
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

424 | P a g e

www.ijacsa.thesai.org

A Firefly Algorithm for the Mono-Processors Hybrid

Flow Shop Problem

Latifa DEKHICI, Khaled BELKADI

LAMOSI Laboratory

Département d’informatique,

Université des Sciences et de la Technnologie d’Oran

Mohamed Boudiaf, Algeria

Abstract—Nature-inspired swarm metaheuristics become one

of the most powerful methods for optimization. In discrete

optimization, the efficiency of an algorithm depends on how it is

adapted to the problem. This paper aims to provide a

discretization of the Firefly Algorithm (FF) for the scheduling of

a specific manufacturing system, which is the mono processors

two-stage hybrid flow shop (HFS). This kind of manufacturing

system appears in several fields as the operating theatre

scheduling problem. Results of proposed discrete firefly

algorithm are compared to results of other methods found in the

literature. Computational results with different numbers of

fireflies and on a standard HFS benchmark of about 55 cases,

generating about 1900 instances demonstrates that the proposed

discretized metaheuristic reaches the best makespan.

Keywords—Firefly algorithm; hybrid flow shop;

metaheuristics; discrete optimization

I. INTRODUCTION

Scheduling is an essential decision making task. Short
term scheduling consists into allocating resources as machines
or persons to perform a set of jobs or tasks to minimize or
maximize objective functions. In manufacturing systems, the
scheduling objective may be minimization of makespan or
Cmax, machine idle time, mean or total flow time and
tardiness. Baker [1] addressed different types of scheduling
environments in industries. Among them, the hybrid flow shop
(HFS) or flexible flow shop problem. This environment,
which is the generalization of a flow shop, is made of a set of
manufacturing stages. At least one stage may contain several
machines. The HFS has a variety of real-industrial
applications including ceramic, operating theatre [2] and
electronic. HSF scheduling problem was been the interest of
many researchers since it was first proposed in [3]. It has been
demonstrated to be NP-hard in [4]. Hence, exact methods
cannot solve HFS problems. Several methods have been
proposed so far to solve HFS scheduling problems. A hybrid
heuristic algorithm was addressed to solve the multistage
Hybrid Flow Shop problem [5]. A heuristic based on simulated
annealing (SA) technique was proposed in [6]. The
performance of heuristics in a flow shop scheduling with
multiple processors was investigated in [7] where authors
studied five heuristics for their performances on makespan and
mean flow time criteria in a multiple processors HFS. A
generic simulation model for the scheduling problem was
detailed in [8] and the task priorities at each stage were
established dynamically in order to make easier the

performance evaluation of job dispatching priority strategies,
concerning the makespan and mean flow time as well as other
criteria like average queue length and average resource
utilization. Botta-Genoulaz [9] lectured the time windowed
multistage version of the problem with identical parallel
recourses, when tasks are subject to precedence constraints.
She investigated six heuristics to solve minimization of
lateness. Hybridation of the Tabu search (TS) with another
approach was presented in [10]. Authors considered the
manufacturing of concrete blocks in a building industry
factory as a hybrid flow shop with the purpose to minimize
makespan. With the same purpose, a branch-and-bound
algorithm was addressed in [11]. Several heuristics were
studied to schedule multiprocessor tasks in the two-stage
extension of the same problem in order to minimize makespan
as simulating analytics (SA) and TS [12]. In [13] and with
recirculation to minimize the weighted number of tardy tasks,
authors compare a greedy algorithm with a genetic algorithm
(GA) on solving a three-stage HFS scheduling problem. A GA
has been applied to solve a more realistic problem with
sequence dependent set-up times, numerous manufacturing
stages with unrelated parallel machines at each stage and
machine eligibility [15]. A hybrid constructive Genetic
algorithm was made in [17], advanced GAs with some new
machine assignment instructions in [19] and an efficient GA in
[22]. Others bio-inspired metaheuristics as an ant colony
optimization (ACO) in [16] were studied to solve the HFS
scheduling problems. A bat algorithm was adapted in [14]. An
effective parallel greedy algorithm (PGA) was addressed in
[18] and a particle swarm optimization (PSO) algorithm was
studied to solve the flexible flow shop scheduling problems
[20]. The PSO was also compared to a bottleneck heuristic to
solve the HFS problems [23]. A hybrid artificial neural
network (ANN) simulation approach is suggested for solving
multi-attribute combinatorial dispatching (MACD) decision
problem for scheduling a with multiple processors hybrid flow
shop [21].

One can notice that most of papers in HFS literature were
addressed to flexible flow shop with multi-processors tasks
[55], [56]. In the other hand, some few manuscripts studied
the mono processors HSF [24]-[27]. The standard hybrid flow
shop or the HSF with mono-processors tasks can be
considered as a typical example of scheduling problem and
has several applications. One can quote, authors in [2], [28]-
[30] that define a surgeries scheduling problem as a standard
hybrid flow shop of two to three stage that are induction stage,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

425 | P a g e

www.ijacsa.thesai.org

operating rooms stage and post anesthesia care unit stage. In
[31] authors studied an energy aware multi-objective
optimization that has a mono-processor tasks flexible flow
shop configuration.

In the present paper, the firefly metaheuristic is discretised
and adapted to the mono-processor hybrid flow shop problem.
For that, in the second section the fireflies in the nature are
described. We detailed the firefly algorithm giving a simple
pseudo-code. In the third section, the hybrid flow shop
problem (HFS) is presented and its notation according to the
literature. In the fourth section, an adaptation of the firefly
algorithm to the HFS problem and a discretization of fireflies
are presented. Also, we describe briefly the particles swarm
optimization for the same problem in order to compare it later.
In the last section, the results of the discrete firefly algorithm
and other implanted algorithms are discussed and compared
on a benchmark using improvement rate and average
percentage deviation from the lower bound. Finally, we give
conclusion and perspectives.

II. FIREFLY METAHEURISTIC

In the section below, the firefly algorithm and its
principles are described.

A. Inspiration

Fireflies, as a spice of Lampyridae are small insects with
wings talented of producing a cold light flashes in order to
attract mates. Their mechanism is supposed to slowly charges
until the convinced threshold is obtained, at which they set
free the power in the form of light, then the process repeats
[32] Firefly algorithm that was first proposed by Yang [33]
was inspired by the fireflies mutual attraction and the light
decreasing over the distance rather than by the fireflies light
flashing phenomenon. Algorithm considers what each firefly
observes at the point of its position, when trying to move to a
greater light-source.

B. Algorithm

The Firefly Algorithm is one of the recent nature-inspired
metaheuristics developed by the author [33]-[38]. One can
find limited articles concerning essentially continuous firefly
algorithm [39]-[46]. Continuous firefly algorithm was
validated on functions optimization in [36]. A resolution of
chaos with firefly can be found in [47]. A hybridisation of the
algorithm with genetic was done in [49]. The bi-objective
version was proposed in [48]. The first discrete version was
adapted to permutation problem in [50] where authors studied
flowshop problem using a binary coding of solution and a
probability formula for discretization. We can also find other
discretization for economic problem such as [32], [51]-[52].

The main firefly algorithm distinctive feature is that it
simulates an independent and parallel optimization strategy,
where a population or swarm, in each iteration, has generated
a number of fireflies. Each one works roughly independently
and as a result, the metaheuristic will converge quickly with
the fireflies aggregating closely to the optimal solution. The
Firefly Algorithm was based on the idealized fireflies
behaviour of flashing characteristics. These flashing
characteristics were idealized as the three rules below:

1) All fireflies are from the same gender so that one firefly

is attracted to another despite their genders.

2) The light intensity or brightness of a firefly is

determined by the landscape of the objective function to be

optimized.

3) Brightness is proportional to their attractiveness, thus

for any two flashing fireflies, the less brighter one will move

towards the brighter one. The brightness of both will decrease

as their distance increases. If there is not the brightest one than

a firefly moves randomly.
According to these three hypotheses, pseudo-code of the

Firefly Algorithm (FF) may seem as follows:

Algorithm 1. Pseudo code of the FF Meta-heuristic

Procedure FF Meta-heuristic (GenerationNumber:
the maximal number of generations)

Begin
γ: the light absorption coefficient
Define the objective function of f(x), where

x=(x1,........,xd) in domain d
Generate the initial fireflies population xi (i=1, 2 ,...,

nb)
Determine the light intensity Ii at xi via f(xi)
While (t<GenerationNumber)

For i = 1 to nb //all nb fireflies)
Forj=1 to nb //nb fireflies)

if(Ij> Ii)
Attractiveness βi,j

varies with distance ri,j
move firefly i towards j

with attractiveness βi,j
else

move firefly i randomly
end if
Evaluate new solutions
update light intensity Ii

End for j
End for i
Rank the fireflies and find the current best
t++

End while
End procedure

There are four important principles in the Firefly
Algorithm:

1) Light Intensity
In the simplest situation for minimum optimization

problems, the brightness I of a firefly at a particular location x
can be chosen as I(x) ∝ 1/f(x).

2) Attractiveness
The principal form of attractiveness function in the firefly

optimization can be any monotonically decreasing function
such as the generalized form in (1):

β = 𝛽
 𝑒

 (1)

r is the distance between positions xi and xj of two fireflies
i and j

𝛽
 is the attractiveness at r = 0 and γ is a light absorption

factor.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

426 | P a g e

www.ijacsa.thesai.org

3) Distance
The distance between two positions xi and xj of two

fireflies i and j can be the Cartesian distance:

 = √∑

 (2)

Where xi,k is the k
th

 part of the i
th

 firefly.

4) Movement
The attraction of a firefly i toward another brighter firefly

j, is determined by

 = (𝛽) 𝛽
 ⁄ (3)

where the first and second terms are due to the attraction
while the third term is randomization with α being the
randomization parameter and “rand” is a random number
generator uniformly distributed in [0, 1].

III. TWO STAGE HYBRID FLOW SHOP PROBLEM (HFS)

The Hybrid flow shop scheduling problem will be
described in this section.

A. Presentation

A Hybrid Flow Shop (HFS) also called flexible flow shop
is a structure composed of a set of stages, where each stage
combines one or more parallel machines. The different tasks
visit the stages in the same sequence. On each stage, a job is
treated by only one machine. A machine can treat only one job
at once. Between each stage, the jobs can wait or not in
limited or unlimited buffers.

Moreover, all jobs are assumed to be available at the
system entry at date 0 (their release date).

Scheduling in the HFS consists to choose an assignment of
the tasks to the range of resources at the various steps and an
appropriate sequencing. The purpose is the optimization of
one criterion or several performance criteria in case of multi-
purpose optimization. One can quote the max flow time
abbreviated as Fmax, the completion time of the last job on
the last stage also called Makespan or Cmax, and due date
related purpose.

B. Notation

Number of stages scheduled is M. Number of tasks
scheduled is N.

lk is the number of machines in stage k.

Fig. 1 is an example of a hybrid flow shop with 2 stages
and 3 machines on the first stage and 2 machines on the
second one. One buffer of infinite capacity is incorporated
between stages of the system. The processing time of job i in
stage j if machines are identical is noted tij.

Admitting as criterion the Cmax and using Vignier
notation [54], the manufacturing shop can be defined by HFS2
(3,2)||Cmax.

C. Application

One can quote as the example of surgeries scheduling in an
operating theatre (Fig. 2).

Fig. 1. Representation of HFS2 (l1=3,l2=2)| |Cmax.

Fig. 2. Example of two stages HFS: operating theatre.

IV. FIREFLY ALGORITHM FOR HSF PROBLEM

A. Solution Notation

An integer significant solution coding is adapted to the
HSF scheduling. The coding contains two parts: the sequence
part s and the assignments part a as one can find in (4).

 = { | } (4)

B. Distance

In this work and since it is a discrete version the distance is
replaced by Hamming’s distance. The Hamming distance is
defined as the number of non-corresponding elements in the
sequence or in the assignments (5).

 = ∑ () ∑ ∑ ()

 (5)

C. Random Movement and Other Parameters

The movement of a firefly i to another j follows (3) cited
earlier. For the alpha coefficient, we choose α=N for the
sequence part of the firefly and α=lk k= ..M for the
assignments part of the firefly.

The random movement of the best firefly uses a
neighborhood system based on both sequence permutation and
assignment change.

D. Fireflies Discretization

When the firefly i moves toward firefly j, the position of

M11

M21

M31

M12

M22

N jobs

M=2

l1=3; l2=2

Stage1

(3 machines)

Stage2

(2 machines)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

427 | P a g e

www.ijacsa.thesai.org

firefly i changes from a binary number x to a real number x’
(formula 6)

 = {s |a } N k M 6)

s a

To correct sequence, we sort jobs of s per their s’ values.
To correct assignments a, we adjust a’ to unsigned integers in
the domain 0 . . lk-1.

E. Particle Swarm Optimization for HFS Problem

In this sub-section, we describe briefly the particles swarm
optimization to compare it with the firefly algorithm.

The Particle Swarm Optimization algorithm (PSO) [53] is
initialized with a population of random solutions which is
similar in all the evolutionary algorithms. Each individual
solution flies in the problem space with a velocity which is
adjusted depending on the experiences of the individual and
the population

The pseudo code of PSO is given in Algorithm 2.

Algorithm 2 PSO Meta-heuristic

Procedure PSO Meta-heuristic(GenerationNumber:
maximum number of generations)

Begin

φg, φp, ω: coefficients to be initialized

Define the objective function of f(x),
x=(x1...,xd) in domain d

Generate the initial swarm of particles pi
(i=1,...,n)

decide the fitness fiti at pi via f(pi)

Initialize the best fitness for each one
fbesti=fiti and best positions besti=pi

Determine the global best fitness
fgbest=min(fbesti) and its position gbest

While(t<GenerationNumber)

Fori = 1 to n //all particles

 vi = ω vi +φp rand(besti-xi)+φg rand(gbest-xi)
//velocity

 Apply the velocity constriction in d

pi =pi+vi//new position

 Apply the position constriction in d

End for i

For i = 1 to n //all particles

 Evaluate fiti

if(fiti<fBesti)

fBesti=fiti

best=pi

Endif

End for i

decide the global best fitness fgbest=min(fbesti) and
its position gbest

t++

End while

End procedure

In this study, we retain the principles below:

Fitness. The fitness can be simply the objective function.

Velocity. We keep the equation of velocity vi of a solution
pi as shown in (7).

 =
 𝑒 𝑒

 (7)

Where φg, φp, ω are coefficients initialized to 1.

Position. The new position is calculated by (8).

 = (8)

We use the same codification and discretization principles
as our Firefly algorithm. We add velocity constriction.

V. COMPUTATIONAL RESULTS AND COMPARISON

A. Hybrid Flow Shop Data

As a typical sample for experimental comparison, the
choice was directed on mono processors two stages hybrid
flow shop with related machines that admits that the
processing duration of a task do not depend on machine in a
stage. A buffer of infinite capacity is integrated between the
two stages for each machine. Moreover N tasks are assumed
to be available at the manufacturing shop entrance. The
system has l1 recourses in the stage one and l2 in the second
one.

Three categories of instances of two-stage HFS have been
randomly generated:

 Category A: These samples were generated in a way
similar as in [24]. The number of tasks n is taken from
the set{20, 30, 40, 50 , 100}. The numbers of resources
(l1, l2) are (2, 2), (2, 4) and (4, 2). The processing
durations noted 2:4, 4:2, 4:4 are drawn randomly from
a discrete uniform distribution either on [1,40] or [1,
20]. These instances characteristics are combined to
acquire nine different problem samples for each
unchanging N. For each combination, 20 instances
were produced which results in 900 instances for the
Category A. The category A represents a diversified
mix of shop and size setting.

 Category B: It is produced in the same way as in [25].
The number of resources l1 and l2 were drawn
randomly from the discrete uniform distribution on
[2,6]. The processing durations on stage j were
generated randomly from a discrete uniform
distribution on [1, 5*lj](j= 1, 2). The number of task N
was taken equal to 20, 30, 40, 50 and 100. For each
fixed N, 50 instances were generated. Hence, Category
B contains a total number of 250 instances.

 Category C: In this set, the processing durations on
both stages were drawn randomly from the discrete
uniform distribution on [1,20] [25]. Their 250 instances
were generated in a similar way as those of category B.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

428 | P a g e

www.ijacsa.thesai.org

For the set C, the workloads are typically unbalanced
while for the set B, the workloads at the two stages lean to be
well balanced. The population size of particles or fireflies is
set to 10.

The proposed algorithms were implemented in C++ 32 on
an Intel Core 2 Duo 2,53 Giga Hz with aRAM capacity of 6
Giga Byte. If any optimal scheduling was found within the
maximum CPU time limit of 15 seconds, the exploration is
exited and the best scheduling and it evaluations are output. In
order to get good comparison, the choice of the limit criteria
lies on the computer setting similarity with these in [28].

B. Comparison Criteria

In order to compare the proposed discretized algorithms,
the measures below can assess their efficiencies:

1) Lower bound LB. Lower Bound indicates the lower

makespan can be reached for the HFS scheduling instance.

The two stage hybrid flow shop LB retained in this work were

presented first time in [24]

 = ma
 ∑

 ∑

 (9)

Where spt(l1) is the minimum sum of completion times, on
Stage 2, of the l1 tasks whose processing times on the second
stage are the shortest.

2) Average Percentage Deviation (APD). The deviation of

a scheduling makespan from the LB is specified in (10):

 =

 (10)

3) Improvement Rate. Improvement of the final best

scheduling from the initial best population is given in (11):

 . =

 (11)

4) Others. We use two other analysis measures:

 TGB that is the average Time to Get the global Best
(optimum) when Average Percentage Deviation =0.

 NS that is the number of instances for which optimality
was proved (Number of Solved). In [28], authors used
UnSolved instances (US) factor which is the number of
instances not solved.

C. Results and Discussion

First, we compare the firefly algorithms with Particle
Swarm Optimization. Table I shows Average Deviations,
average improvements and Makespan, min and max criteria
values. We observe that Firefly algorithm solved to optimally
all of instances in 86.67% of the problems (39 per 45). The
most of Firefly Algorithm unsolved instances are with
unbalanced workload from classes where there are less
resources in the first stage. The problems are easier for 2x2
and 4x2 cases.

We try to compare our results (Table II) with those
found in:

 [24] using Tabu search.

 [27] using climbing bounded discrepancy search
(CDDS

L
).

 [25] using Branch and Bound method (CPU time limit
for the Backward or Forward problems was set equal
to 600s.)

 [28] using Climbing Depth-bounded Discrepancy
Search (CDDS

2
) (maximum time limit was 15s and the

number of instances for each class was 20).

The experiments on the first Category A as revealed in
Table II match the previous conclusion and lend further
confirmation. Remarkably, the proposed firefly metaheuristic
provides the optimum makespans. It doesn’t deviate from
lower bound in most of cases and their worst deviation are less
than 0.1 while the average APD of all instances for
respectively tabu search and B&B algorithm as examples are
0.51 and 0.28.

Indeed, we observe from Table III when comparing
numbers of solved instances and times to get optimum that FF
algorithm yields optimal or very near optimal solutions in
most Instances (887 per 900) in 0.0331 second while PSO
yields optimal solution in only 499 instances within 75.38 hs
and respectively CDDS2 and CCDSL yield optimal solution in
829 and 638 instances.

The worst firefly TGB times can be noticed in the 2x4
problems but do not exceed 40.63 hs while PSO ones reach
86.29 and 1237 hs.

In order to investigate the method on other workload
categories, 50 instances were generated for each case either on
set B or C. The results of sets B and C for N from 20 to 100
are represented in Table IV. The global efficiency of the
discretized firefly algorithm is corroborated by the
computational results that were reported on the sets B and C.
Table IV approves that the FF algorithm with only 10 fireflies
can give an improvement from 11.74% to 25.51% and a
deviation from 0.07 % to 0 face to PSO improvement which
cannot exceed 20.74% and PSO deviation that can reach
0.43%.

The most striking result to emerge from Table V is that
63.2 % of the Set B (balanced instances) and 82.2 % of the Set
C (unbalanced instances) were significantly solved to
optimality. Face to only 12.8% of set B and 36 % of set C
solved by PSO. The average firefly algorithm TGB is only 131
hundredth second while it is exceed 166 hundredth second by
particles swarm algorithm. And even if the B&B has more
solved instances especially for unbalanced hybrid flow shops,
our Firefly Algorithm outperforms it in term of deviation in all
of instances. Furthermore, the deviation from the best
makespan is approximately null. Overall, our algorithm
produced proven optimal solutions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

429 | P a g e

www.ijacsa.thesai.org

TABLE I. SET A, AVERAGE IMPROVEMENT, APD, CMAX, MIN AND MAX CMAX OF DIFFERENT METHODS

Problem

Cmax Improvement% APD% Minf Maxf

PSO FF PSO FF PSO FF PSO FF PSO FF

A100

2x2

2:4 1064.4 1064 5.22 5.24 0.04 0 1064 1064 1067 1064

4:2 1005.3 1003 5.1 5.24 0.27 0 1003 1003 1078 1003

4:4 1005.15 999 4.79 5.1 0.64 0 999 999 1080 999

2x4

2:4 591 526.95 7.46 13.11 12.36 0.02 544 490 642 578

4:2 582.25 511.1 8.24 14.66 14.14 0.05 528 456 634 545

4:4 585.95 512.85 7.18 13.75 14.46 0.08 533 463 630 544

4x2

2:4 988.6 987 4.86 4.94 0.17 0 987 987 1082 987

4:2 1018.1 1018 4.6 4.62 0.04 0 1018 1018 1163 1018

4:4 1011.75 1012 5.83 5.84 0.01 0 1012 1012 1085 1012

A20

2x2

2:4 195.45 192 13.39 14.23 1.91 0 192 192 222 192

4:2 206.6 204 11.98 12.53 1.15 0 204 204 238 204

4:4 200.45 197 12.05 12.88 1.84 0 197 197 244 197

2x4

2:4 130.6 110 17.22 25.4 19.22 0 114 110 151 110

4:2 128.7 107 16.05 24.99 21.54 0 109 107 147 107

4:4 136.15 111 17.6 27.41 23.62 0 111 111 159 111

4x2

2:4 199 199 9.9 9.9 0 0 199 199 199 199

4:2 203.75 204 11.45 11.51 0.14 0 204 204 242 204

4:4 206.75 207 13.25 13.25 0 0 207 207 261 207

A30

2x2

2:4 297.85 295 11.31 11.77 0.97 0 295 295 321 295

4:2 308.8 305 10.62 11.33 1.48 0 305 305 367 305

4:4 317.35 315 7.69 8.13 0.9 0 315 315 371 315

2x4

2:4 184.1 161 13.77 20.35 15.09 0 162 161 200 161

4:2 182.95 161 16.86 22.8 13.39 0 161 161 222 161

4:4 186.05 160.1 15.87 23.07 16.77 0.04 154 133 214 182

4x2

2:4 294.15 294 9.46 9.47 0.02 0 294 294 348 294

4:2 295 295 9.19 9.19 0 0 295 295 347 295

4:4 302.9 303 10.77 10.77 0 0 303 303 357 303

A40

2x2

2:4 399.75 399 10.27 10.44 0.37 0 399 399 467 399

4:2 403 402 8.97 9.17 0.4 0 402 402 456 402

4:4 417.8 415 7.05 7.36 0.64 0 415 415 472 415

2x4

2:4 251.45 210.9 12.46 21.02 19.65 0.03 234 185 275 234

4:2 238.6 210 13.72 19.83 13.77 0 215 210 262 210

4:4 244.7 217 13.1 19.05 13.45 0 217 217 276 217

4x2

2:4 405.2 405 6.36 6.39 0.07 0 405 405 478 405

4:2 409 409 9.71 9.71 0 0 409 409 470 409

4:4 407.2 407 7.21 7.21 0 0 407 407 476 407

A50

2x2

2:4 514.6 509 7.04 7.58 1.14 0 509 509 593 509

4:2 498.05 493 7.39 7.89 1.09 0 493 493 552 493

4:4 524.4 522 7.27 7.56 0.6 0 522 522 593 522

2x4

2:4 297.9 257.5 14.8 21.83 16.09 0.1 263 230 339 287

4:2 303.35 266 12.6 19.09 14.54 0 274 266 338 266

4:4 302 259 11.72 19.17 16.86 0 262 259 345 259

4x2

2:4 497.05 496 7.44 7.51 0.15 0 496 496 557 496

4:2 505.15 505 7.48 7.49 0.02 0 505 505 609 505

4:4 493.15 493 11 11.03 0.07 0 493 493 523 493

Avg. 420.92 407.32 10.16 12.68 5.76 0.01 409.53 402.38 470.04 411.56

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

430 | P a g e

www.ijacsa.thesai.org

TABLE II. SET A, COMPARISON OF AVERAGE DEVIATION OF DIFFERENT METHODS*

Problem

APD%

PSO FF B&B [25] TS [24] CCDS2 [28] CCDSL [27]

A100

2x2

2:4 0.04 0.00 0.00 0.54 0.05 0.23

4:2 0.27 0.00 0.00 0.26 0.00 0.09

4:4 0.64 0.00 0.00 Na 0.01 0.16

2x4

2:4 12.36 0.02 0.00 0.19 0.06 0.3

4:2 14.14 0.05 0.00 0.07 0.00 0.09

4:4 14.46 0.08 0.00 0.11 0.00 0.15

4x2

2:4 0.17 0.00 0.00 0.02 0.00 0.09

4:2 0.04 0.00 0.00 0.18 0 .03 0.35

4:4 0.01 0.00 0.00 0.01 0.01 0.09

A20

2x2

2:4 1.91 0.00 0.00 NA 0.05 0.16

4:2 1.15 0.00 0.00 NA 0.03 0.08

4:4 1.84 0.00 0 .88 NA 0.39 0.48

2x4

2:4 19.22 0.00 1.71 2.9 0.95 5.79

4:2 21.54 0.00 0.00 0.56 0.03 0.09

4:4 23.62 0.00 0.00 0.92 0.00 0.07

4x2

2:4 0.00 0.00 0.00 0.35 0.00 0.12

4:2 0.14 0.00 6.31 1.22 0.75 5.70

4:4 0.00 0.00 0.00 0.13 0.05 0.23

A30

2x2

2:4 0.97 0.00 0.00 NA 0.02 1.61

4:2 1.48 0.00 0.00 NA 0.00 0.16

4:4 0.9 0.00 0.00 NA 0.1 0.63

2x4

2:4 15.09 0.00 1.68 1.43 0.92 5.61

4:2 13.39 0.00 0.00 0.27 0.00 0.12

4:4 16.77 0.04 0.00 0.57 0.07 0.08

4x2

2:4 0.02 0.00 0.00 0.06 0.00 0.12

4:2 0.00 0.00 6 .36 1.46 0.96 5.69

4:4 0.00 0.00 0.00 0.05 0.02 0.05

A40

2x2

2:4 0.37 0.00 0.00 NA 0.00 0.04

4:2 0.4 0.00 0.00 NA 0.00 0.06

4:4 0.64 0.00 0.00 NA 0.08 0.26

2x4

2:4 19.65 0.03 0.00 0.96 0.21 0.97

4:2 13.77 0.00 0.00 0.34 0 0.53

4:4 13.45 0.00 0.00 0.5 0.02 0.14

4x2

2:4 0.07 0.00 0.00 0.12 0.00 0.56

4:2 0.00 0.00 2.14 0 .89 0.28 1.01

4:4 0.00 0.00 0.00 0.12 0.01 0.17

A50

2x2

2:4 1.14 0.00 0.00 NA 0.00 0.07

4:2 1.09 0.00 0.00 NA 0.00 0.56

4:4 0.6 0.00 0.00 NA 0.00 0.28

2x4

2:4 16.09 0.1 0.00 0.54 0.15 0.70

4:2 14.54 0.00 0.00 0.26 0.00 0.43

4:4 16.86 0.00 0.00 NA 0.00 015

4x2

2:4 0.15 0.00 0.00 0.02 0.00 0.11

4:2 0.02 0.00 0.00 0.04 0.37 0.69

4:4 0.07 0.00 0.00 NA 0.02 0.05

Avg. 5.76 0.01 0.28 0.51 0.13 1.36

* “NA” means that the value is not available.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

431 | P a g e

www.ijacsa.thesai.org

TABLE III. SET A, COMPARISON OF THE AVERAGE TGB AND THE NUMBER OF SOLVED INSTANCES

Problem
TGB NS

PSO FF PSO FF CDDS2 [27] CDDSL [28]

A100

2x2

2:4 3.33 1.75 15 20 19 16

4:2 86.29 2.85 14 20 20 17

4:4 21.47 1.2 15 20 20 11

2x4

2:4 519 16.68 1 19 18 14

4:2 - 7.47 0 17 20 18

4:4 - 11.33 0 15 20 19

4x2

2:4 47.95 0.85 19 20 20 15

4:2 0.72 0.6 18 20 18 13

4:4 3.24 0.2 17 20 18 11

A20

2x2

2:4 0 0 14 20 18 17

4:2 85.82 0 11 20 19 15

4:4 0.45 0 11 20 15 9

2x4

2:4 1 0.05 2 20 12 20

4:2 - 3.65 0 20 20 17

4:4 - 35.4 0 20 20 13

4x2

2:4 0.5 0.25 20 20 20 16

4:2 0 0 19 20 15 7

4:4 0.4 0.05 20 20 20 17

A30

2x2

2:4 0.2 0.05 15 20 19 13

4:2 84 0 12 20 20 16

4:4 0.77 0 13 20 16 8

2x4

2:4 11 0.05 2 20 14 3

4:2 - 0.85 0 20 20 17

4:4 - 0.32 0 19 20 12

4x2

2:4 0.47 0.25 19 20 20 17

4:2 0.4 0 20 20 13 9

4:4 9.35 0 20 20 19 15

A40

2x2

2:4 0.44 0.65 16 20 20 18

4:2 0.14 0 14 20 20 18

4:4 1.75 0.3 16 20 17 11

2x4

2:4 - 40.63 0 19 16 12

4:2 1237 2.2 1 20 20 17

4:4 415 11.65 2 20 19 13

4x2

2:4 2.47 0.25 19 20 20 16

4:2 0.3 0.2 20 20 17 11

4:4 3.4 0.3 20 20 19 14

A50

2x2

2:4 1.31 0.9 13 20 20 17

4:2 0.17 2.3 12 20 20 17

4:4 44.21 1.55 14 20 20 14

2x4

2:4 - 1 0 18 18 14

4:2 - 1.7 0 20 20 18

4:4 - 1.25 0 20 20 12

4x2

2:4 47.68 0.05 19 20 20 16

4:2 1.39 0.05 18 20 12 10

4:4 6.72 0.05 18 20 18 15

75.38 3.31 499 887 829 638

AVG. SUM.

TABLE IV. SET B AND C. AVERAGE CRITERIA OF DIFFERENT METHODS WITH 10 PARTICLES

Problem
Cmax Improvement% APD% TGB NS

PSO FF PSO FF PSO FF PSO FF PSO FF

b20 60.66 54.62 20.74 25.51 0.21 0.00 84.67 130.53 12 38

b30 89.30 81.56 18.05 22.33 0.13 0.00 201.11 174.83 9 42

b40 123.62 108.60 15.85 21.99 0.31 0.07 388.14 194.90 7 29

b50 148.82 134.82 15.02 19.66 0.43 0.00 290.75 146.21 4 24

b100 301.68 266.82 8.40 14.37 0.30 0.02 0.00 285.44 0 25

c20 85.16 81.00 17.74 20.88 0.00 0.00 58.73 87.70 26 47

c30 110.76 105.22 18.52 21.35 0.01 0.00 130.82 73.58 17 36

c40 167.22 159.56 14.09 16.72 0.01 0.00 177.67 35.45 18 44

c50 219.18 210.68 10.37 12.72 0.13 0.00 109.52 98.36 21 45

c100 388.14 356.64 7.04 11.74 0.20 0.01 222.25 83.60 8 35

169.45 155.95 14.58 18.73 0.17 0.01 166.37 131.06 122 365

Avg. Sum

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

432 | P a g e

www.ijacsa.thesai.org

TABLE V. SET B AND C. COMPARISON OF CRITERIA BETWEEN DIFFERENT METHODS

Problem TGB NS APD

SET N PSO FF PSO FF B&B [28] PSO FF B&B [28]

b20 84.67 130.53 12 38 35 0.21 0.00 3.99

b30 201.11 174.83 9 42 34 0.13 0.00 3.26

b40 388.14 194.90 7 29 38 0.31 0.07 4.56

b50 290.75 146.21 4 24 37 0.43 0.00 2.95

b100 0.00 285.44 0 25 44 0.30 0.02 1.69

c20 58.73 87.70 26 47 46 0.00 0.00 3.78

c30 130.82 73.58 17 36 49 0.01 0.00 1.37

c40 177.67 35.45 18 44 49 0.01 0.00 0.95

c50 109.52 98.36 21 45 48 0.13 0.00 3.93

c100 222.25 83.60 8 35 49 0.20 0.01 0.52

166.366 131.06 122 365 429 0.173 0.01 2.7

Avg. Sum. Avg.

To test performance of the FF algorithm regarding to its
CPU time to get the optimum, we schematize in Fig. 3 the
average TGB. The Firefly Algorithm needs less time than PSO
algorithm to reach the optimum.

Fig. 3. Set B and C. Comparison of TGB between PSO and FF.

VI. CONCLUSION

The purpose of this work was the discretization of a Firefly
Algorithm to resolve the two-stage mono-processors hybrid
flow shop scheduling. This algorithm is a nature-inspired
metaheuristic for continuous optimization and the most of the
articles found in the literature used it in its continuous version.
In this paper, a discretization of the algorithm is given. A
meaningful solution encoding of sequencing and assignment is
kept. We held Hamming’s distance between fireflies to find
the more attractive taking that it is more significant for
discrete values.

In order to compare the efficiency of the discretized firefly
algorithm a particle swarm algorithm was coded with the same
principles. Moreover, a standard benchmark was used with 55
scheduling HFS samples with either unbalanced and balanced
workloads and heterogeneous settings. A good choice of
comparison criteria applied was made as the average
percentage deviation from the lower bound.

The discretization and the good choice of attraction
parameter permitted to our Firefly Algorithm to catch the best
amelioration rate on minimizing makespan criteria in a
reasonable execution time.

In conclusion, the Firefly Algorithm was more appropriate
to exploit the HSF search space by improving individuals
scheduling and simultaneously obtaining the most attractive
one.

Additional investigation required to refine the work
described in this paper. We are working on others variants of
the manufacturing systems such as constrained hybrid flow
shops without buffer minimizing blocking duration.

REFERENCES

[1] Baker. K.R. (1974): Introduction to Sequencing and Scheduling. Wiley.
New York.

[2] Dekhici. L., Belkadi.K.: Operating theatre scheduling under constraints.
J. Applied Sci.. 2010. 10: 1380-1388.

[3] Arthanary and Ramamurthy, 1971.An extension of two machines
sequencing problem. Journal of Operational Research. Vol. 41: 641-648.

[4] Gupta, 1988. Two stage hybrid flowshop scheduling problem. Journal of
Operational Research Society. Vol. 39(4): 359-364.

[5] Portmann. M.C., Vignier. A. Dardilhac. D. and Dezalay. D. 1998:
Branch and bound crossed with GA to solve hybrid flowshops.
European Journal of Operational Research..107: 389-400

[6] Riane, F. (1998). Scheduling hybrid flow shops: Algorithms and
application. Thesis at Catholic University of Mons, Belgium.

[7] Brah and Loo, (1999). Heuristics for scheduling in a flow shop with
multiple processors. European Journal of Operational
Research.Vol.11(3):113-122.

[8] N Grangeon, A Tanguy, N Tchernev. Generic simulation model for
hybrid flow-shop. Computers & industrial engineering, (1999) - Elsevier

[9] Botta-Genoulaz, V., 2000. Hybrid flow shop scheduling with precedence
constraints and time lags to minimize maximum lateness. Int. J. Prod.
Econ., 64: 101-111.

[10] J. Grabowski, J. Pempera. Sequencing of jobs in some production
system. European Journal of Operational Research.Vol. 125(3): 535-550
(2000)

[11] O. Moursli, Y. Pochet.A branch-and-bound algorithm for the hybrid
flow shop . International Journal of Production Economics, Vol. 64,
Issues 1–3, 1 (2000):113-125

[12] A Janiak, E Kozan, M Lichtenstein, C Oğuz.Metaheuristic approaches to
the hybrid flow shop scheduling problem with a cost-related criterion.
International journal of production economics 105 (2), 407-424

[13] Bertel S., J-C Billaut; A genetic algorithm for an industrial
multiprocessor flow-shop scheduling problem with recirculation.
EJOR.159(3) :651-662, (2004)

[14] MK Marichelvam, T Prabaharam.(2013).A bat algorithm for realistic
hybrid flowshop schedulihng problems to minimize makespan and mean
flow time. ICTACT Journal on Soft Computing 3 (1), 428-433

[15] R Ruiz, C Maroto(2006),A genetic algorithm for hybrid flowshops with
sequence dependent setup times and machine eligibility.European
Journal of Operational Research 169 (3), 781-800

[16] Alaykiran, K., Engin, O., Doyen, A., (2007). Using ant colony
optimization to solvehybrid flow shop scheduling problems.
International Journal of AdvancedManufacturing Technology 35, 541–
550

[17] Shiau D-F, Cheng S-C, and Huang Y. (2008). Proportionate flexible
flow shop scheduling via a hybrid constructive genetic algorithm. Expert
Syst. Appl. 34, 2 (February 2008), 1133-1143.

[18] C. Kahraman , O. Engin , İ. Kaya , R. E. Öztürk, Multiprocessor task
scheduling in multistage hybrid flow-shops: A parallel greedy algorithm
approach, Applied Soft Computing, v.10 n.4, p.1293-1300, September,
(2010).

0

100

200

300

400

500

TGB PSO

TGB FF

http://scholar.google.com/citations?view_op=view_citation&hl=en&user=nC-GgAcAAAAJ&cstart=20&sortby=pubdate&citation_for_view=nC-GgAcAAAAJ:9yKSN-GCB0IC
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=nC-GgAcAAAAJ&cstart=20&sortby=pubdate&citation_for_view=nC-GgAcAAAAJ:9yKSN-GCB0IC
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=ZDMcT-IAAAAJ&citation_for_view=ZDMcT-IAAAAJ:d1gkVwhDpl0C
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=ZDMcT-IAAAAJ&citation_for_view=ZDMcT-IAAAAJ:d1gkVwhDpl0C
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=ZDMcT-IAAAAJ&citation_for_view=ZDMcT-IAAAAJ:d1gkVwhDpl0C
http://scholar.google.fr/citations?view_op=view_citation&hl=fr&user=aTVU3eoAAAAJ&cstart=20&pagesize=80&sortby=pubdate&citation_for_view=aTVU3eoAAAAJ:d1gkVwhDpl0C
http://scholar.google.fr/citations?view_op=view_citation&hl=fr&user=aTVU3eoAAAAJ&cstart=20&pagesize=80&sortby=pubdate&citation_for_view=aTVU3eoAAAAJ:d1gkVwhDpl0C

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

433 | P a g e

www.ijacsa.thesai.org

[19] Urlings, T.; Ruiz, R.; Stutzle, T. Shifting representation search for
hybrid flexible flowline problems. European Journal of Operational
Research. v207. 1086-1095. (2010)

[20] Manas Ranjan Singh, S. S. Mahapatra A swarm optimization approach
for flexible flow shop scheduling with multiprocessor tasks .The
International Journal of Advanced Manufacturing Technology.(2011),
Vol. 62(1-4): 267-277

[21] A Azadeh, A Naghavi, M Moghaddam,(2011), A hybrid artificial neural
network: computer simulation approach for scheduling a flow shop with
multiple processors. International Journal of Industrial and Systems
Engineering 7 (1), 66-89

[22] O Engin, G Ceran, MK YilmazAn efficient genetic algorithm for
hybrid flow shop scheduling with multiprocessor task problems. Applied
Soft Computing, (2011). Elsevier

[23] Ching-Jong Liao, Evi Tjandradjaja, Tsui-Ping Chung,(2012). An
approach using particle swarm optimization and bottleneck heuristic to
solve hybrid flow shop scheduling problem, Applied Soft
Computing,Vol 12(6):1755–1764.

[24] Haouari. M.. , M’Hallah. R. (1997). Heuristic algorithms for the two-
stage hybrid flowshop problem. Operations Research Letters. 21. 43–53.

[25] Haouari. M.. Hidri. L.. & Gharbi. A. (2006). Optimal scheduling of a
two hybrid flow shop. Mathematical Methods of Operations Research.
64. 107–124

[26] Ben Hamida. A.. Huguet. M.-J. Lopez. P.. & Haouari. M. (2007).
Climbing Discrepancy Search for solving the hybrid Flow shop.
European Journal of Industrial Engineering. 1(2). 223–243.

[27] Ben Hamida A. Haouari M. Huguet M-J. Lopez P.(2011) Solving two-
stage hybrid flow shop using climbing depth-bounded discrepancy
search. Computers & Industrial Engineering.Vol. 60(2):320–327.

[28] Dekhici, L. ; Belkadi, K. Bi-objective Operating Theater scheduling case
of the paediatric hospital of Oran; Logistics and Operations
Management (GOL), 2014 International Conference on; 2014 , Page(s):
181 – 187.

[29] A. Guinet, S. Chaabane Operating theatre planning International Journal
of Production Economics, Vol. 85(1) (2003) : 69-81

[30] A. Jebali, A. B. Hadj Alouane, P. LadeT. Operating rooms scheduling .
International Journal of Production Economics, Vol. 99 (1–2), 2006: 52-
62

[31] Ji-hong Yan, Fen-yang Zhang, Xin Li, Zi-mo Wang, Wei Wang .
Modeling and Multiobjective Optimization for Energy-Aware Hybrid
Flow Shop Scheduling. In Proc. of 4th International Asia Conference on
Industrial Engineering and Management Innovation (IEMI2013) 2014, :
741-751

[32] Durkota K.: Implementation of a discrete firefly algorithm for the QAP
problem within the sage framework. BSc thesis. Czech Technical
University. 2011

[33] Yang X.S: Nature-Inspired Metaheuristic Algorithms.
LuniverPress.UK. 2008.

[34] Yang X.S.: Firefly Algorithms for Multimodal Optimisation. Stochastic
Algorithms: Foundations and Applications. SAGA 2009. Lecture Notes
in Computer Science. Springer-Verlag. Berlin.2009.5792:169-178.

[35] Yang X.S. : Firefly algorithm. stochastic test functions and design
optimization.International Journal of Bio-Inspired Computation. 2010.
2(2):78-84.

[36] Yang X.S.: Firefly algorithm. Lévy flights and global optimization. in:
Research and Development in Intelligent Systems XXVI (Eds M.
Bramer. R. Ellis. M. Petridis). Springer London. 2010. 209-218.

[37] Yang X.S. Review of Metaheuristics and Generalized Evolutionary
Walk Algorithm. Int. J. Bio-Inspired Computation. 2011.3(2):77-84.

[38] Yang XS. Multiobjective firefly algorithm for continuous optimization.
Engineering with Computers. April 2013. 29(2): 175-184

[39] Lukasik. S. and Zak. S: Firefly Algorithm for Continuous Constrained
Optimization Tasks.Lecture Notes in Computer Science. 2009.
5796/2009: 97-106

[40] Horng M-H. and T-W. Jiang: The Codebook Design of Image Vector
Quantization Based on the Firefly Algorithm. Lecture Notes in
Computer Science. 2010. 6423/2010: 438-447.

[41] Fizazi H.. Beghoura M.A.: Segmentation des Images Satellitaires par
l’Algorithme Firefly flou. journées du laboratoire d’informatique d’Oran
JDLIO.Oran.2011.

[42] Aungkulanon. P. Chai-ead N. and Luangpaiboon P: Simulated
Manufacturing Process Improvement via Particle Swarm optimisation
and Firefly Algorithms. In Proc. International Multi Conference of
Engineers and Computer Scientists IMECS’11.Hong Kong. 2011. 1123-
1128.

[43] Anirban Chatterjee, Gautam Kumar Mahanti and Gourab Ghatak,
Synthesis of satellite footprint patterns from rectangular planar array
antenna by using swarm-based optimization algorithms, Int. J. Satell.
Commun. Network. 2014; 32:25–47

[44] B. Maher, A. Albrecht, M. Loomes, X. S. Yang, K. Steinhofel, A
firefly-inspired method for protein structure prediction in lattice models,
Biomolucules, vol. 4, no. 1, pp. 56-75 (2014).

[45] Tao Xiong, Yukun Bao, Zhongyi Hu: Multiple-output support vector
regression with a firefly algorithm for interval-valued stock price index
forecasting. Knowl.-Based Syst. 55: 87-100 (2014).

[46] Yudong, Zhang; Lenan, Wu; Shuihua, Wang (2013). "Solving Two-
Dimensional HP model by Firefly Algorithm and Simplified Energy
Function". Mathematical Problems in Engineering 2013.

[47] Gandomi A.H,X.-S. Yang, S. Talatahari, A.H. Alavi (2013) Firefly
algorithm with chaos. Communications in Nonlinear Science and
Numerical Simulation. 18(1):89–98.

[48] Gandomi A.H. Yang X-S.. Alavi A.H. (2011).: Mixed variable structural
optimization using Firefly Algorithm. Comput Struct. 89 : 2325–2336.

[49] Shaik Farook P, Sangameswara R. (2013) Evolutionary Hybrid Genetic-
Firefly Algorithm for Global Optimization. IJCEM, International
Journal of Computational Engineering & Management.16(3) ISSN :
2230-7893

[50] Sayadi M. K.. R. Ramezanian. N. Ghaffari-Nasab: A Discrete Firefly
Meta-heuristic with Local Search for Make span Minimisation in
Permutation Flow Shop Scheduling Problems”. International Journal of
Industrial Engineering Computations. 2010. 1:1–10.

[51] Basu B. and MahantiG. K.: Firefly and artificial bees colony algorithm
for synthesis of scanned and broadside linear array antenna. Progress In
Electromagnetics Research B. 2011. 32:169-190.

[52] Jati G. K. and SuyantoS.: Evolutionary discrete firefly algorithm for
travelling salesman problem. ICAIS2011. Lecture Notes in Artificial
Intelligence (LNAI 6943).2011.393-403.

[53] Kennedy. J.. Eberhart. R.C.: Particle swarm optimization. In: Proc. of
IEEE International Conference on Neural Networks. Piscataway.
NJ.1995.1942–1948.

[54] Vignier A. Billaut. J.C. and Proust. C.: Scheduling problems type hybrid
flow-shop: State of the art. RAIRO.Recherche opérationnelle. 1999.
33(2): 117-183.

[55] Marichelvam, M. K., Prabaharan, T., & Yang, X. S. (2014). A discrete
firefly algorithm for the multi-objective hybrid flowshop scheduling
problems. IEEE transactions on evolutionary computation, 18(2), 301-
305.

[56] Marichelvam, M. K., Prabaharan, T., & Geetha, M. (2015). Firefly
Algorithm for Flow Shop Optimization. In Recent Advances in Swarm
Intelligence and Evolutionary Computation (pp. 225-243). Springer
International Publishing.

http://soa.iti.es/publications-staff-thijs
http://soa.iti.es/publications-staff-rruiz
http://scholar.google.com/citations?user=QB0c2DgAAAAJ&hl=fr&oi=sra
http://scholar.google.com/citations?user=QB0c2DgAAAAJ&hl=fr&oi=sra
http://www.sciencedirect.com/science/article/pii/S1568494610003133
http://www.sciencedirect.com/science/journal/15684946
http://www.sciencedirect.com/science/journal/15684946
http://www.sciencedirect.com/science/journal/15684946/12/6
http://ieeeexplore.com/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dekhici,%20L..QT.&newsearch=true
http://ieeeexplore.com/search/searchresult.jsp?searchWithin=p_Authors:.QT.Belkadi,%20K..QT.&newsearch=true
http://ieeeexplore.com/xpl/articleDetails.jsp?tp=&arnumber=6887438&matchBoolean%3Dtrue%26queryText%3DDEKHICI
http://ieeeexplore.com/xpl/articleDetails.jsp?tp=&arnumber=6887438&matchBoolean%3Dtrue%26queryText%3DDEKHICI
http://ieeeexplore.com/xpl/mostRecentIssue.jsp?punumber=6878992
http://ieeeexplore.com/xpl/mostRecentIssue.jsp?punumber=6878992
http://www.hindawi.com/journals/mpe/2013/398141/
http://www.hindawi.com/journals/mpe/2013/398141/
http://www.hindawi.com/journals/mpe/2013/398141/

