as the CFEngine. The concept of
the promise theory is to break things into parts and to make it
work together as one. It is a bottom up paradigm where
different parts can interact with each other and work together
as new whole system. The promise theory gives special
attention on how to design a system that is not controlled by
force and is able to work voluntarily. The only control that
exists within the agent is the constraint from the promise made
by the agent to the promisee. Moreover, this theory does not
require for a centralized control.

The Viplan method and the promise theory are the two
main theories that provide the design concept in developing the
method proposed in this paper. The proposed method has then
been improved and tested in analyzing and designing the
microservice system. Microservice is a new paradigm in
designing service systems. Systems used to be designed in the
context of the client server architecture [11]. Then, the concept
of the Service Oriented Architechture (SOA) with the purpose
of making a loosely-coupled service system was created [14],
[18]. However, humans still wanted to control the system they
have developed, and thus the type of SOA that was adopted
was the Enterprise Service Bus which failed to be controlled by
the humans and resulted in a non-scalable system [6].
Microservice on the other hand, is to ensure that the service
system is scalable, regardless of the constraints of time and
space [22]. Furthermore, microservice does not require for any
direct human control or any centralized control. In order to
achieve this, there is a need for a method that can be used to
analyze and design the microservice holistically.

III. RELATED WORK

This research is related to other ongoing researches
regarding how to break the monolithic system and to identify
the microservice boundary, and transforming monolithic
system into microservice system [14]-[16], [21], [24].
Monolithic system is a system developed in one long script that
have thousands line of codes. The code will be modified if
there is a need and the changes made will affect the whole
system when redeployed because the monolithic system is
tightly coupled in nature. This style of system development
usually implemented using programming language such as
PHP and Ruby. Monolithic style of system is also not an
exception to the implementation using object oriented
programming language such as Java and .Net. Monolithic
system is a centralized architectural style of information
system. The problem will occur when the demand to the
system by the user are beyond the threshold level of how the
system can handle and the centralized style of system has the
problem to scale and to load balance the system gracefully [9].

Other related works are on composing microservices to
make the separated microservices to interact and work in
cooperative manner. The composition of microservice is
related to service orchestration [20] and service choreography
[23] and piping [12]. The organization structure is another

related research that play important role in developing
microservice [11], [17].

IV. RESEARCH METHODOLOGY

The research methodology used in this research is the
Design Science Research methodology. The methodology
consists of five phases [14]:

A. Awareness of the Problem

This research is aware of the problems faced in analyzing
and designing architecture-based microservice systems. The
existing method is no longer suitable in analyzing and
designing microservice-based architecture since microservice
architecture is a decentralized and loosely-coupled type of
architecture [19].

B. Suggestion

The use of a more holistic method of analyzing and
designing microservice-based systems is suggested so that it is
able to reap the full benefit of the architecture such as
scalability, decentralization, loosely coupled and autonomous.

C. Development

Existing theories are surveyed and tested in order to be
used as the foundation for the proposed method. Among the
theories are variety engineering, the Viable System Model, the
Viplan method, and the promise theory.

D. Evaluation

The method was evaluated using different case studies to
improve the design.

E. Conclusion

The final design of the method was produced and presented
in this paper as a way of communication. The final design of
the method is considered as an artifact of the research, which is
the contribution of this research to the body of knowledge.

V. METHOD FOR ANALYZING AND DESIGNING

MICROSERVICE ARCHITECTURE HOLISTICALLY

The proposed method consists of the following steps. All
the steps are described using an example of a case study for
analyzing and designing a microservice for a local university in
Malaysia.

A. Identifying the Organizational Identity and Objectives

The organizational identity and objectives in this case are
for a university. They can be formed using the TASCOI
formula. The importance of this step is to ensure that all
members of the organization understand what the organization
identity is and where it is heading to. Every member must have
the same understanding of what the transformation is that is
being done by the organization.

1) Transformations
The transformations made by the university are:

 To equip students with the most current and quality
knowledge to face the working world.

 To increase the research impact in the niche areas.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

283 | P a g e

www.ijacsa.thesai.org

2) Agents (who will perform the transformations)

 Lecturers

 Researchers

 Administration staff

 Support staff

3) Suppliers (who will supply the input for the

transformations)

 Secondary schools

 Polytechnics

 Industries

 Government sectors

 Other higher education institutions

 Other research institutions

4) Customers (who will benefit from the transformations)

 Funders

 Industries

 Government sectors

 The general public

5) Owner (who owns the organization)

 University Board of Directors, Vice Chancellor, Deputy
Vice Chancellors

6) Intervener (who can intervene the organizational

transformations)

 The Ministry of Higher Education

 Accreditation agencies

 Other higher education institutions

B. Modeling of the Organizational Complexity Drive

The purpose of this step is to model the existing
transformation that is carried out by the organization based on
five complexity drives which are the technology, geography,
time and customer/supplier.

1) Technological drive
Fig. 1 is the example of technological model. The purpose

of the technological drive is to see what transformation
technology is adopted by the organization in converting the
input into the output.

2) Geographical drive
The geographical drive looks at how the organization is

spread over at different locations (Fig. 2)

3) Time drive
The time drive (Fig. 3) is important in assessing how time

plays an important role in the organizational complexity.

4) Customer/supplier drive
The customer/supplier drive helps to identify the suppliers

who supply the input into the transformation process, and to

identify the customers who benefit from the organizational
transformations (Fig. 4).

C. Modeling the Organizational Unfolding Structure

All the complexity drive modeled in the previous steps are
then combined into one model that is called the organizational
unfolding structure. The purpose of this model is to model how
the organization is structured from all types of drives. The
primary activities can then be identified from this unfolding
structure and all the other unfolding structures under each
primary activity. The unfolding structure is a recursive
structure (Fig. 5).

Fig. 1. Technological model.

Fig. 2. Geographical model.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

284 | P a g e

www.ijacsa.thesai.org

Fig. 3. Organizational unfolding structure model.

Fig. 4. Customer/supplier model.

Fig. 5. Time model.

D. Building the Cross Table between the Primary Activities

and the Support Activities

Primary activities are activities that are directly involved in
the transformation process. Meanwhile, the support activities
are performed by those other than the transformation activities
but help to enable the transformation processes to take place. A
cross table is used in mapping the primary activities to the
relevant supporting activities (Table I). The primary activities
are extracted from the unfolding structure identified in Step C.
The primary activities in the table are focused on the unfolding
structure under the title “Education”.

TABLE I. CROSS TABLE BETWEEN THE PRIMARY ACTIVITIES AND THE

SUPPORT ACTIVITIES

Primary Activities

Support Activities

R
e
g

is
tr

a
r

A
c
a

d
em

ic

D
e
p

a
r
tm

e
n

t

T
r
ea

su
ry

C
o

m
p

u
te

r
C

e
n

te
r

S
e
c
u

ri
ty

L
ib

ra
ry

University X X X X X X

-Faculties/ Institutes X X X X

--Education X X X

---Undergraduates X X X

----Funders X

----Sessions X X X

-----Graduation X X X

X

-----Semester X X X

------Lecture X X

------Registration X X X

X X

------Examination X X

X

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

285 | P a g e

www.ijacsa.thesai.org

E. Identifying the Business Processes

Business processes are all processes involved in the
transformation process. The purpose of step one until step five
is to reveal the structure of the organization (viable structure
based on the Viable System Model). Existing or new business
processes can thus be identified and then mapped to the
corresponding primary activities. There are four main business
processes identified which can be mapped under “Education”
as the following:

 Students’ registration

 Students’ lecture

 Students’ examination

 Students’ graduation

F. Modeling the Business Processes using the Promise

Theory

This is the step where the business processes are modeled
in detail. The following are the detailed business process for
“Students’ Registration”.

The “Students’ Registration” business process involves
three based events:

1) Pre-registration

 Fill in students’ details

 Create Student IDs

 Assign faculties and programs

 Send offer letter to the students

2) Registration

 Students pay their registration fees

 Register students

 Create students’ payment account

 Create students’ ID cards

 Create students’ library accounts

3) Course Registration

 Every faculty publishes the courses available for the
semester

 Students choose courses which match their
requirements and also the requirements of the faculty
and the university

 Students register for courses

 Students drop courses

 Students pay course fees

Based on the above events, the business processes are then
modeled using the promise theory

a) Pre-registration Promises (Fig. 6)

+D1: promise to input candidate information into batch
files based on the faculties and programs into the system.

+D2: promise to process the batch files and to save the
information into the database.

+D3: promise to create students’ ID based on the saved
information.

-D1->-D3: promise to accept/use the corresponding
promises.

b) Registration Promises (Fig. 7)

+D1: promise to pay the registration fees to the university
bank account.

+D2: promise to show proof of payment.

+D3: promise to activate students’ status as active once
provided with proof of payment.

+D4: promise to create students’ payment account once
students’ status is activated.

+D5: promise to create students’ ID card once students’
status is activated.

+D6: promise to create students’ library account once
students’ status is activated.

+D7: promise to update students’ payment provided that
the payment accounts have been created.

-D1->-D7: promise to accept/use the corresponding
promises.

Fig. 6. Pre-registration promise model.

Fig. 7. Registration promise model.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

286 | P a g e

www.ijacsa.thesai.org

Fig. 8. Microservice dependency graph.

c) Course Registration Promises (Fig. 8)

+D1: promise to provide the registration status.

+D2: promise to publish courses offered for the semester.

+D3: promise to select courses offered which are relevant
to graduation requirement.

+D4: promise to register for the selected courses.

+D5: promise to drop courses after the registration.

+D6: promise to establish the amount payable based on the
registered courses.

+D7: promise to pay the course fees to the banks.

+D8: promise to update payment.

-D1->-D8: promise to accept/use the corresponding
promises.

G. Identifying the Microservice Candidates

Based on step six above, five microservice candidates have
been identified. The microservice will then be implemented in
the designated server or container in the cloud. The
microservice candidates are:

 Registration Service

 Course Registration Service

 Finance Service

 Library Service

 Security Service

H. Modeling the Microservice Dependency Graph

Fig. 9 shows dependency between the microservices which
are modeled in this step. At this stage the system designer
determines how to set the dependency between one service to
another. The interaction is either asynchronous or synchronous.
The detailed implementation of each service can be referred
back to the modeling of the business processes with the
promise theory in step six.

Fig. 9. Courses registration model.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

287 | P a g e

www.ijacsa.thesai.org

VI. FUTURE WORK

There are other improvements that can be made to the
existing work and the possible improvements are:

 To improve the existing proposed method and to find
other use cases that beneficial in designing better
microservice.

 To create software tools that can automate the process
of designing and creating microservices.

 To design and model microservice infrastructure such
as api gateway, load balancing, monitoring, logging,
configuration and microservice optimization.

 To design a microservice framework specific to
implementation such as .Net language.

 To do research on microservice simulation to study the
behavior of designed microservices.

VII. CONCLUSION

The method proposed in this paper has demonstrated its
capacity to be used in analyzing and designing the
microservice holistically. Without this method, the
development of microservice-based systems would still be
using the traditional method of system analysis and design. The
proposed method has contributed to the development of service
systems that are more loosely coupled, decentralized, scalable
and autonomous. It has also been designed to take into account
the latest technology such as the container technology and
cloud computing. Future research is to improve the method
designed in this paper by using other case studies in different
domains.

REFERENCES

[1] Ashby, W. R. 1956. An introduction to cybernetics. University
paperbacks. J. Wiley.

[2] Ashby, W. R. 1958. Requisite variety and its implications for the control
of complex systems. Cybernetica.

[3] Ashby, W. R. 1962. Principles of self-organizations: Transaction.
Pergamon Press.

[4] Beer, S. 1979. The heart of enterprise. Managerial cybernetics of
organization. Wiley.

[5] Bergstra, J. A. & Burgess, M. 2014. Promise theory: principles and
applications. Promise Theory. Createspace Independent Pub.

[6] Bhadoria, R. S., Chaudhari, N. S. & Tomar, G. S. 2017. The
performance metric for Enterprise Service Bus (ESB) in SOA system:
theoretical underpinnings and empirical illustrations for information
processing. Information Systems.

[7] Burgess, M. 2015a. In search of certainty : the science of our
information infrastructure.

[8] Burgess, M. 2015b. Thinking in promises: designing systems for
cooperation. O’Reilly Media.

[9] Dragoni, N., Lanese, I., Larsen, S. T., Mazzara, M., Mustafin, R. &
Safina, L. 2017. Microservices: how to make your application scale.

[10] Espejo, R. & Reyes, A. 2011. Organizational systems: managing
complexity with the viable system model. Springer Science & Business
Media.

[11] Gucer, V., Narain, S. & others. 2015. Creating applications in bluemix
using the microservices approach. IBM Redbooks.

[12] Gutierrez, F. 2016. Spring Boot in the cloud. Pro Spring Boot. Springer.

[13] Hanson, M. D. 2000. The client/server architecture. Server Management.

[14] Newman, S. 2015. Building microservices. O’Reilly.

[15] Holmes, B. & Nicolaescu, A. 2017. Continuous architecting: just
another buzzword? Full-scale software engineering/the art of software
testing.

[16] Johanson, A., Flögel, S., Dullo, C. & Hasselbring, W. 2016. OceanTEA:
exploring ocean-derived climate data using microservices.

[17] Pautasso, C., Zimmermann, O., Amundsen, M., Lewis, J. & Josuttis, N.
2017. Microservices in practice, part 1: reality check and service design.
IEEE Software.

[18] Rotem-Gal-Oz, A. 2012. SOA patterns. Running Series. Manning.

[19] Rusek, M., Dwornicki, G. & Orłowski, A. 2016. A Decentralized
System for Load Balancing of Containerized Microservices in the
Cloud. International Conference on Systems Science.

[20] Toffetti, G., Brunner, S., Blöchlinger, M., Dudouet, F. & Edmonds, A.
2015. An architecture for self-managing microservices. Proceedings of
the 1st International Workshop on Automated Incident Management in
Cloud.

[21] Vernon, V. 2013. Implementing domain-driven design. Pearson
education.

[22] Von Alan, R. H., March, S. T., Park, J. & Ram, S. 2004. Design science
in information systems research. MIS quarterly.

[23] Yahia, E. B. H., Réveillère, L., Bromberg, Y.-D., Chevalier, R. & Cadot,
A. 2016. Medley: an event-driven lightweight platform for service
composition. International Conference on Web Engineering, hlm. 3–20.

[24] Zimmermann, O. 2015. Do microservices pass the same old architecture
test ? or : SOA is not dead – long live (micro-)services.

