
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

102 | P a g e

www.ijacsa.thesai.org

Efficient Model for Distributed Computing based on

Smart Embedded Agent

Hassna Bensag, Mohamed Youssfi, Omar Bouattane

Laboratory SSDIA, ENSET

Hassan II University of Casablanca

Mohammedia 28999, Morocco

Abstract—Technological advances of embedded computing

exposed humans to an increasing intrusion of computing in their

day-to-day life (e.g. smart devices). Cooperation, autonomy, and

mobility made the agent a promising mechanism for embedded

devices. The work aims to present a new model of an embedded

agent designed to be implemented in smart devices in order to

achieve parallel tasks in a distribute environment. To validate the

proposed model, a case study was developed for medical image

segmentation using Cardiac Magnetic Resonance Image (MRI).

In the first part of this paper, we focus on implementing the

parallel algorithm of classification using C-means method in

embedded systems. We propose then a new concept of distributed

classification using multi-agent systems based on JADE and

Raspberry PI 2 devices.

Keywords—Distributed computing; parallel computing; Multi

Agent System; Embedded computing; Raspberry PI 2

I. INTRODUCTION

Technological advances had imposed a growing intrusion
of data processing tools as smart devices, giving us the
opportunity to grow towards a continuous mobility.

Ambient intelligence does not merely adapt the technology
to the human need, but also to the science demands by
providing advanced embedded devices with high-level
computing power. The low cost of some smart devices like
raspberry Pi, and Arduino made them a fertile platform for
high performance computing (HPC), an area that was
previously very limited due to the cost and the complexity of
HPC cluster. Today, thanks to smart devices advanced features,
building a cluster to explore parallel computing has become
even more cheaper and easier [19]. To fully exploit the cluster
resources potential, strong jobs are partitioned into several
tasks; these sub tasks are then distributed to multiple smart
devices aiming to reduce the cost of communication, latency
and execution time. Therefore, introducing some cooperating
and social reasoning capabilities to these intelligent devices is
necerray.

An intelligent agent is "a computer system, situated in some
environment and capable of flexible and autonomous action in
order to meet its design objectives" [15,18]. Multi-agent
systems are based on the approach: compute corporately and
autonomously. Even though multi-agent approach seems
appropriate for raspberry devices, we must solve some agent
effective implementation issues [20,16,18,17,12]

The multi-agent systems are used in many domains such as
economy simulations, renewable energy, computer science and
healthcare domain where image segmentation poses several
issues [3,4,8,9,10 and 11]. In fact, when the image contains a
large amount of data, the segmentation process takes a long
time [5, 6].

In this article, we focus on the design of intelligent agents
embedded in Raspberry Pi device. Also, the implementation of
a parallel and distributed environment consisting of a
middleware able to manage a set of embedded mobile agents
and to provide a mechanism for load balancing and reducing
communication cost. The goal is to overcome the distributed
computing challenges and ensure a high-performance
computing [13]. This paper aims to propose a new method for
c-means classification applied to a cardiac MRI. The latter will
be segmented on a parallel-distributed platform based on
agents, which are embedded in Raspberry pi devices.

The second section of this paper consists in a review of all
methods and tools used in the proposed system. The third
section gives an overview of the distributed computational
model. The proposed architecture is evaluated in section four
with a case study using the distributed c-means algorithm.
Section five presents the experiment results. Finally,
conclusion and future work.

II. BACKGROUND

This section details selected methods, approaches and tools
used in multi-agent system distributed in embedded devices.

A. Multi Agent System (MAS)

An agent is an encapsulated computer system, situated in
an environment, and capable of performing flexible and
autonomous action in order to meet its design objectives [9].
The main common agent’s characteristics are autonomy,
reactivity, proactivity, intelligence, adaptability, collaboration
and mobility. Mobile agents have the additional ability to move
from one machine to another [2,5,9,10 and 14]. Multi-agent
system is used in different areas, offering strong models for
complex and dynamic environments representation. MAS can
also be used to simulate the behavior of complex computer
systems, this simulation models can help designers and
developers of complex computational systems. So, the multi-
agent based simulation provides a good set of tools to manage
complex systems for online resource allocation environments.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

103 | P a g e

www.ijacsa.thesai.org

B. JADE Agent platform

JADE platform is distributed by Telecom Italia the
copyright holder, in open source under the terms and
conditions of the LGPL (Lesser General Public License
Version 2) license [9]. JADE (Java Agent Development) is the
most popular open source framework for the development of
multi-agent systems, it is a framework fully programmed in
JAVA language. It is a FIPA (Foundation for intelligent
Physical Agents) compliant agent platform, composed of
multiple containers which host and execute agents. The main
goal of JADE platform is especially simplifying development
while ensuring standard compliance through a comprehensive
set of systems for agents and services [1]. Launching JADE
platform triggers at least one container called Main Container,
if there is other agents, they are registered with the main
container [7] (Figure. 1).

Fig. 1. JADE Agent platform

C. Raspberry PI

Raspberry PI card provides high speed, better accuracy,
good flexibility and low cost solution for the development of
embedded system equipped by ARM. Using this last board as
development platform speed up the process of development.
Raspberry pi Model B (as shown in Figure.2) is currently the
most popular ARM board. Raspberry PI has a Broadcom
BCM2835 system on a chip SoC, which includes an
ARM1176JZF-S 700 MHz processor, VideoCore IV GPU, and
is shipped with 512MB of RAM .It does not include a built-in
hard disk, it uses instead an SD card for booting and long-term
storage. It comes with two USB ports, RJ45 Ethernet port,
HDMI port and RCA output on board.

Fig. 2. Raspberry PI 2 Model B

D. Distributed C-Means Algorithm

The C-means classification method as defined in [6], is an
algorithm for image segmentation consisting of a partitioned

groups of set S of n attribute vectors into c classes (clusters ,
i= 1,…, c), generally based on different criteria segmentation :
gray levels, texture or shapes. The main goal of the algorithm
is to find the class centers in order to minimize the cost
function by using:

J = =
Where:

is the center of the class

is the distance between center and the
data of the set S

We use the Euclidean distance to define the objective
function as follows:

J = = ²

The partitioned groups can be defined by a binary

membership matrix U(c, n), where each element is
formulated by:

(i=1 tp c, j=1 to n; n is the total number of points in S).

Since a data must belong to only one class, the membership
matrix U has two properties which are given in the following
equations:

=1, ∀j = 1, … , n

= n

The value of each class center is computed by the
average of all its attribute vectors:

=

| | is the size or the cardinal of .

The C-means classification is achieved using the following
algorithm stages as illustrated in figure. 3:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

104 | P a g e

www.ijacsa.thesai.org

Fig. 3. Standard classification c-means process

III. DISTRIBUTED COMPUTATIONAL ARCHITECTURE

In this section, we present distributed computational
architecture which uses agent potential to create a cooperative
multi agent platform. The system environment is described
before detailing its main components.

A. Computing environment model

The proposed system aims to distribute tasks on a grid of
embedded devices: raspberry pi. To perform tasks distribution
in the described model (Figure 5), we must achieve the
following three steps:

 Initialization: the launching of the platform is
associated with the creation and initialization of the
agent task dispatcher (ATD) using the task prepared by
the application.

 Joining the grid: once the raspberry pi joins the
network it is considered as an available resource and
registers itself with the agent task dispatcher to start
solving distributed tasks.

 Task execution: a task needs a local agent (agent local
worker - ALW) and an available embedded remote
agent (embedded remote agent - ERA) [15]. Once there
are available ERAs, selected from the ATD repository,
the execution process starts.

Beginning with task initialization, the process is then
followed by task remote execution and ends up with task
finalization.

B. Main component description

The proposed platform is a distributed and parallel
architecture based on JADE middleware. As shown in figure 4,
we distinguish three main components:

 The main container: The platform contains one active
main container and all other containers joining the
platform have to register with it. The main container
hosts two special JADE agents: the AMS or agent
management system, it keeps the repository of all

intelligent agents of the platform. And the DF or
directory facilitator; the yellow page service in which
agent can register or find the available service in the
platform. The main container is also a container where
the main agent ATD is deployed.

 The local container: is created from the node
responsible for the task distribution process initiation
in the platform. It is where the ALW agent is hosted.

 The remote Container: this container receives groups
of the ERAs so that each one can execute its task in
parallel.

Fig. 4. Distributed multi agent platform

IV. DISTRIBUTED C-MEANS APPLICATION

Detailed image segmentation according to distributed c-
means algorithm is presented in this section. We highlight the
segmentation process following the distributed computational
model. To handle the raspberry pi characteristics heterogeneity
a middleware is required in order to guarantee load balancing.

A. C-means segmentation process in the proposed approach

To prove the reliability of the proposed architecture, we
take the c-means image segmentation process as a case study.
The proposed architecture uses a C-means algorithm as a
distributed program. In order to perform the distributed c-
means classification implemented on a grid consisting of
embedded devices, we should follow these steps:

 Task preparation: we should define the data and
processing to be performed for the image c-means
segmentation. In this application the user have to
choose the source folder containing the image to
classify. The classification treatments are defined in a
java class in the application.

 Task initialization: Once the task is prepared, it is
automatically added to the queue of ATD agent before
being sent to ALW agent. This latter splits the image
based on number (n) of available embedded devices
(raspberry pi) provided by the ATD. Each elementary
image is then distributed to a specific embedded
remote agent (ERA).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

105 | P a g e

www.ijacsa.thesai.org

 Task execution: when the data segmentation is
executing, the ALW sends both elementary image and
the initial class centers to ERAs. Each ERA determines
the local class centers in order to compute the member
ship matrix. Afterwards, it replies to the ALW agent
message by sending the calculation results gathered
from each ERA agent. ALW agent determines then the
global class centers and computes the objective
function J. The aim is to calculate the absolute value of
the difference between J values in iteration i and i-1. If
the result is bigger than threshold (Sth), the ALW agent
sends a new class centers to the ERAs and the whole
process is repeated until obtaining an absolute value
lower than Sth. Finally the ERAs send the output
elementary segmented images to ALW.

 Task finalization: in this step, the LAW assembles the
elementary segmented images in order to display the c
output segmented images for the classification where c
corresponds to the class number.

B. Distributed middleware mechanisms for c-means

algorithm

The proposed load distribution middleware aims to develop
a multi-agent system to distribute tasks on a grid of embedded
devices using intelligent agents. These agents are embedded in
heterogeneous nodes of the platform and can dynamically
execute the task they receive. We distinguish 3 different types
of intelligent agents in this architecture:

 Agent Task Dispatcher (ATD): ATD is the key
element of the platform, which has several related
functions. First, the ATD overviews the containers and
registers agents. It must keep an up-to-date Active
Agent Repository of all available intelligent agents.
Second, the ATD agent is responsible to distribute tasks
among ERAs able to solve tasks. The ATD keeps track
of all partial tasks in its Task Allocation tables. Each
partial task is marked as “unassigned”, “assigned” or
“completed.” Finally, after completing their assigned
sub-tasks, ERAs return the partial results to the ALW.
After the results have been assembled by the ALW, the
ATD deletes the corresponding partial tasks from its
Task Allocation tables.

 Agent Local Worker (ALW): Any agent on the grid
can act as an ALW of a distributed task. If an agent has
a task that it cannot solve by itself, it can become an
ALW and announce the task to other agents on the grid
via the ATD. If there are other available intelligent
agents in the grid capable of solving such a distributed
task, the task execution process starts, and the ALW
takes it over. This agent is the one responsible for
achieving both initialization and finalization process.

 Embedded Remote Agent (ERA): Any intelligent
agent that does not serve as an ALW of a distributed
task at a given moment and has registered itself with the
ATD is considered as ERA. Once created, these agents
move to remote containers where they are supposed to
execute their tasks.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

106 | P a g e

www.ijacsa.thesai.org

Fig. 5. Distributed Sequence diagram for distributed c-means classification

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

107 | P a g e

www.ijacsa.thesai.org

Fig. 6. Distributed model of task execution

V. SIMULATION AND RESULTS

To substantiate the architecture, we implement the c-means
program in the platform according to the sequence diagram
presented in Figure 6. We have used a cardiac MRI image.
The experimental evaluation was done on the test-bed (Figure
7) with two Raspberry PI having the same configuration
(Model B) and a third one (Raspberry PI) which host agent.
The results are summarized in figure 8: The figure (a)
corresponds to a human cardiac MRI, and the figures
(b),(c),(d), are the segmented output images where each of

them corresponds respectively to class centers (c1=0, c2=127,
c3=255).

The first experiment confirms that the behavior of the real
distributed systems is coherent with the simulation results, the
algorithm converged to the final class centers (c1, c2,
c3)=(13.00,99.00,220.00) right after the 8

th
 iteration as shown

in Figure 9.

In Figure 10, it’s see clearly that from 16 agents the
classification time of the two images achieves minimum values
of 100 ms. Therefore, we do not need more than 16 devices to
obtain this achievement time.

Stage1:
Initialization

Stage2:
Joining the grid

Stage3:
Task execution

Task

Sub Task

Agent Task Dispatcher

Agent Local Worker

Embedeed Remote
Agent

Sub Task Result

Global Result

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

108 | P a g e

www.ijacsa.thesai.org

Fig. 7. Testbed

Fig. 8. Segmentation results

Fig. 9. Class centers (c1, c2, c3)=(0,127,254) And Error of the cost function

Fig. 10. Many agents by one smart devices

VI. CONCLUSION

The paper presents a distributed computing method with
the raspberry PI to fill the gap between the distribution
performance and the cluster cost. The proposed architecture
can guarantee that, introducing a new model of an ambient
agent designed to be implemented in low cost devices, such as
raspberry Pi, to achieve parallel tasks in a distributed
environment. To experimentally test the efficiency of the
proposed system, the method was applied on objective medical
image segmented by c-means algorithm, using JADE
middleware and embedded agent based on raspberry Pi. The
encouraging experiment results proved that the system fills all
required features for a performing standard cluster. The
proposed architecture opens new horizons towards new and
more advanced systems including load balancing and internet
of things.

REFERENCES

[1] S.Sotiriadis, N.Bessis, Y.Huang, P.Kuonnen, N.Antonopoulos, A JADE
Middleware for Grid inter-cooperated infrastructures, international
conference on advanced information networking and applications, 978-
7695-4338-3, 2011.

[2] L, Zhang, Q.Wang, X.Shu, A mobile-Agent-Based Moddleware for
wirless Sensor Networks Data fusion, International Instrumentation and
measurement technology, 978-1-4244-3353-7, May 5-7 Singapore 2009.

[3] L.Chunlin, L.Layuan, A multi-agent model for service-oriented
interaction in a mobile grid computing environment, Pervasive and
mobile computing 7, 270-284, ELSEVIER, 2011.

[4] M.Youssfi, O.Bouattane, J.Bakkoury, M.O.Bensalah, A new massively
parallel and distributed virtual machine model using mobile agents,
international conference on multimedia computing and systems, 978-1-
4799-3823-0, April 14-16 Marrakech, Morroco 2014.

[5] M. Youssfi, O. Bouattane, and M.O. Bensalah “ On the Object
Modelling of the Massively Parallel Architecture Computers”,
Proceedings of the IASTED Inter.Conf. Software engineering,
Innsbruck, AUSTRIA, pp 71-78, February 16 - 18, 2010.

[6] O.Bouattane, B. Cherradi, M. Youssfi and M.O. Bensalah “Parallel
cmeans algorithm for image segmentation on a reconfigurable mesh
computer” ELSEVIER. Parallel computing, 37 pp 230-243, 2011.

[7] F.Bellifemine, A.Poggi, G.Rimassa, Developing Multi-agent systems
with JADE, Intelligent Agents VII, pp.89-103, speinger 2001.

[8] M.Higashino, T.Hayakawa, K.Takahashi, T.Kawamura, K.Sugahara,
Management of streaming multimedia content using mobile agent
technology on pure P2P-based distributed e-Learning system,
international conference on advanced information networking and
applications, 978-0-7695-4953-8, March 25-28 Barcelona 2013.

[9] F. L. Bellifemine, G. Caire, and D. Greenwood, “Developing Multi-
Agent Systems with JADE”,Wiley, 2007.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

109 | P a g e

www.ijacsa.thesai.org

[10] I.Satoh, Mobile Agent Middleware for dependable distributed systems,
international conference on informatique technology interfaces, june 27-
30, Cavtat, Croatia 2011.

[11] R.Abidar, K.Moummadi, H.Medromi, Mobile device and multi agent
systems: an implemented platform of real time data communication and
synchronization, international conference on multimedia computing and
systems, 978-1-61284-730-6, 7-9 April Ouarzazate, Morocco.

[12] F.Bergenti, G.Caire, D.Gotta, Agenst on the move : JADE for android
devices, CEUR workshop proceeding voal-11260, sepy. 25-26 catania,
Italy 2014.

[13] Petr Kadera1, Petr Novak1, Vaclav Jirkovsky, Pavel Vrba1,
Performance models preventing multi-agent systems from overloading
computational resources, Automation, Control and Intelligent Systems,
2(6): 105-111, 2014.

[14] Abhilash Kantamneni, Laura E. Brown, Gordon Parker, Wayne W.
Weaver, Survey of multi-agent systems for microgrid control,
Engineering Applications of Artificial Intelligence 45, 192–203,
ELSEVIER, 2015.

[15] H.Bensag, M.Youssfi, O.Bouattane, Embedded Agent for medical image
segmentation, IEEE ICM 2015, 20-23 December Casablanca , Morocco

[16] F.Doctor, H.Hagras, V.Callaghan, "A type-2 fuzzy embedded agent for
ubiquitous computing environments", Fuzzy Systems, Proceedings
IEEE International Conference , 1105 - 1110 vol.2, July 2004.

[17] T.Leppnen, J.Riekki, M.Liu, E.Harjula, T.Ojala: Mobile agents-based
smart objects for the internet of things, Internet of Things Based on
Smart Objects, pp. 29–48. Springer, Heidelberg (2014)

[18] H. Hagras, V. Callaghan, M. Colley, G. Clarke, A. Pounds-Cornish and
H. Duman, "Creating an ambient-intelligence environment using
embedded agents", Intelligent Systems, IEEE, vol. 19, no. 6, pp. 12-20,
2004

[19] C. Ramos, J. C. Augusto and D. Shapiro, "Ambient intelligence - the
next step for artificial intelligence", Intelligent Systems, IEEE, 2008

[20] F.Ramparano, O.Boissier, "Smart Devices Embedding Multi-agent
Technologies for a Pro-active World", The Ubiquitous Computing
Workshop, Bologna, Italy, 16 July 2002.

