
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 2, 2017 

8 | P a g e  

www.ijacsa.thesai.org 

Agent-based Managing for Grid Cloud System — 

Design and Prototypal Implementation

Osama H. Younis, Fathy E. Eassa, Fadi F. Fouz, Amin Y. Noaman 

Department of Computer Science, Software Engineering and Distributed Systems Research Group, King Abdulaziz University 

Jeddah, Saudi Arabia

Ayman I. Madbouly 

Department of Research and Consultancy, Deanship of 

Admission and Registration, King Abdulaziz University 

Jeddah, Saudi Arabia 

Leon J. Osterweil 

Department of Computer Science, University of 

Massachusetts, USA 

Boston, USA

 

 
Abstract—Here, we present the design and architecture of an 

Agent-based Manager for Grid Cloud Systems (AMGCS) using 

software agents to ensure independency and scalability when the 

number of resources and jobs increase. AMGCS handles IaaS 

resources (Infrastructure-as-a-Service — compute, storage and 

physical resources), and schedules compute-intensive jobs for 

execution over available resources based on QoS criteria, with 

optimized task-execution and high resource-utilization, through 

the capabilities of grid clouds. This prototypal design and 

implementation has been tested and shown a proven ability to 

increase the reliability and performance of cloud application by 

distributing its tasks to more than one cloud system, hence 

increase the reliability of user jobs and complex tasks submitted 

from regular machines. 
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I. INTRODUCTION 

The growing need for computational resources to solve 
large-scale problems leads to the cloud computing approach. 
Before that, Grid computing implemented a paradigm of high-
throughput computing with the aim of maximal resource 
utilization to run multiple jobs or to solve a very big problem 
by parts [1]. Cloud computing now can fulfill high 
computations that cannot be done by supercomputers; 
moreover, its performance can be improved by utilizing all the 
available resources in a group (grid) of clouds to make sure 
that most resources are involved according to the required 
criteria. The proposed Grid Cloud computing infrastructure is 
considered as an emerging computing paradigm to solve 
complex applications in science and engineering, as it involves 
the combined effective utilization of cloud resources to achieve 
a high-performance computing, and allows the inclusion of a 
variety of resources like supercomputers, storage systems, and 
computational kernels. These resources are coupled to be 
available as a single integrated resource. 

This infrastructure can benefit many applications, including 
distributed supercomputing, high-throughput computing, and 
data exploration. There is an increasing number of cloud 
providers varying in the quality of service, and the complex 
tasks are being increased in the fields of science and 

engineering. The motivation of this work is to take advantage 
of these clouds‘ services and resources to be utilized properly 
to execute required according to the required QoS criteria. 
Combining services from multiple providers give new 
computational capabilities, so for example instead of using 
costly supercomputers or HPCs, we can group Compute and 
Storage services (Infrastructure-as-a-Service ‗IaaS‘) together 
by creating the Grid Cloud. Here, an Agent-based Manager for 
Grid Cloud System is presented to manage IaaS resources of 
grid clouds by providing an efficient way of processing high 
computing requests, based on software agents, for high 
scalability, robustness, and provider-independency. We have 
purchased IaaS services from two clouds to be used to execute 
jobs. Google Compute Engine and Windows Azure Compute 
have a variety of scalable services to select from, so we have 
integrated their APIs programmatically with our manager to be 
able to interact with the clouds and to execute tasks with high 
scalability according to the QoS. Our manager prototype has 
been implemented, tested and evaluated with real-world high-
computing jobs 

II. BACKGROUND: GRID, CLOUD AND AGENTS 

Cloud computing uses remote servers and the Internet to 
maintain applications and data; it allows users to use 
applications without installation and access their data at any 
computer through Internet access [2], allowing for efficient 
computing by centralizing memory, storage, processing, and 
bandwidth. Cloud computing emerges from Grid computing 
and provides on-demand resource provisioning. A grid is 
usually built to utilize the idle resources in an efficient way, but 
the fact is that if one piece of the software on a node fails, other 
pieces on other nodes may fail if that component does not have 
a failover component on another node. Grid and Cloud 
computing are scalable, network bandwidth and CPU is 
allocated/de-allocated on demand, storage capacity is 
increased/decreased depending on the number of instances, 
users and the amount of transferred data at a given time [3-6]. 

The autonomous component, Software Agent, has the 
ability to interact with other agents and its environment on 
behalf of a user, capable of autonomous actions like figuring 
out and deciding what needs to be done to satisfy its objectives 
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[7]. It is a kind of software abstraction as it provides a powerful 
and convenient way to describe a complex software entity, 
defined in terms of its behavior rather than attributes/methods 
in other programming languages. A multi-agent system 
consists of a number of interacting agents cooperating, 
coordinating and negotiating with one another [7]. As known, 
one of the cloud computing essentials is resource sharing and 
pooling, so in agent-based cloud computing the coordination 
and cooperation protocols is adopted to automate the process of 
resource sharing and pooling in the clouds [8]. 

III. RELATED WORK 

There are a number of management systems for cloud 
services, some of them can be found as a locally installed 
management application with a GUI, command-line tools, 
extensions of a web browser or as online tools. They provide 
their own management interfaces, designed to specific needs 
without the ability to interact with other cloud deployments of 
the same system, particularized to work only with a specific 
cloud technology and not compatible with others. Some IaaS 
systems are replicating the same capabilities offered by public 
providers like Amazon AWS; examples include Nimbus, 
Eucalyptus, OpenStack and OpenNebula [9, 10]. 

Others may only suitable for services of one cloud like 
[11], or for multiple services from multiple providers, like 
‗Karlsruhe Open Application for cLoud Administration‘ [12, 
13]. There is also an open source, cross-platform, cloud 
management system called Scalr; provides server management 
and auto-scaling disaster recovery, where the manager is able 
to scale a virtual infrastructure according to the load based on 
RAM, disk, CPU, network or date [14]. Furthermore, there are 
open source initiatives like deltacloud [15], jcloud [16] and 
Libcloud [17], but in addition to their limitation to a specific 
interface, they mainly concerned with the management of 
public IaaS providers with basic support for private IaaS 
systems, while they manage virtual instances, they do not 
concern about the underlying physical infrastructure. 

There are other related works that have involved the use of 
software agents in the management of the clouds, like [18]; a 
simulated proposed framework to manage resources for service 
workflows, with a hierarchical architecture for separating 
decisions of resource management on service, workflow and 
cloud levels. Another prototypal implementation found for an 
interface that is compliant with Open Cloud Computing 
Interface [19] for IaaS resources management resources 
negotiation, developed as an entryway to a standard FIPA 
multi-agent system [20]. The number of works that used 
software agents to manage clouds are limited. Most of them are 
either for resource negotiation / brokering or a simulated idea 
for resource allocation without implementation on real clouds 
[21, 22, 23]. We studied their management functions and how 
they were designed to understand the architectures in the 
computational cloud systems at the IaaS level. 

The proposed concept Grid Clouds is similar to an existing 
concept called Cloud Federation, where services comprised 
from different clouds are aggregated together. In other words, 
the physical cloud resources are themselves being considered 
as a service, and cloud providers are offering their resources 
for other providers to expand the global cloud coverage offered 

to their customers without needing physical resources in every 
geographic locale [4]. Consequently, the cloud becomes a 
federation of providers/clouds that interoperate together, i.e. 
exchanging computing resources and data through a defined 
interface. There are two types of the federation, Horizontal 
federation and Vertical federation [24]. Horizontal federation 
expands the capacity of a cloud by integrating a new site and it 
takes place on one level of the Cloud Stack e.g., infrastructure 
level. Vertical federation allows the integration of new 
infrastructures to provide new capabilities by spanning 
multiple levels [24]. Presently it is almost still a theoretical 
concept, as there is no common standard for clouds 
interoperability. As an initiative for developing a common 
standard, the Open Cloud Computing Interface is trying to 
standardize an API among different clouds. This enables 
interoperability between providers, new business 
models/platforms, specialization of single clouds as well as a 
broader choice for users [3]. 

The important point here is that Cloud Federation requires 
one provider to rent/sell computing resources to another 
provider, which becomes a permanent or temporary extension 
of the buyer's cloud environment. Therefore, an agreement 
must be initiated between providers to make this federation 
valid. The idea of managing grid cloud services emerges new 
way of computing technology through grid cloud system. 
Related work that aggregate clouds are only simulated works; 
no real clouds involved in their experiments. In contrast, our 
manager here is using real clouds with no need for an 
agreement between providers, as the manager is a composite of 
APIs of these Clouds together to manage resources and tasks. 

IV. AGENT-BASED MANAGER FOR GRID CLOUD SYSTEM 

(AMGCS) 

One way of classifying a manager is by its operation scope. 
A centralized manager schedules and manages all jobs 
submitted to the grid cloud, whereas a decentralized manager 
manages jobs submitted to a particular manager in the grid 
cloud. A centralized manager has a full knowledge and control 
of the resources and jobs so it can perform good scheduling, 
but easily become a single point of failure and a performance 
bottleneck. In contrast, decentralized manager architecture 
scales well but with low optimal scheduling performance due 
to the multiplicity of managers. 

Scheduling policies classified into two major categories: 
user-oriented and system-oriented scheduling. The first is 
trying to optimize the performance for an individual user by 
minimizing the response time for each job submitted by a user, 
whereas system-oriented scheduling optimizes the system 
overall throughput and average response time [26]. A 
decentralized manager uses a user-oriented policy, whereas a 
centralized manager performs system–oriented scheduling. 

The grid cloud scheduler does not own the physical 
resources and therefore does not have control over them [27], 
hence the scheduler must make best effort decision and submit 
the job to the resources selected. In general, the scheduler 
function is to map jobs to the suitable resources in the grid 
cloud. The scheduler involves three phases: Resources 
Discovery, Resource Selection and Job Execution (Fig. 1). 
Grid Cloud scheduling maintains a list of available resources 
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and selects the best set of resources depending on users 
requirement and load balancing strategies. Then the scheduler 
dispatches jobs to selected virtual machines to be executed and 
collects the results. 

 
Fig. 1. Scheduling Phases 

Grid Cloud resource management focuses on the 
virtualization and the coordinated use of heterogeneous and 
distributed resources. The current trend in Cloud systems is the 
adoption of the software agents for Grid Cloud architecture as 
the agents‘ characteristics are compatible with cloud 
environments [28-30]. This compatibility with Grid Cloud 
architecture allows us to design a manager for such 
architectures based on software agents to ensure platform 
independency and increase manager‘s scalability and flexibility 
with high   cloud provider independency. Different resources in 
a grid cloud are varying in operating systems, CPUs, VM 
images, memory… etc. this difference leads to complex 
management for these resources. The software agent is well 
suited to address issues that arise from such a heterogeneous 
remotely controlled globally shared system. The manager here 
intend to group multiple clouds together (Fig. 2) and run 
complex jobs that need high CPU by using the CPUs of the 
virtual machines in the grid clouds. 

 
Fig. 2. Managing integrated cloud systems 

The Grid cloud concept is built based on the concept of 
Cloud Federation, as mentioned in section 3, so a grid cloud is 
a way in which services characterized by interoperability 
features are aggregated from different clouds in one grid. It 
addresses the problems of vendor lock-in and provider 
integration, in addition to increase the performance and 
disaster-recovery process through techniques like co-
location/geographic distribution. It also enables further 
reduction of costs due to partial outsourcing to more cost-
efficient regions. This concept satisfies some security 
requirements, on un-trusted providers, by using the 
fragmentation technique to execute part of the job on one cloud 
and the other part on another cloud, then combining results 
without allowing each cloud to know the actual job context. 
Applying this concept in our manager adds benefits like 
resource redundancy, resource relocation and the combination 
of complementary services by combining different types to 
combined services [25]. Here we focus on the horizontal 
federation as it decreases provider dependency and increases 
availability (across multiple geographic regions). Therefore, if, 
for example, the QoS of executing jobs/tasks specifies a low 
cost, it can be executed on a cloud with the lowest cost or any 
other QoS requirement. Unlike Cloud Federation, AMGCS 
does not require an agreement between providers to integrate 
their services and resources, the manager itself combines the 
APIs of all grid clouds. The general structure of the designed 
Grid Cloud Manager is illustrated in Fig. 3, it consists of 
different agents, each of which has its own task and they are all 
cooperating together to achieve the manager‘s roles. 

 
Fig. 3. AMGCS structure 
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As shown in the figure, the manager‘s modules are: 
Scheduler, Monitor, Selector, Decomposer, Collector, 
Metadata, Mobile metadata collector and Metadata 
manipulator. All of these modules are agents communicating 
together with a specific role for each one; the Selector is 
selecting resources from Metadata to assist the Scheduler in 
managing resources available in the grid clouds and allocating 
proper resources to the jobs according to the specified Quality 
of Service (QoS) and user desires. The monitor is monitoring 
jobs‘ executions and resources reserved on the clouds for these 
jobs. Task sender is the agent that invokes the API calls on the 
selected cloud, and hence reporting the job‘s and VM‘s status 
to the scheduler, as shown in Fig.4. 

 
Fig. 4. Deployment of AMGCS Modules 

Job decomposition helps in decomposing the job into tasks 
to assign each task to a proper resource according to the 
metadata information collected about all resources available in 
the grid clouds. Decomposition is done based on the job 
structure/nature; object-oriented system decomposed into 
packages, web-service based application decomposed to web 
services and so on. In this prototypal implementation, the 
decomposition is done programmatically, predefined in the 
application itself. The Monitor module is tracking the 
execution of the jobs and the associated resources, Mobile 
Metadata Collector agents collect and update the Metadata 
with available resources in the grid clouds. 

AMGCS manages the virtual machines in the system and 
responsible for grouping multiple clouds together in the 
system; it schedules jobs according to the metadata information 
then sends the job to the selected cloud to execute it on the 
associated virtual machine and returns the results, finally 
terminates VMs after finishing their work. Therefore, the 
manager consists of a number of services each of which is 
implemented on an agent and performs a specific function of 
the manager‘s tasks, by cooperating with each other to achieve 
the manager‘s responsibilities and goals. 

In order to achieve a high performance and throughput, the 
manager is applying best-fit and first-fit mechanisms in its 

selector algorithm. Best-fit shortlists the best options available 
for a task, this selection mechanism is slower than First-fit, 
which selects the first of the best. These two mechanisms are 
used for the purpose of ranking metadata resources and 
selecting the proper one that fits the task. Fig. 5 shows the 
algorithm used by the manager to select and manage grid cloud 
resources. 

 
Fig. 5. AMGCS Algorithm 

V. IMPLEMENTATION OF AMGCS 

The manager has been built using Java to implement the 
agents that compose the manager itself. Each agent is 
implemented to perform specific tasks, managing resources on 
different clouds and updating the metadata that contains the 
information about the available resources in all grid clouds. 
The manager is integrated with multiple clouds APIs, these 
clouds are Google Compute Engine, Google Cloud Storage, 
and Windows Azure Compute. Resources on these clouds are 
managed/controlled through API functions of each cloud. 
Authorization and authentication processes must be initiated 
once before the actual invoking of functions and making 
requests. 

A. Integration with Google Compute Engine (GCE) 

The API of GCE has been integrated with our manager to 
directly call requests to manage available resources. GCE first 
needs to authenticate the machine before accepting any 
request; this is done through the OAuth 2.0 protocol. This 
authorization framework provides clients or third-party 
applications a method to access resources (HTTP services) 
either by allowing them to obtain access on its own behalf or 
on behalf of a resource owner by coordinating an approval 
interaction between the resource owner and the HTTP service. 

Fig. 6 shows the architecture of GCE and the different 
ways of accessing the cloud, Command Line Interface (CLI), 
User Interface (UI) and API code library. 
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Fig. 6. Google Compute Engine Architecture 

To use this API within our manager, a key is required from 
Google Compute Engine that must be associated with the 
manager in order to be authorized to perform any requests, this 
key is called "client_secrets‖ and can be downloaded in a 
JSON format from Google Developers Console, example 
client_secrets.json file: 

{ 

 "installed": { 

 "client_id": "837647042410-75ifg...usercontent.com", 

 "client_secret":"asdlkfjaskd", 

 "redirect_uris": ["http://localhost", "urn:ietf:wg:oauth:2.0:oob"], 

 "auth_uri": "https://accounts.google.com/o/oauth2/auth", 

 "token_uri": "https://accounts.google.com/o/oauth2/token" 

  } 

} 
The manager will use OAuth 2.0 in order to authenticate 

the RESTful API. This API will be used to create and delete 
disks, virtual machine instances, and other resources, and to 
integrate with other Google Cloud services, i.e. Google Cloud 
Storage which is used here to store the metadata for the 
manager itself. Fig. 7 shows the flow of authenticating APIs 
calls. 

 
Fig. 7. Authenticated API calls sample flow 

Servlet is a Java class to extend the server capabilities to 
respond to any requests types and to extend the applications 
hosted by web servers. Several machine types are available 
from GCE; micro, standard, high CPU and high memory 
machine types, shown in Table 1. AMGCS select high CPU 
types for tasks require more virtual cores relative to memory. 
GCE uses GCEU (Google Compute Engine Unit) as a unit of 
CPU capacity describing compute power. Minimum power of 
one logical core on the Sandy Bridge platform is 2.75 GCEUs. 

TABLE I. SELECTED LIST OF MACHINE TYPES ON GCE 

Configuration Virtual Cores Memory 

Micro - Small Shared core 0.60 – 1.7 GB 

Standard 1 3.75 GB 

High Memory, 

High CPU 

2 7.50 – 13 GB 

4 15 – 26 GB 

8 30 – 52 GB 

16 60 – 104 GB 

These machine types, in addition to many others, are 
included in our metadata database, so the scheduler will choose 
the proper one to execute the job, according to the required 
QoS and whether cost or response time is the most critical 
factor for user desires. After selecting the machine type, API 
request will be sent, after being authenticated, to initiate a new 
instance with the specified properties/configurations. 
Afterward, the manager calls an API function to start running 
the specified instance (VM) on that Infrastructure using the 
instances().insert function. These instances can run Linux 
server from many available images; provided by Google or 
customized images of other systems, as needed. Finally, jobs 
will be executed on this instance and others on other instances, 
results returned to the manager then to the user. The integration 
of GCE API with our manager is illustrated in Fig. 8. 

 

Fig. 8. GCE integration with AMGCS 

B. Integration with Windows Azure Compute (WAC) 

Windows Azure is supporting Microsoft operating systems 
and non-Microsoft operating systems. Its VM image gallery 
includes latest releases of Windows Server, SharePoint, SQL 
Server, BizTalk Server, and many non-Microsoft workloads 
like Ubuntu, SUSE Linux, openSUSE, OpenLogic, etc. 
Integrating WAC with AMGCS gives the power of handling 
yet more requests for high computing by calling the associated 
API call to create new instances, with built-in capability of 
Load Balancing, monitoring and restarting VMs. 

Windows Azure Compute has many machine types ranging 
from extra small to extra-large machines, also AMGCS will 
select from this wide range of machine types the proper 
machine type with proper configurations that suit the job 
requirements, Table 2 shows some of these machine types, and 
Fig.9 shows the integration of GCE API with manager‘s 
agents. 
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Fig. 9. Windows Azure Compute integration with AMGCS 

TABLE II. SELECTED LIST OF MACHINE TYPES ON AZURE COMPUTE 

Configuration Virtual Cores Memory 

Extra small Shared core 768 MB 

Small 1 1.75 GB 

Medium 2 3.5 – 14 GB 

Large 4 7 – 28 GB 

Extra large 8 14 – 56 GB 

In order to use WAC API, the following is required: 

1) A subscription Id: which uniquely identifies our 

subscription; this id is obtained from the Windows Azure 

portal. 

2) A management Certificate: that must be associated with 

our subscription to authenticate the API calls. 
As the endpoints are accessible over HTTP, we have to 

create, in our code, an endpoint specific to a particular kind of 
operation we want to perform, then create HTTP request for 
that endpoint and the management certificate is attached with 
that request to be authenticated. 

C. AMGCS Metadata 

The manager schedules tasks according to this updated 
metadata information. A cloud database is used here to store 
the manager‘s metadata; this cloud database is Google Cloud 
Storage, to guarantee the compatibility and independency of 
any platform. Provided by Google, with features like object 
versioning, parallel uploads and CRC-based integrity checking 
to maintain the robustness of our sophisticated manager. We 
can access its API using XML, JSON or using the libraries for 
several popular programming languages including Java. This 
storage service is used here to guarantee platform 
independency and the proper integration with mobile metadata 
collector agents. The metadata includes the following info of 
each cloud system in the grid clouds: 

Name: Name of the resource or virtual machine. 

Description: Description about the resource. 

ID: The unique ID of the resource. 

CPUs: Number of CPUs in the virtual machine 

ImageSpace: The size of the server image in Gigabyte. 

Kind: The category of the virtual machine, e.g. high 
memory, high CPU, or standard. 

Disks: The maximum number of disks can be associated to 
a specific virtual machine. 

DisksSize: The size of the disks associated to a specific 
virtual machine. 

Memory: The size of memory in Megabyte. 

Location: The location of the server, e.g. Central US, West 
Europe, East Asia… etc. 

ServerType: The type of the server, e.g. Windows, Linux, 
SQL, Oracle…etc. 

ServerImage: The image of the server, which contains the 
boot loader, an operating system and a root file system that is 
necessary for starting an instance, e.g. debian-7, centos-6, rhel-
6, sles-11, Windows Server 2012 R2 Data-center, SQL Server 
2012 SP1 Enterprise, OpenSUSE 13.1, Ubuntu Server 14.04 
LTS… etc. 

Fig. 10 is a snapshot of the current metadata collected about 
available resources 

 

Fig. 10. Manager‘s metadata 

After the job is received by the manager, it will look for the 
suitable resource available from this metadata, then start a new 
virtual machine with specific properties on the specific cloud 
provider, then it will send the task to this particular virtual 
machine. Another agent of the manager will monitor the 
execution of these tasks on these resources, and will send 
periodic notifications to inform when the task or job execution 
is completed. To minimize costly communication of large 
amounts of data, some intercloud mapping feature is needed, so 
most clouds provides a feature called VHD (Virtual Hard 
Disk), which is a file format used as the hard disk of a virtual 
machine that may contain any amount of data. It is portable to 
be attached to any cloud virtual machine from any provider, so 
the manager can attach such a VHD to any created VM. After 
finishing the job execution, the manager will make a request to 
terminate the VM and deals locate the associated resources. 
The integration of the GCS API with AMGCS agents is 
illustrated in Fig. 11. 

AMGCS 

 

 

 

Selector 

Collector 

Decomposer 

Task Sender 

 

WAC Cloud 

Task #1, Task #2, Task #n 

Resource #1, Resource #2, Resource #n 

WAC API agent 

Scheduler Mobile Metadata 

Collector 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 2, 2017 

14 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 11. Google Cloud Storage integration with AMGCS 

VI. EVALUATION AND TESTING 

To evaluate AMGCS system, various testbeds have been 
set up to measure its efficiency, and we have successfully 
tested the execution of complex jobs that require high 
computations. If a compute-intensive job is requested to be 
executed with specified user desires like performance, cost or 
reliability, the AMGCS manager selects the proper resource 
from the metadata and sends the job to that resource in order to 
execute it. This process requires having full information about 
the resources available in the grid clouds, which is done 
through our manager by calling the API functions associated 
with each cloud. There is an updated list of this information in 
the manager‘s metadata. 

A. Test cases and Results 

With a centralized manager, the AMGCS has been tested 
with a compute-intensive job, a big matrices multiplication job. 
These matrices are huge and need a long time to be 
manipulated. The size of the first matrix is [4096][2048] and 
the second matrix size is [2048][2048], this calculation would 
take a long time to be done, depending on the type of the 
machine that executes the job, memory, location, server type 
and so on. The first test case is a single job executed on a 
single cloud system, with the required user desires: Low cost 
and minimum execution time. If a regular user wants to 
perform this job on a cloud system, he will just select any 
cloud with any properties as he is looking for a low cost, he 
might manually select the lowest-cost resource to execute this 
job. In contrast, the AMGCS manager will select the most 
proper resource that suits the user desires, and achieves this job 
efficiently. 

Consider, as a case, the user has sent the job arbitrary to a 
lowest-cost resource, which is a virtual machine with a shared 
core, the job of multiplying these huge matrices took 
approximately 43.8 minutes to be done. However, AMGCS 
manager submitted this job to a more proper VM from the list 
of resources available in the manager‘s metadata, it is also a 
shared core but with capabilities that make this VM the best 
option to select from the available resources in the grid cloud, 
―Memory and ServerImage‖. Fig. 12 shows the result of this 
test case. 

 
Fig. 12. Comparison of execution time (minutes), shared core 

The optimized execution is shown in Fig. 12 is achieved by 
executing the job on a VM with proper properties 
(capabilities), and because the manager knows the full details 
about all resources from the metadata, it chose one cloud of the 
grid clouds and create a proper virtual machine to execute this 
job. The configuration of this particular VM customized the 
memory, and the server image (Debian 7 Wheezy). Here, 
obviously, one server is better than the other and hence the 
significant difference in execution time between them. The 
server type at the bottom is a Windows server, and the type of 
the upper (optimized) one is a Linux server. 

To prove that the enhancement here is achieved by the 
manager‘s selection strategy and not by the server type (Linux 
or Windows), we did a second test to arbitrary execute the 
same job on a Linux server also with a shared core, but without 
using our manager. The results proved that the AMGCS 
scheduling is the reason for that significant enhancement, 
because of the many options that can be customized to a 
particular VM to make it the best proper option to execute the 
required tasks, unlike the regular user‘s selection that may 
ignore any consideration to the capabilities or properties of the 
server‘s VM. Fig. 13 shows the execution time on the other 
server type (Linux) without using AMGCS, it is almost near 
the time taken on the Windows server in Fig. 12, only four 
minutes less. 

 
Fig. 13. Execution time (minutes) without AMGCS, shared core 

A third test case, the same job but different user desire, 
which is minimum execution time. Here the user does not care 
about the cost and the most care about the execution time. It 
also tested by submitting this job arbitrary to any cloud with 
any properties and compare this with the selection of our 
manager which depends on knowledge of the user desires, job 
structure and nature, resources available and the recommended 
resources for complex jobs. As we need here the minimum 
execution time, a high CPU power is required to solve this job 
as fast as possible. Hence, a virtual machine with eight cores is 
the proper one. Yet, even with eight cores, the performance 
could be optimized further by taking into account factors that 
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might degrade the performance or efficiency of execution, like 
memory and server type. So here the job has been executed on 
multiple VMs that have the same core number, eight cores. Fig. 
14 shows the difference in execution time; the upper one is 
much faster compared to the arbitrary selected VM at the 
bottom. This is because the manager has submitted the job to a 
more suited cloud with better virtual machine capabilities 
(serverType and memory space). 

 
Fig. 14. Comparison of execution time (minutes), 8 cores 

All these aforementioned test cases have submitted the job 
to the clouds‘ VMs without decomposing it into tasks. 
Decomposing this big job into tasks to be individually executed 
on multiple clouds will increase the performance and reliability 
of the job execution. 

The fourth test case is to measure the improvement of 
enhancement after decomposing a job, the same job has been 
divided into two tasks (parts) to be executed on the grid cloud 
system, with one user desire which is minimum execution time. 
Decomposition here is programmed in the code just to test the 
prototypal manager, by dividing the first matrix by half and 
keep the second as it is, to maintain the matrix multiplication 
rules. Now the manager has many options to execute these 
tasks; one of these options is to send each of these tasks to a 
different virtual machine in order to be executed separately and 
then combine the results together. This is the case here, where 
the two tasks of the multiplication job are processed on 
multiple clouds from the grid clouds; hence, the time decreased 
by half. Fig. 15 shows the significant difference in time 
compared to the execution on single cloud system. 

 

Fig. 15. Comparison of execution time ‗minutes‘, Single vs. Grid Cloud 

The fifth test case was conducted to evaluate the 
improvement of using grid clouds in executing tasks, by 
sending replications of these tasks (parts of the job) to multiple 
clouds. Each task has been replicated and processed two times 
on multiple virtual machines (other than previously used VMs) 
so if any failure occurs in any VM we still have another copy 
on another VM. Hence, the reliability of execution is 
guaranteed for these tasks, despite the cost that might be high 
because here reliability is the user desire and reliability is 
always costly. Fig. 16 shows the results of this experiment. 

 

Fig. 16. Execution time (minutes) for tasks of the job, on Grid Cloud 

We end up with an enhancement in executing complex 
tasks on grid cloud resources in an efficiently managed way. 
Combining comparisons above proves that there is an 
improvement by 16% - 30% between single and grid cloud 
system, illustrated in Fig. 17. 

 
Fig. 17. Overall enhancement, AMGCS vs. Single Cloud 

B. Discussion on Experiments Results 

Depending on the results that we got from the performed 
tests and experiments, our finding could be summarized as 
follows: 

 The Manager solves current challenges of executing 
tasks on the cloud, utilizes grid clouds‘ resources, 
solves complex and compute-intensive tasks, and tasks 
that require high reliability and high performance. 

 AMGCS manages jobs and resources and gives good 
performance in terms of execution time, resource 
utilization and system throughput compared to a single 
cloud system. 

 Increasing the number of the grid clouds in the system 
gives more optimize options and high performance 
compared to using a small number of grid clouds. 

 The overall enhancement of Grid Cloud System is 
about 16% - 32% compared to a single Cloud System. 

 The manager does not require any provider-side 
agreement, only configuring the libraries of the grid 
clouds. 
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 Fault tolerance is guaranteed by replication and 
increased performance through scaling resources to 
accommodate user‘s needs, more or less. 

 There is a trade-off between high reliability and cost, 
our manager may replicate tasks on multiple clouds and 
hence more cost. 

VII. CONCLUSION 

In this paper, we introduced an agent-based manager for 
grid cloud system that has been designed based on software 
agents to ensure platform independency, heterogeneity 
handling and flexibility of managing grid clouds. It has been 
designed, implemented and successfully tested on real clouds. 
The limitations of the proposed manager could be summarized 
in its inability to be fully interoperable between different 
virtualization technologies and recourses compatibilities from 
different providers. But this interoperability issues could be 
solved later when cloud standards are clearly defined and 
followed by all providers to allow such perfect integration 
between their technologies and resources. The benefits of using 
AMGCS are shown in increasing and optimizing the available 
compute power, managing jobs/resources, and utilizing grid 
clouds‘ IaaS resources through integration between system‘s 
modules and clouds‘ APIs. This idea can be beneficial to 
research centers to solve real-world complex problems that 
need high computing capabilities, such as Bioinformatics 
applications, engineering simulations, and mathematical 
analysis. 
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