
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

8 | P a g e

www.ijacsa.thesai.org

Agent-based Managing for Grid Cloud System —

Design and Prototypal Implementation

Osama H. Younis, Fathy E. Eassa, Fadi F. Fouz, Amin Y. Noaman

Department of Computer Science, Software Engineering and Distributed Systems Research Group, King Abdulaziz University

Jeddah, Saudi Arabia

Ayman I. Madbouly

Department of Research and Consultancy, Deanship of

Admission and Registration, King Abdulaziz University

Jeddah, Saudi Arabia

Leon J. Osterweil

Department of Computer Science, University of

Massachusetts, USA

Boston, USA

Abstract—Here, we present the design and architecture of an

Agent-based Manager for Grid Cloud Systems (AMGCS) using

software agents to ensure independency and scalability when the

number of resources and jobs increase. AMGCS handles IaaS

resources (Infrastructure-as-a-Service — compute, storage and

physical resources), and schedules compute-intensive jobs for

execution over available resources based on QoS criteria, with

optimized task-execution and high resource-utilization, through

the capabilities of grid clouds. This prototypal design and

implementation has been tested and shown a proven ability to

increase the reliability and performance of cloud application by

distributing its tasks to more than one cloud system, hence

increase the reliability of user jobs and complex tasks submitted

from regular machines.

Keywords—Cloud Computing; Grid; Management; Distributed

Systems; Architecture

I. INTRODUCTION

The growing need for computational resources to solve
large-scale problems leads to the cloud computing approach.
Before that, Grid computing implemented a paradigm of high-
throughput computing with the aim of maximal resource
utilization to run multiple jobs or to solve a very big problem
by parts [1]. Cloud computing now can fulfill high
computations that cannot be done by supercomputers;
moreover, its performance can be improved by utilizing all the
available resources in a group (grid) of clouds to make sure
that most resources are involved according to the required
criteria. The proposed Grid Cloud computing infrastructure is
considered as an emerging computing paradigm to solve
complex applications in science and engineering, as it involves
the combined effective utilization of cloud resources to achieve
a high-performance computing, and allows the inclusion of a
variety of resources like supercomputers, storage systems, and
computational kernels. These resources are coupled to be
available as a single integrated resource.

This infrastructure can benefit many applications, including
distributed supercomputing, high-throughput computing, and
data exploration. There is an increasing number of cloud
providers varying in the quality of service, and the complex
tasks are being increased in the fields of science and

engineering. The motivation of this work is to take advantage
of these clouds‘ services and resources to be utilized properly
to execute required according to the required QoS criteria.
Combining services from multiple providers give new
computational capabilities, so for example instead of using
costly supercomputers or HPCs, we can group Compute and
Storage services (Infrastructure-as-a-Service ‗IaaS‘) together
by creating the Grid Cloud. Here, an Agent-based Manager for
Grid Cloud System is presented to manage IaaS resources of
grid clouds by providing an efficient way of processing high
computing requests, based on software agents, for high
scalability, robustness, and provider-independency. We have
purchased IaaS services from two clouds to be used to execute
jobs. Google Compute Engine and Windows Azure Compute
have a variety of scalable services to select from, so we have
integrated their APIs programmatically with our manager to be
able to interact with the clouds and to execute tasks with high
scalability according to the QoS. Our manager prototype has
been implemented, tested and evaluated with real-world high-
computing jobs

II. BACKGROUND: GRID, CLOUD AND AGENTS

Cloud computing uses remote servers and the Internet to
maintain applications and data; it allows users to use
applications without installation and access their data at any
computer through Internet access [2], allowing for efficient
computing by centralizing memory, storage, processing, and
bandwidth. Cloud computing emerges from Grid computing
and provides on-demand resource provisioning. A grid is
usually built to utilize the idle resources in an efficient way, but
the fact is that if one piece of the software on a node fails, other
pieces on other nodes may fail if that component does not have
a failover component on another node. Grid and Cloud
computing are scalable, network bandwidth and CPU is
allocated/de-allocated on demand, storage capacity is
increased/decreased depending on the number of instances,
users and the amount of transferred data at a given time [3-6].

The autonomous component, Software Agent, has the
ability to interact with other agents and its environment on
behalf of a user, capable of autonomous actions like figuring
out and deciding what needs to be done to satisfy its objectives

Deanship of Scientific Research, King Abdulaziz University, grant No.
(24/34 Research Group).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

9 | P a g e

www.ijacsa.thesai.org

[7]. It is a kind of software abstraction as it provides a powerful
and convenient way to describe a complex software entity,
defined in terms of its behavior rather than attributes/methods
in other programming languages. A multi-agent system
consists of a number of interacting agents cooperating,
coordinating and negotiating with one another [7]. As known,
one of the cloud computing essentials is resource sharing and
pooling, so in agent-based cloud computing the coordination
and cooperation protocols is adopted to automate the process of
resource sharing and pooling in the clouds [8].

III. RELATED WORK

There are a number of management systems for cloud
services, some of them can be found as a locally installed
management application with a GUI, command-line tools,
extensions of a web browser or as online tools. They provide
their own management interfaces, designed to specific needs
without the ability to interact with other cloud deployments of
the same system, particularized to work only with a specific
cloud technology and not compatible with others. Some IaaS
systems are replicating the same capabilities offered by public
providers like Amazon AWS; examples include Nimbus,
Eucalyptus, OpenStack and OpenNebula [9, 10].

Others may only suitable for services of one cloud like
[11], or for multiple services from multiple providers, like
‗Karlsruhe Open Application for cLoud Administration‘ [12,
13]. There is also an open source, cross-platform, cloud
management system called Scalr; provides server management
and auto-scaling disaster recovery, where the manager is able
to scale a virtual infrastructure according to the load based on
RAM, disk, CPU, network or date [14]. Furthermore, there are
open source initiatives like deltacloud [15], jcloud [16] and
Libcloud [17], but in addition to their limitation to a specific
interface, they mainly concerned with the management of
public IaaS providers with basic support for private IaaS
systems, while they manage virtual instances, they do not
concern about the underlying physical infrastructure.

There are other related works that have involved the use of
software agents in the management of the clouds, like [18]; a
simulated proposed framework to manage resources for service
workflows, with a hierarchical architecture for separating
decisions of resource management on service, workflow and
cloud levels. Another prototypal implementation found for an
interface that is compliant with Open Cloud Computing
Interface [19] for IaaS resources management resources
negotiation, developed as an entryway to a standard FIPA
multi-agent system [20]. The number of works that used
software agents to manage clouds are limited. Most of them are
either for resource negotiation / brokering or a simulated idea
for resource allocation without implementation on real clouds
[21, 22, 23]. We studied their management functions and how
they were designed to understand the architectures in the
computational cloud systems at the IaaS level.

The proposed concept Grid Clouds is similar to an existing
concept called Cloud Federation, where services comprised
from different clouds are aggregated together. In other words,
the physical cloud resources are themselves being considered
as a service, and cloud providers are offering their resources
for other providers to expand the global cloud coverage offered

to their customers without needing physical resources in every
geographic locale [4]. Consequently, the cloud becomes a
federation of providers/clouds that interoperate together, i.e.
exchanging computing resources and data through a defined
interface. There are two types of the federation, Horizontal
federation and Vertical federation [24]. Horizontal federation
expands the capacity of a cloud by integrating a new site and it
takes place on one level of the Cloud Stack e.g., infrastructure
level. Vertical federation allows the integration of new
infrastructures to provide new capabilities by spanning
multiple levels [24]. Presently it is almost still a theoretical
concept, as there is no common standard for clouds
interoperability. As an initiative for developing a common
standard, the Open Cloud Computing Interface is trying to
standardize an API among different clouds. This enables
interoperability between providers, new business
models/platforms, specialization of single clouds as well as a
broader choice for users [3].

The important point here is that Cloud Federation requires
one provider to rent/sell computing resources to another
provider, which becomes a permanent or temporary extension
of the buyer's cloud environment. Therefore, an agreement
must be initiated between providers to make this federation
valid. The idea of managing grid cloud services emerges new
way of computing technology through grid cloud system.
Related work that aggregate clouds are only simulated works;
no real clouds involved in their experiments. In contrast, our
manager here is using real clouds with no need for an
agreement between providers, as the manager is a composite of
APIs of these Clouds together to manage resources and tasks.

IV. AGENT-BASED MANAGER FOR GRID CLOUD SYSTEM

(AMGCS)

One way of classifying a manager is by its operation scope.
A centralized manager schedules and manages all jobs
submitted to the grid cloud, whereas a decentralized manager
manages jobs submitted to a particular manager in the grid
cloud. A centralized manager has a full knowledge and control
of the resources and jobs so it can perform good scheduling,
but easily become a single point of failure and a performance
bottleneck. In contrast, decentralized manager architecture
scales well but with low optimal scheduling performance due
to the multiplicity of managers.

Scheduling policies classified into two major categories:
user-oriented and system-oriented scheduling. The first is
trying to optimize the performance for an individual user by
minimizing the response time for each job submitted by a user,
whereas system-oriented scheduling optimizes the system
overall throughput and average response time [26]. A
decentralized manager uses a user-oriented policy, whereas a
centralized manager performs system–oriented scheduling.

The grid cloud scheduler does not own the physical
resources and therefore does not have control over them [27],
hence the scheduler must make best effort decision and submit
the job to the resources selected. In general, the scheduler
function is to map jobs to the suitable resources in the grid
cloud. The scheduler involves three phases: Resources
Discovery, Resource Selection and Job Execution (Fig. 1).
Grid Cloud scheduling maintains a list of available resources

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

10 | P a g e

www.ijacsa.thesai.org

and selects the best set of resources depending on users
requirement and load balancing strategies. Then the scheduler
dispatches jobs to selected virtual machines to be executed and
collects the results.

Fig. 1. Scheduling Phases

Grid Cloud resource management focuses on the
virtualization and the coordinated use of heterogeneous and
distributed resources. The current trend in Cloud systems is the
adoption of the software agents for Grid Cloud architecture as
the agents‘ characteristics are compatible with cloud
environments [28-30]. This compatibility with Grid Cloud
architecture allows us to design a manager for such
architectures based on software agents to ensure platform
independency and increase manager‘s scalability and flexibility
with high cloud provider independency. Different resources in
a grid cloud are varying in operating systems, CPUs, VM
images, memory… etc. this difference leads to complex
management for these resources. The software agent is well
suited to address issues that arise from such a heterogeneous
remotely controlled globally shared system. The manager here
intend to group multiple clouds together (Fig. 2) and run
complex jobs that need high CPU by using the CPUs of the
virtual machines in the grid clouds.

Fig. 2. Managing integrated cloud systems

The Grid cloud concept is built based on the concept of
Cloud Federation, as mentioned in section 3, so a grid cloud is
a way in which services characterized by interoperability
features are aggregated from different clouds in one grid. It
addresses the problems of vendor lock-in and provider
integration, in addition to increase the performance and
disaster-recovery process through techniques like co-
location/geographic distribution. It also enables further
reduction of costs due to partial outsourcing to more cost-
efficient regions. This concept satisfies some security
requirements, on un-trusted providers, by using the
fragmentation technique to execute part of the job on one cloud
and the other part on another cloud, then combining results
without allowing each cloud to know the actual job context.
Applying this concept in our manager adds benefits like
resource redundancy, resource relocation and the combination
of complementary services by combining different types to
combined services [25]. Here we focus on the horizontal
federation as it decreases provider dependency and increases
availability (across multiple geographic regions). Therefore, if,
for example, the QoS of executing jobs/tasks specifies a low
cost, it can be executed on a cloud with the lowest cost or any
other QoS requirement. Unlike Cloud Federation, AMGCS
does not require an agreement between providers to integrate
their services and resources, the manager itself combines the
APIs of all grid clouds. The general structure of the designed
Grid Cloud Manager is illustrated in Fig. 3, it consists of
different agents, each of which has its own task and they are all
cooperating together to achieve the manager‘s roles.

Fig. 3. AMGCS structure

Phase One:

Resource
Discovery

• Authorization

• Application Definition

• Min. application Requirement

Phase Two:

Resource
Selection

•Gathering Information

•Selecting Resource

Phase Three:

Job

Execution

•Advanced Reservation

•Job Submission

•Tasks Preparation

•Monitoring Progress

•Job Completion

•Clean up tasks

Cloud System

n

AMGCS

Cloud System

1

Cloud System

i

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

11 | P a g e

www.ijacsa.thesai.org

As shown in the figure, the manager‘s modules are:
Scheduler, Monitor, Selector, Decomposer, Collector,
Metadata, Mobile metadata collector and Metadata
manipulator. All of these modules are agents communicating
together with a specific role for each one; the Selector is
selecting resources from Metadata to assist the Scheduler in
managing resources available in the grid clouds and allocating
proper resources to the jobs according to the specified Quality
of Service (QoS) and user desires. The monitor is monitoring
jobs‘ executions and resources reserved on the clouds for these
jobs. Task sender is the agent that invokes the API calls on the
selected cloud, and hence reporting the job‘s and VM‘s status
to the scheduler, as shown in Fig.4.

Fig. 4. Deployment of AMGCS Modules

Job decomposition helps in decomposing the job into tasks
to assign each task to a proper resource according to the
metadata information collected about all resources available in
the grid clouds. Decomposition is done based on the job
structure/nature; object-oriented system decomposed into
packages, web-service based application decomposed to web
services and so on. In this prototypal implementation, the
decomposition is done programmatically, predefined in the
application itself. The Monitor module is tracking the
execution of the jobs and the associated resources, Mobile
Metadata Collector agents collect and update the Metadata
with available resources in the grid clouds.

AMGCS manages the virtual machines in the system and
responsible for grouping multiple clouds together in the
system; it schedules jobs according to the metadata information
then sends the job to the selected cloud to execute it on the
associated virtual machine and returns the results, finally
terminates VMs after finishing their work. Therefore, the
manager consists of a number of services each of which is
implemented on an agent and performs a specific function of
the manager‘s tasks, by cooperating with each other to achieve
the manager‘s responsibilities and goals.

In order to achieve a high performance and throughput, the
manager is applying best-fit and first-fit mechanisms in its

selector algorithm. Best-fit shortlists the best options available
for a task, this selection mechanism is slower than First-fit,
which selects the first of the best. These two mechanisms are
used for the purpose of ranking metadata resources and
selecting the proper one that fits the task. Fig. 5 shows the
algorithm used by the manager to select and manage grid cloud
resources.

Fig. 5. AMGCS Algorithm

V. IMPLEMENTATION OF AMGCS

The manager has been built using Java to implement the
agents that compose the manager itself. Each agent is
implemented to perform specific tasks, managing resources on
different clouds and updating the metadata that contains the
information about the available resources in all grid clouds.
The manager is integrated with multiple clouds APIs, these
clouds are Google Compute Engine, Google Cloud Storage,
and Windows Azure Compute. Resources on these clouds are
managed/controlled through API functions of each cloud.
Authorization and authentication processes must be initiated
once before the actual invoking of functions and making
requests.

A. Integration with Google Compute Engine (GCE)

The API of GCE has been integrated with our manager to
directly call requests to manage available resources. GCE first
needs to authenticate the machine before accepting any
request; this is done through the OAuth 2.0 protocol. This
authorization framework provides clients or third-party
applications a method to access resources (HTTP services)
either by allowing them to obtain access on its own behalf or
on behalf of a resource owner by coordinating an approval
interaction between the resource owner and the HTTP service.

Fig. 6 shows the architecture of GCE and the different
ways of accessing the cloud, Command Line Interface (CLI),
User Interface (UI) and API code library.

Scheduler

Selector Collector

T a s k S e n d e r

Decomposer

Cloud #2
Job #1

Job #2

Job #n

Resource #1

Resource #2

Resource #n

Cloud #n
Job #1

Job #2

Job #n

Resource #1

Resource #2

Resource #n

Cloud #1
Job #1

Job #2

Job #n

Resource #1

Resource #2

Resource #n

Input: Job J, User desires U, Different Resources R
Begin
Retrieve Metadata
Run Selector agent
If J is decomposable, Decompose J into tasks JTs
Create shortlist L of R from grid clouds
Sort L according to U, then apply best-fit mechanism
Create list best-fit resource BFR
Loop: select best options from L and insert into BFR
Apply first-fit mechanism on BFR
Initiate connection to the selected virtual machine VM
Task Sender agent sends J or JTs to VM
Notify Monitor agent to monitor JTs, R, VM
Execute J or JTs on selected VM
Monitor agent notifies Collector agent on completion
Collector agent returns results
Terminate connection to VM
End

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

12 | P a g e

www.ijacsa.thesai.org

Fig. 6. Google Compute Engine Architecture

To use this API within our manager, a key is required from
Google Compute Engine that must be associated with the
manager in order to be authorized to perform any requests, this
key is called "client_secrets‖ and can be downloaded in a
JSON format from Google Developers Console, example
client_secrets.json file:

{

 "installed": {

 "client_id": "837647042410-75ifg...usercontent.com",

 "client_secret":"asdlkfjaskd",

 "redirect_uris": ["http://localhost", "urn:ietf:wg:oauth:2.0:oob"],

 "auth_uri": "https://accounts.google.com/o/oauth2/auth",

 "token_uri": "https://accounts.google.com/o/oauth2/token"

 }

}
The manager will use OAuth 2.0 in order to authenticate

the RESTful API. This API will be used to create and delete
disks, virtual machine instances, and other resources, and to
integrate with other Google Cloud services, i.e. Google Cloud
Storage which is used here to store the metadata for the
manager itself. Fig. 7 shows the flow of authenticating APIs
calls.

Fig. 7. Authenticated API calls sample flow

Servlet is a Java class to extend the server capabilities to
respond to any requests types and to extend the applications
hosted by web servers. Several machine types are available
from GCE; micro, standard, high CPU and high memory
machine types, shown in Table 1. AMGCS select high CPU
types for tasks require more virtual cores relative to memory.
GCE uses GCEU (Google Compute Engine Unit) as a unit of
CPU capacity describing compute power. Minimum power of
one logical core on the Sandy Bridge platform is 2.75 GCEUs.

TABLE I. SELECTED LIST OF MACHINE TYPES ON GCE

Configuration Virtual Cores Memory

Micro - Small Shared core 0.60 – 1.7 GB

Standard 1 3.75 GB

High Memory,

High CPU

2 7.50 – 13 GB

4 15 – 26 GB

8 30 – 52 GB

16 60 – 104 GB

These machine types, in addition to many others, are
included in our metadata database, so the scheduler will choose
the proper one to execute the job, according to the required
QoS and whether cost or response time is the most critical
factor for user desires. After selecting the machine type, API
request will be sent, after being authenticated, to initiate a new
instance with the specified properties/configurations.
Afterward, the manager calls an API function to start running
the specified instance (VM) on that Infrastructure using the
instances().insert function. These instances can run Linux
server from many available images; provided by Google or
customized images of other systems, as needed. Finally, jobs
will be executed on this instance and others on other instances,
results returned to the manager then to the user. The integration
of GCE API with our manager is illustrated in Fig. 8.

Fig. 8. GCE integration with AMGCS

B. Integration with Windows Azure Compute (WAC)

Windows Azure is supporting Microsoft operating systems
and non-Microsoft operating systems. Its VM image gallery
includes latest releases of Windows Server, SharePoint, SQL
Server, BizTalk Server, and many non-Microsoft workloads
like Ubuntu, SUSE Linux, openSUSE, OpenLogic, etc.
Integrating WAC with AMGCS gives the power of handling
yet more requests for high computing by calling the associated
API call to create new instances, with built-in capability of
Load Balancing, monitoring and restarting VMs.

Windows Azure Compute has many machine types ranging
from extra small to extra-large machines, also AMGCS will
select from this wide range of machine types the proper
machine type with proper configurations that suit the job
requirements, Table 2 shows some of these machine types, and
Fig.9 shows the integration of GCE API with manager‘s
agents.

AMGCS

Selector

Collector

Decomposer

Task Sender

GCE Cloud

Task #1, Task #2, Task #n

Resource #1, Resource #2, Resource #n

GCE API agent

Scheduler Mobile Metadata

Collector

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

13 | P a g e

www.ijacsa.thesai.org

Fig. 9. Windows Azure Compute integration with AMGCS

TABLE II. SELECTED LIST OF MACHINE TYPES ON AZURE COMPUTE

Configuration Virtual Cores Memory

Extra small Shared core 768 MB

Small 1 1.75 GB

Medium 2 3.5 – 14 GB

Large 4 7 – 28 GB

Extra large 8 14 – 56 GB

In order to use WAC API, the following is required:

1) A subscription Id: which uniquely identifies our

subscription; this id is obtained from the Windows Azure

portal.

2) A management Certificate: that must be associated with

our subscription to authenticate the API calls.
As the endpoints are accessible over HTTP, we have to

create, in our code, an endpoint specific to a particular kind of
operation we want to perform, then create HTTP request for
that endpoint and the management certificate is attached with
that request to be authenticated.

C. AMGCS Metadata

The manager schedules tasks according to this updated
metadata information. A cloud database is used here to store
the manager‘s metadata; this cloud database is Google Cloud
Storage, to guarantee the compatibility and independency of
any platform. Provided by Google, with features like object
versioning, parallel uploads and CRC-based integrity checking
to maintain the robustness of our sophisticated manager. We
can access its API using XML, JSON or using the libraries for
several popular programming languages including Java. This
storage service is used here to guarantee platform
independency and the proper integration with mobile metadata
collector agents. The metadata includes the following info of
each cloud system in the grid clouds:

Name: Name of the resource or virtual machine.

Description: Description about the resource.

ID: The unique ID of the resource.

CPUs: Number of CPUs in the virtual machine

ImageSpace: The size of the server image in Gigabyte.

Kind: The category of the virtual machine, e.g. high
memory, high CPU, or standard.

Disks: The maximum number of disks can be associated to
a specific virtual machine.

DisksSize: The size of the disks associated to a specific
virtual machine.

Memory: The size of memory in Megabyte.

Location: The location of the server, e.g. Central US, West
Europe, East Asia… etc.

ServerType: The type of the server, e.g. Windows, Linux,
SQL, Oracle…etc.

ServerImage: The image of the server, which contains the
boot loader, an operating system and a root file system that is
necessary for starting an instance, e.g. debian-7, centos-6, rhel-
6, sles-11, Windows Server 2012 R2 Data-center, SQL Server
2012 SP1 Enterprise, OpenSUSE 13.1, Ubuntu Server 14.04
LTS… etc.

Fig. 10 is a snapshot of the current metadata collected about
available resources

Fig. 10. Manager‘s metadata

After the job is received by the manager, it will look for the
suitable resource available from this metadata, then start a new
virtual machine with specific properties on the specific cloud
provider, then it will send the task to this particular virtual
machine. Another agent of the manager will monitor the
execution of these tasks on these resources, and will send
periodic notifications to inform when the task or job execution
is completed. To minimize costly communication of large
amounts of data, some intercloud mapping feature is needed, so
most clouds provides a feature called VHD (Virtual Hard
Disk), which is a file format used as the hard disk of a virtual
machine that may contain any amount of data. It is portable to
be attached to any cloud virtual machine from any provider, so
the manager can attach such a VHD to any created VM. After
finishing the job execution, the manager will make a request to
terminate the VM and deals locate the associated resources.
The integration of the GCS API with AMGCS agents is
illustrated in Fig. 11.

AMGCS

Selector

Collector

Decomposer

Task Sender

WAC Cloud

Task #1, Task #2, Task #n

Resource #1, Resource #2, Resource #n

WAC API agent

Scheduler Mobile Metadata

Collector

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

14 | P a g e

www.ijacsa.thesai.org

Fig. 11. Google Cloud Storage integration with AMGCS

VI. EVALUATION AND TESTING

To evaluate AMGCS system, various testbeds have been
set up to measure its efficiency, and we have successfully
tested the execution of complex jobs that require high
computations. If a compute-intensive job is requested to be
executed with specified user desires like performance, cost or
reliability, the AMGCS manager selects the proper resource
from the metadata and sends the job to that resource in order to
execute it. This process requires having full information about
the resources available in the grid clouds, which is done
through our manager by calling the API functions associated
with each cloud. There is an updated list of this information in
the manager‘s metadata.

A. Test cases and Results

With a centralized manager, the AMGCS has been tested
with a compute-intensive job, a big matrices multiplication job.
These matrices are huge and need a long time to be
manipulated. The size of the first matrix is [4096][2048] and
the second matrix size is [2048][2048], this calculation would
take a long time to be done, depending on the type of the
machine that executes the job, memory, location, server type
and so on. The first test case is a single job executed on a
single cloud system, with the required user desires: Low cost
and minimum execution time. If a regular user wants to
perform this job on a cloud system, he will just select any
cloud with any properties as he is looking for a low cost, he
might manually select the lowest-cost resource to execute this
job. In contrast, the AMGCS manager will select the most
proper resource that suits the user desires, and achieves this job
efficiently.

Consider, as a case, the user has sent the job arbitrary to a
lowest-cost resource, which is a virtual machine with a shared
core, the job of multiplying these huge matrices took
approximately 43.8 minutes to be done. However, AMGCS
manager submitted this job to a more proper VM from the list
of resources available in the manager‘s metadata, it is also a
shared core but with capabilities that make this VM the best
option to select from the available resources in the grid cloud,
―Memory and ServerImage‖. Fig. 12 shows the result of this
test case.

Fig. 12. Comparison of execution time (minutes), shared core

The optimized execution is shown in Fig. 12 is achieved by
executing the job on a VM with proper properties
(capabilities), and because the manager knows the full details
about all resources from the metadata, it chose one cloud of the
grid clouds and create a proper virtual machine to execute this
job. The configuration of this particular VM customized the
memory, and the server image (Debian 7 Wheezy). Here,
obviously, one server is better than the other and hence the
significant difference in execution time between them. The
server type at the bottom is a Windows server, and the type of
the upper (optimized) one is a Linux server.

To prove that the enhancement here is achieved by the
manager‘s selection strategy and not by the server type (Linux
or Windows), we did a second test to arbitrary execute the
same job on a Linux server also with a shared core, but without
using our manager. The results proved that the AMGCS
scheduling is the reason for that significant enhancement,
because of the many options that can be customized to a
particular VM to make it the best proper option to execute the
required tasks, unlike the regular user‘s selection that may
ignore any consideration to the capabilities or properties of the
server‘s VM. Fig. 13 shows the execution time on the other
server type (Linux) without using AMGCS, it is almost near
the time taken on the Windows server in Fig. 12, only four
minutes less.

Fig. 13. Execution time (minutes) without AMGCS, shared core

A third test case, the same job but different user desire,
which is minimum execution time. Here the user does not care
about the cost and the most care about the execution time. It
also tested by submitting this job arbitrary to any cloud with
any properties and compare this with the selection of our
manager which depends on knowledge of the user desires, job
structure and nature, resources available and the recommended
resources for complex jobs. As we need here the minimum
execution time, a high CPU power is required to solve this job
as fast as possible. Hence, a virtual machine with eight cores is
the proper one. Yet, even with eight cores, the performance
could be optimized further by taking into account factors that

43.8

14.1

Shared core (arbitrary)

Shared core (using our Manager)

43.8

39.5

Windows server

Linux server

AMGCS

Selector

Collector

Decomposer

Task Sender

Google Cloud Storage
Resource#1, Resource#2, Resource#n from n cloud systems

GCS API agent

Scheduler

Mobile Metadata Collector agents

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

15 | P a g e

www.ijacsa.thesai.org

might degrade the performance or efficiency of execution, like
memory and server type. So here the job has been executed on
multiple VMs that have the same core number, eight cores. Fig.
14 shows the difference in execution time; the upper one is
much faster compared to the arbitrary selected VM at the
bottom. This is because the manager has submitted the job to a
more suited cloud with better virtual machine capabilities
(serverType and memory space).

Fig. 14. Comparison of execution time (minutes), 8 cores

All these aforementioned test cases have submitted the job
to the clouds‘ VMs without decomposing it into tasks.
Decomposing this big job into tasks to be individually executed
on multiple clouds will increase the performance and reliability
of the job execution.

The fourth test case is to measure the improvement of
enhancement after decomposing a job, the same job has been
divided into two tasks (parts) to be executed on the grid cloud
system, with one user desire which is minimum execution time.
Decomposition here is programmed in the code just to test the
prototypal manager, by dividing the first matrix by half and
keep the second as it is, to maintain the matrix multiplication
rules. Now the manager has many options to execute these
tasks; one of these options is to send each of these tasks to a
different virtual machine in order to be executed separately and
then combine the results together. This is the case here, where
the two tasks of the multiplication job are processed on
multiple clouds from the grid clouds; hence, the time decreased
by half. Fig. 15 shows the significant difference in time
compared to the execution on single cloud system.

Fig. 15. Comparison of execution time ‗minutes‘, Single vs. Grid Cloud

The fifth test case was conducted to evaluate the
improvement of using grid clouds in executing tasks, by
sending replications of these tasks (parts of the job) to multiple
clouds. Each task has been replicated and processed two times
on multiple virtual machines (other than previously used VMs)
so if any failure occurs in any VM we still have another copy
on another VM. Hence, the reliability of execution is
guaranteed for these tasks, despite the cost that might be high
because here reliability is the user desire and reliability is
always costly. Fig. 16 shows the results of this experiment.

Fig. 16. Execution time (minutes) for tasks of the job, on Grid Cloud

We end up with an enhancement in executing complex
tasks on grid cloud resources in an efficiently managed way.
Combining comparisons above proves that there is an
improvement by 16% - 30% between single and grid cloud
system, illustrated in Fig. 17.

Fig. 17. Overall enhancement, AMGCS vs. Single Cloud

B. Discussion on Experiments Results

Depending on the results that we got from the performed
tests and experiments, our finding could be summarized as
follows:

 The Manager solves current challenges of executing
tasks on the cloud, utilizes grid clouds‘ resources,
solves complex and compute-intensive tasks, and tasks
that require high reliability and high performance.

 AMGCS manages jobs and resources and gives good
performance in terms of execution time, resource
utilization and system throughput compared to a single
cloud system.

 Increasing the number of the grid clouds in the system
gives more optimize options and high performance
compared to using a small number of grid clouds.

 The overall enhancement of Grid Cloud System is
about 16% - 32% compared to a single Cloud System.

 The manager does not require any provider-side
agreement, only configuring the libraries of the grid
clouds.

22.8

6.9

8 cores (arbitrary)

8 cores (using our manager)

22.8

3.7

Single Cloud System

Grid Cloud System

4.5

10

5.3

10.2

1st task on cloud 1

1st task on cloud 2

2nd task on cloud 1

2nd task on cloud 2

0

10

20

30

40

50

60

Shared core 8 cores Decomposed
job, 8 cores

Replicated, 8
cores

Execution time (minute)

Grid Cloud System Single Cloud System

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

16 | P a g e

www.ijacsa.thesai.org

 Fault tolerance is guaranteed by replication and
increased performance through scaling resources to
accommodate user‘s needs, more or less.

 There is a trade-off between high reliability and cost,
our manager may replicate tasks on multiple clouds and
hence more cost.

VII. CONCLUSION

In this paper, we introduced an agent-based manager for
grid cloud system that has been designed based on software
agents to ensure platform independency, heterogeneity
handling and flexibility of managing grid clouds. It has been
designed, implemented and successfully tested on real clouds.
The limitations of the proposed manager could be summarized
in its inability to be fully interoperable between different
virtualization technologies and recourses compatibilities from
different providers. But this interoperability issues could be
solved later when cloud standards are clearly defined and
followed by all providers to allow such perfect integration
between their technologies and resources. The benefits of using
AMGCS are shown in increasing and optimizing the available
compute power, managing jobs/resources, and utilizing grid
clouds‘ IaaS resources through integration between system‘s
modules and clouds‘ APIs. This idea can be beneficial to
research centers to solve real-world complex problems that
need high computing capabilities, such as Bioinformatics
applications, engineering simulations, and mathematical
analysis.

ACKNOWLEDGMENT

This Project was funded by Deanship of Scientific
Research (DSR), King Abdulaziz University, under grant No.
(24/34 Research Group). The Authors, therefore, acknowledge
technical and financial support of KAU.

REFERENCES

[1] Vladislav Falfushinsky, Olena Skarlat, Vadim Tulchinsky, "Cloud
computing platform within Grid Infrastructure", Intelligent Data
Acquisition and Advanced Computing Systems (IDAACS), 2013 IEEE
7th International Conference on (Volume:02), Sept. 2013.

[2] Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A,
Lee G, Patterson DA, Rabkin A, Stoica I, Zaharia M, ―Above the Clouds
– A Berkeley View of Cloud‖, Tech-nical report UCB/EECS-2009-28,
EECS Department, Uni-versity of Berkeley, California, 10 February
2009.

[3] Stanoevska-Slabeva, Katarina; Wozniak, Thomas; Ristol, Santi, "Grid
and cloud computing: a business perspective on technology and
applications", Springer, 2010.

[4] Beaty, Donald, "Cloud computing 101", ASHRAE Journal, Volume 55,
Issue 10, p. 88. Oct. 2013.

[5] Jha S, Merzky A, Fox G, ―Clouds Provide Grids with Higher-Levels of
Abstraction and Explicit Support for Usage Modes‖. Presentation for
Open Grid Forum (OGF) 2008.

[6] José C. Cunha and Omer F. Rana, "Grid Computing: Soft-ware
Environments and Tools", ISBN: 978-1-84628-339-0, Springer 2006.

[7] M. Wooldridge, ―An Introduction to Multiagent Systems‖, second ed.
John Wiley & Sons, 2009.

[8] K. M. Sim, "Agent-Based Cloud Computing", IEEE Transactions On
Services Computing, VOL. 5, NO. 4, December 2012.

[9] A. Lonea, D. Popescu, and O. Prostean, ―A survey of management
interfaces for eucalyptus cloud,‖ in Applied Computational Intelligence

and Informatics (SACI), 7th IEEE International Symposium on, pp.
261–266. May 2012.

[10] X. Wen, G. Gu, Q. Li, Y. Gao, and X. Zhang, ―Comparison of open-
source cloud management platforms: Openstack and opennebula,‖ in
Fuzzy Systems and Knowledge Discovery (FSKD), 9th International
Conference on, pp. 2457 –2461. May 2012.

[11] L. Xu and J. Yang, ―A management platform for eucalyptusbased iaas,‖
in Cloud Computing and Intelligence Systems (CCIS), 2011 IEEE
International Conference on, Sept. 2011, pp. 193 –197.

[12] C. Baun, M. Kunze, and V. Mauch, ―The koala cloud man-ager: Cloud
service management the easy way,‖ in Cloud Computing (CLOUD),
IEEE International Conference on, pp. 744 –745. July 2011.

[13] C. Baun and M. Kunze, ―The KOALA cloud management service: a
modern approach for cloud infrastructure management,‖ in Proceedings
of the First International Workshop on Cloud Computing Platforms, ser.
CloudCP ‘11. New York, NY, USA: ACM, p. 1:1–1:6. 2011.

[14] ―Scalr,‖ [online] Available at: http://github.com/Scalr/. [Accessed: 01
January 2017].

[15] ―Apache libcloud,‖ [online] Available at: http://libcloud.apache.org/.
[Accessed: 01 January 2017].

[16] ―jcloud,‖ [online] Available at: http://www.jclouds.org/. [Accessed: 01
January 2017].

[17] ―Apache deltacloud,‖ [online] Available at:
http://deltacloud.apache.org/. [Accessed: 19 July 2015].

[18] Yi Wei and M. Brian Blake, "Adaptive Service Workflow Con-
figuration and Agent-based Virtual Resource Management in the
Cloud", Cloud Engineering (IC2E), IEEE International Conference on,
March 2013.

[19] Metsch T., Edmonds. A., et al. Open Cloud Computing Interface Core
and Models, Standards Track, no. GFD-R in The Open Grid Forum
Document Series, Open Cloud Computing Interface (OCCI) Working
Group, Muncie (IN) 2011.

[20] Venticinque S., Tasquier L., Di Martino B., ―Agents based Cloud
Computing Interface for Resource Provisioning and Management‖,
Sixth International Conference on Complex, Intelligent, and Software
Intensive Systems, 2012.

[21] Domenico Talia, ―Cloud Computing and Software Agents: Towards
Cloud Intelligent Services‖, WOA, volume 741 of CEUR Workshop
Proceedings, page 2-6. CEUR-WS.org, 2011.

[22] ZJ Li, Chen C. and Wang K., ―Cloud Computing for Agent-Based
Urban Transportation Systems‖, IEEE Computer Society, 2011.

[23] M.V. Haresh, S. Kalady and V.K. Govindan, "Agent based Dynamic
Resource Allocation on Federated Clouds," Proc. IEEE Recent
Advances in Intelligent Computational Systems (RAICS'11), pp.111 -
114. 2011.

[24] Del Castillo, Lorenzo and others, "OpenStack Federation in
Experimentation Multi-cloud Testbeds." HP Laboratories. 2013.

[25] Kurze, Tobias, et al. "Cloud federation." CLOUD COMPUTING, The
Second International Conference on Cloud Computing, GRIDs, and
Virtualization. 2011.

[26] Rawat, S. and Rajamani, L., "Experiments with CPU Scheduling
Algorithm on a Computational Grid ", IEEE International Advance
Computing Conference (IACC 2009), PP. 71-75. 2009.

[27] Chunlin, Li, Zhong Jin Xiu, and Li Layuan. "Resource scheduling with
conflicting objectives in grid environments: Model and evaluation."
Journal of Network and Computer Applications 32, no. 3: 760-769.
2009.

[28] R. Buyya et al., ―Cloud Computing and Emerging IT Platforms: Vision,
Hype, and Reality for Delivering Computing as the 5th Utility,‖ Future
Generation Computer Systems, vol. 25, no. 6, pp. 599- 616, June 2009.

[29] K.M. Sim, ―Towards Complex Negotiation for Cloud Economy,‖ Proc.
Int‘l Conf. Advances in Grid and Pervasive Computing (GPC ‘10), R.S.
Chang et al., eds., pp. 395-406, 2010.

[30] K.M. Sim, ―Towards Agent-Based Cloud Markets (Position Paper),‖
Proc. Int‘l Conf. E-CASE, and E-Technology, pp. 2571-2573, Jan. 2010.

