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Abstract—Investigating and evaluating physical-chemical-

biological processes within an Earth system model (EMS) can be 

very challenging due to the complexity of both model design and 

software implementation.  A virtual observation system (VOS) is 

presented to enable interactive observation of these processes 

during system simulation.  Based on advance computing 

technologies, such as compiler-based software analysis, automatic 

code instrumentation, and high-performance data transport, the 

VOS provides run-time observation capability, in-situ data 

analytics for Earth system model simulation, model behavior 

adjustment opportunities through simulation steering.  A VOS 

for a terrestrial land model simulation within the Accelerated 

Climate Modeling for Energy model is also presented to 

demonstrate the implementation details and system innovations. 
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I. INTRODUCTION 

Over the past several decades, several Earth system models 
(ESMs) have been developed to understand Earth system 
dynamics and to project future climate scenarios. Among these 
ESMs, the Accelerated Climate Modeling for Energy (ACME) 
model, funded by the US Department of Energy (DOE), is a 
national effort to address the challenging and demanding 
climate-change research imperatives. Due to the complexity of 
EMSs in both model design and software implementation, the 
validation and verification of the Earth system process with 
EMSs are quite challenging, especially at the scales and levels 
of organization wherein many relevant field measurements and 
experiments are made (Wang et. al., 2014a). Scientists 
routinely use post-simulation approaches to analyze results. 
These include visual exploration to detect anomalies or 
interesting patterns and statistical data analysis for further 
investigation. Generating data for post-simulation earth system 

process investigation quickly becomes a cumbersome task once 
a simulation reaches a fairly large scale with a huge amount of 
data and daunting input/output cost. For these reasons, an 
interactive, run-time simulation monitoring system, or a virtual 
observation system (VOS), is needed.  In this paper, author 
first scribe key functions of a VOS and then describe its major 
components based on advanced computing technologies (such 
as compiler-based software analysis, automatic code 
instrumentation, and high-performance data transport). At last, 
for the demonstration purpose, authors present implementation 
details on a VOS for a terrestrial land model that is the ACME 
Land Model (ALM) which is a process-based model with a 
collection of key bio geophysical and biogeochemical 
functions that represent the energy-water-biogeochemical 
interactions between the atmosphere and the terrestrial 
landscape.  The VOS software system for ALM provides the 
capabilities of real-time observation and in-situ data analytics 
for model simulation. 

II. VIRTUAL OBSERVATION SYSTEM DESIGN 

Key functions of A VOS are 1) to setup a “watch point” for 
a specific physical-chemical-biological function and 2) to 
capture the input and output data streams of a target function. 
Therefore, users can quantify the relationship between input 
and output data streams of a target function and identify 
variables that are can be observed at desired sampling 
frequencies. This information can be used to guide data 
collections in real world observation systems. A VOS also 
provides interactive tracking capability over user-selected key 
model variables throughout model simulation, so that users can 
“observe” changes in model variable values, and explore the 
relationship among Earth system functions (related to these 
user-selected model variables) over a specific spatial-temporal 
domain.
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Fig. 1. Major software components of a VOS, including software analysis and code instrumentation, in-situ data infrastructure, and interactive data analysis. Two 

typical uses of the VOS are function-specific data monitoring and variable tracking throughout the simulation

Figure 1 shows two typical uses of a VOS. First, the VOS 
allows users to define a specific function (an individual 
subroutine or a group of related subroutines) and an 
observation period, then the VOS collects input and output data 
streams of the target function and transports these data out of 
the simulation system for visualization and analysis. Second, 
the VOS helps to track specific key model variables throughout 
the simulation system over a user-defined period. Figure 1 also 
illustrates the major components of a VOS, including software 
analysis and code instrumentation, in-situ data communication 
infrastructure and interactive data analysis. 

A. Software analysis and automated instrumentation 

The main purpose of this VOS component is to collect 
information on software structures and workflow. Authors 
adopted a similar workflow procedure used in a scientific 
function test platform (Wang et. al., 2015, 2014b; Yao et. al., 
2016). The procedure has several steps: First, authors use 
software dependency analysis to identify methods to reduce 
software dependency on parallel computing and external 
libraries. This step simplifies the model software dependency 
by using production compilers without an optimization option. 
Next, authors perform a compiler-assisted workflow analysis to 
capture the internal data structure and scientific workflow of 
the simulation source code. For a given function or module, 
authors use a programming language parser to analyzes the 
source code, break it into tokens, and store the program 
internally as an abstract syntax tree (AST). Then, authors 
conduct recursive name resolution through the AST to capture 
the input and output data streams of a target function in the 
simulation source code. Finally, authors instrument code 
segments into the source code to pack all the data of interest 
into a continuous memory buffer ready for in-situ data 
infrastructure. Since the majority of EMSs are developed in 
Fortran, authors are working on the integration of a kernel 
extraction tool (Kim, et. al., 2016), which is built on top of a 

Python Fortran parser, for automatic code instrumentation. The 
process is shown in Figure 2. 

 
Fig. 2. General procedure for software analysis and automated 

instrumentation within a VOS 

B. In-situ data communication infrastructure 

The main function of this VOS component is to provide 
high-performance data communication capability for 
transferring the data of interest out of simulation system for 
external analysis. The data infrastructure allows users to inspect 
variable values in real time during model simulation. In the 
current effort, VOS in-situ data infrastructure is built on the 
Common Communication Interface (CCI) (Atchley et al, 
2011). The CCI project is an open-source communication 
interface that aims to provide a simple and portable Application 
Programming Interface (API), high performance and scalability 
for the largest deployments, and robustness in the presence of 
faults. The in-situ data infrastructure consists of three 
segments: data generation, data staging, and data analysis 
(Figure 3). In the VOS, the data analysis segment first creates 
CCI channels to which the data generation segment 
(instrumented simulation code) can connect. Once the 
connection is established, users can then pass simulation 
parameters (function and variable names, time interval, and 
location, etc.) to instrumented simulation code. Once the 
simulation runs to the user-defined time interval, the 
instrumented simulation code packs all the relevant data into a 
buffer and uses CCI’s Remote Memory Access (RMA) 
methods to send the data over the network to the data analysis 
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segment. The data analysis segment always listens on its own 
CCI channel. When the data arrives, the analysis segment 
unpacks the data for follow-up data processing and analysis. 

Considering that large data volume needs to be transferred 
into data analysis, VOS data infrastructure also includes a data 
staging area that allows data caching for input/output 
operations and low-latency data queries. The data staging area 
also allows users to define functions and observation periods 
and track key model variables over simulation period. The 
main purposes of data staging are: 1) reduce potential data 
overload in the analysis side during model simulations and 2) 
then enable user-based queries and maintain interactive rates. 
Currently, the staging area is co-located with data analysis and 
visualization, and acts as a temporal storage area for data 
processing operations (e.g., storing, loading, extraction, 
transformation, or querying). Figure 3 shows the VOS in-situ 
data infrastructure with a staging area. 

 
Fig. 3. In-situ data infrastructure with a data staging area inside the data 

analysis component 

C. Interactive data analysis 

This VOS component provides a front end with which users 
can perform three main tasks: 1) choose the ecosystem 
functions and time interval for monitoring, 2) interactively 
visualize the results of predefined “watch” points throughout 
simulation, and 3) steer the simulation accordingly, if 
necessary. The data analysis component also directly 
communicates with the staging area to conduct query 
submission and data retrieval based on the user interactions. 

From the technical perspective, this component contains 
three modules: 1) a graphic user interface (GUI) that allows 
users to perform these three main tasks, 2) an interactive data 
visualization engine that plots physical-chemical-biological 
interactions produced by the simulation, and 3) a 
communication interface with a staging area which in turn 
connects to the instrumented simulation code. 

In the study, the GUI is built using Qt and the data 
visualization engine is developed using the Visualization 
Toolkit (VTK), which utilizes the underlying graphical 
processing unit (GPU) for faster rendering. Multicore CPU 
processors are used to handle data transfer. After receiving the 
buffer from CCI, the engine converts the data into vtkTable 
data structure for visualization. The buffering mechanism based 
on data staging allows users to select time steps for 
visualization. The visualization engine employs a client-server 
model, so that while the VTK server is located alongside the 
simulation for faster data transfer, the actual client display 
windows can be on any remote machine. This feature greatly 
increases the portability and usability of the system. 

 
Fig. 4. Key components of VOS data visualization, which utilizes hybrid 

hardware and provides cross-platform GUIs 

III. VOS FOR ALM: CASE DEMONSTRATION 

In this section, authors demonstrate a VOS for the ALM 
simulation over the Next Generation Ecosystem Experiments 
Arctic site (NGEE-Arctic, http://ngee-arctic.ornl.gov), located 
at the Barrow Ecosystem Observatory (BEO) in Barrow, 
Alaska. In this experiment, ALM was configured as a point-
mode offline simulation to investigate terrestrial ecosystem 
responses to specific atmospheric forcing over a single 
landscape grid cell at Barrow (Yuan, et. al., in preparation). For 
the demonstration purposes, the observation system is used to 
track all the variables in and out of a CNAllocation module 
within ALM. The CNAllocation function is developed to 
allocate key chemical elements (such as carbon, nitrogen and 
phosphorus) of a plant in a terrestrial ecosystem. 

The software architecture diagram of the VOS for ALM 
using the CNAllocation module is illustrated in Figure 5. 

 
Fig. 5. The schematic software architecture diagram of the VOS for the 

ACME Land Model 

As shown in Figure 5, code segments are instrumented into 
the source code to capture and pack the input and output data 
streams of the targeted module, CNAllocation. The code 
segments also contain functions that invoke the in-situ data 
communication infrastructure, including CCI channel and data 
buffer.  The VOS has a staging area that also contains a CCI 
channel and data buffer. The staging area is accessible from a 
data exploration subcomponent. Authors first start the 
interactive data analysis component, which takes user-specified 
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parameters (such as time interval, or a subset of variables) and 
then listens to the CCI connection requests from the simulation 
side. Next, authors start the instrumented ALM simulation 
code. When the simulation code runs to the user-defined time 
steps, the instrumented code packages all the relevant data into 
a buffer and then sends the buffer to the interactive data 
analysis component over the network. The data analysis 
component always listens on its CCI channel. When data 
arrive, the data analysis component unpacks the data in the 
staging area for follow-up data processing and analysis. 

The GUI for CNAllocation data analysis and exemplar 
simulation data streams is illustrated in Figure 6. The first two 
rows show different bar plots of carbon and nitrogen allocation 
variables for a plant type over a specific range of time steps. 
The third row displays a time series from given carbon and 
nitrogen allocation variables; this graph allows users to track 
the behavior of target variables during the simulation. The 
fourth row includes a heat map for plotting variables having a 
2D domain. Finally, the left panel shows the complete variables 
and time step selection. 

 
Fig. 6. GUI of the VOS data analysis of the CNAllocation functions within the ACME Land model.  Users can zoom in or out to inspect different time steps or 

drag on any plot to highlight certain variables 

IV. CONCLUSION 

Authors have demonstrated an approach to develop a 
virtual observation system (VOS) for Earth system models. 
Authors also have implemented a VOS for the ACME Land 
Model using a single point-mode simulation case. By taking 
advantage of compiler-based software system analysis, 
automatic code instrumentation, and high-performance in-situ 
data transport, the VOS provides unique capabilities to 
investigate Earth system behaviors in a unique way. The VOS 
is designed based on non-intrusive observation principles; it 
preserves all the original software data flow and function calls. 
The VOS also allows scientists to interactively select targets of 
interest, such as key variables, functions, or specific break 
points for a simulation. Modelers can focus on investigating 
model behaviors without dealing with complex code 
instrumentation and large data handling on high-performance 
computing platforms. Future work will focus on two directions: 
1) extending two-way communication mechanism to improve 
the efficiency of data collection and 2) integrating with 
external big data visual analysis toolkits (such as EDEN (Steed 
et al., 2013)) and existing advanced statistical analysis 
packages (such as R (Horsburgh et al., 2014) and Matlab 
(Pianosi et al., 2012)).  The latter requires further development 

of data staging nodes within the system. In this extension, 
Dataspaces library (Docan et al., 2012) could be used to 
allocate and manage data staging nodes and handle push and 
pull operations between the VOS components, whereas Fastbit 
library (Wu, 2005) could be used for data indexing and query 
processing within these nodes, and CCI can still provide a two-
way communication between simulation and analysis 
components to enable simulation steering. 

V. SOFTWARE AVAILABILITY 

VOS has been tested on a variety of computing 
environments (from desktop to high-performance computer 
cluster). VOS uses the software parsing and instrumentation 
capability developed through a functional unit testing platform 
for ALM (in Fortran). The functional testing platform uses 
compiler-based technology for software analysis and code 
instrumentation. The source code of the functional unit testing 
platform is located at a unit testing repository within bitbucket.  
(https://bitbucket.org/cindy387/clm85/src/ 
cfa8d8faa43a21dcdde9b8750a9816a92477a361/?at=DEMO). 
Currently, the in-situ data infrastructure code is developed 
based on CCI libraries (in C), and is located at a CCI-in-situ 
repository in bitbucket. 
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(https://bitbucket.org/cindy387/clm85/src/83f7ade49968afef18
dd944560a343adbd6a3810/?at=In-situ). The visualization 
package can be found at https://bitbucket.org/benjha/dataviz-
acme-land-model. 
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