
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

Cyclic Redundancy Checking (CRC) Accelerator
for Embedded Processor Datapaths

Abdul Rehman Buzdar∗, Liguo Sun∗, Rao Kashif†, Muhammad Waqar Azhar‡, Muhammad Imran Khan†§
∗Department of Electronic Engineering and Information Science
†Micro/Nano Electronic System Integration R & D Center (MESIC)

University of Science and Technology of China (USTC), Hefei, China
‡Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden

§Department of Electronics Engineering, University of Engineering and Technology Taxila, Pakistan

Abstract—We present the integration of a multimode Cyclic
Redundancy Checking (CRC) accelerator unit with an embedded
processor datapath to enhance the processor performance in
terms of execution time and energy efficiency. We investigate the
performance of CRC accelerated embedded processor datapath
in terms of execution time and energy efficiency. Our evaluation
shows that the CRC accelerated Microblaze SoftCore embedded
processor datapath is 153 times more cycle and energy efficient
than a datapath lacking a CRC accelerator unit. This acceleration
is achieved at the cost of some area overhead.

Keywords—CRC; Accelerator; Codesign; FPGA; MicroBlaze;
Embedded Processor

I. INTRODUCTION

For reliable data communication Cyclic Redundancy
Checking (CRC) is a well-known technique for error detection.
The CRC calculations requires limited hardware resources and
can be implemented easily. This is the reason that CRC is
being used in industry for three decades, in spite the fact that
more advance techniques for error detection and correction
have been developed e.g. Viterbi decoder, low-density parity-
check (LDPC), Reed Solomon and Turbo codes [1], [2], [3],
[4].

Generally CRC can be implemented in software and ex-
ecuted on an embedded processor which requires a lot of
clock cycles for the computation of CRC. The CRC can be
implemented more efficiently in dedicated hardware which will
require few clock cycles for the computation of CRC with
some area overhead. The high speed communication systems
today requires fast data rates which can only be delivered using
dedicated hardware solutions.

Different hardware modules like USB, Ethernet, TCP/IP
and CAN protocol are included in modern embedded pro-
cessors to speedup certain parts of application in areas like
signal processing, communication and control systems. All
these protocols uses CRC for error detection. The addition
of CRC accelerator into the embedded processor datapath will
help to improve the overall performance. The commercially
available off the shelf microcontrollers [5] and DSPs [6], [7]
contain CRC hardware accelerator blocks.

II. CRC COMPUTATION TECHNIQUES

The computation of CRC is remainder of long modulo-
2 division of input polynomial with a key polynomial. The

CRC operation is performed in hardware using exclusive-OR
and shift operations. The hardware implementation of CRC
operation is composed of Exclusive-OR gates computational
network which gives remainder and the registers for storage
and shifting of current state, shown in Fig. 1. The key
polynomial decides the width of state register e.g. for 16 bit
key polynomial the width of state register will be 16 bits. The
exclusive-OR gate network size depends on the input width
and the technique used for the computation of CRC function.

Figure 1: General architecture of a CRC computation circuit.

In serial implementation of CRC function Serial Linear
Feedback Shift Registers (LFSR) are used which take only one
input bit at a time. The serial implementation of CRC results
into smaller exclusive-OR gate network but they are very slow
as only one bit is shifted into LFSR circuitry in each cycle.
Now a days parallel implementations of CRC are mostly used
as they deliver faster speed. Fig. 2 shows the serial LFSR
circuit implementation of key polynomial Equation (1). Every
exponent of key polynomial is converted into an exclusive-OR
gate between input and feedback path. This implementation is
very slow as it accepts one bit at each cycle.

p(x) = x5 + x3 + x+ 1 (1)

The unfolding methodology [8], [9] can be used to im-
plement parallel CRC circuitry which also uses LFSR as basic
building block. Equation (1) can be converted into parallel
CRC circuit using these unfolding techniques, as shown in Fig.
3. This parallel implementation of CRC gives twice speedup

www.ijacsa.thesai.org 321 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

Figure 2: CRC circuit based on LFSR, implementing the key
in Eq. 1.

compared to serial LFSR. This unfolding technique can be
used to implement higher order parallelism which gives more
speedup. But this technique has a drawback of higher fan-out
as we increase the order of parallelism [10].

Figure 3: 2-level, unfolded CRC circuit that accepts two input
bits each cycle.

A more efficient technique called state-space transforma-
tion can be used to implement parallel CRC circuits [11].
We implemented the parallel CRC circuits used in this work
by following a technique invented by Campobello et al [12],
shown in Fig. 4.

III. CRC ACCELERATOR IMPLEMENTATION

We have implemented a 32-bit accelerator unit by including
commonly used CRC circuits i.e. CRC5, CRC8, CRC16 and
CRC32 inside a CRC accelerator main block. As we want
to integrate this CRC accelerator unit with an embedded
processor datapath, so it should be able to perform commonly
used CRC operations. The required CRC operation can be
selected using a 2-bit control signal. This configurable CRC
accelerator unit is depicted in Fig. 5 and it can perform the
following CRC operations [13], [14]:

1) 00: CRC5 for USB interface.

p(x) = x5 + x2 + 1 (2)

2) 01: CRC8 for ATM protocols, etc.

p(x) = x8 + x2 + x+ 1 (3)

Figure 4: 6-bit input parallel CRC circuit for the key in Eq. 2.

3) 10: CRC16 for XMODEM, X25 protocols, etc.

p(x) = x16 + x12 + x5 + 1 (4)

4) 11: CRC32 for IEEE 802.3 standard.

p(x) =x32 + x26 + x23 + x22 + x16 + x12 + x11+

x10 + x8 + x7 + x5 + x4 + x2 + x+ 1
(5)

After performing the power analysis of CRC accelerator
unit, shown in Fig. 5. We found that this design is not
power efficient. The reason of this power inefficiency is the
unnecessary switching taking place in all the CRC blocks.
Because only one CRC sub-unit is required for the computation
of desired CRC operation. So we decided to design a more
power efficient CRC accelerator unit by disabling the CRC
blocks which are not in use by employing power gating
technique. We also used distributed multiplexer at the output
of CRC accelerator unit and clock gating for disabling the
registers which are not in use to save the switching power.
The power efficient CRC accelerator unit is shown in Fig. 6.
Both the CRC Accelerator units were verified and synthesized
using Xilinx ISE Design Suit [15]. The Initial CRC unit and
Low Power CRC hardware accelerator block were synthesized
on 7vx485tffg1157-3 Virtex-7 FPGA device which is based on
a 28nm technology. It gives a critical path delay of 1.868ns
and 1.986ns respectively. The synthesis results are shown in

www.ijacsa.thesai.org 322 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

Figure 5: First CRC accelerator unit.

Table I. As can be seen the low power CRC accelerator is
power efficient compared to the initial CRC unit.

Table I: Synthesis Results of CRC Accelerator Units

First CRC Unit Low Power
CRC Unit

Power 523mW 241mW
Max Freq 535.217MHz 503.499MHz
Latency 1.868ns 1.986ns

Slice
Registers 32 32

Slice LUTs 229 340
Occupied

Slices 98 166

IV. INTEGRATION OF CRC ACCELERATOR UNIT WITH
MICROBLAZE PROCESSOR

We have implemented the CRC accelerator unit in VHDL
hardware description language and verified it using Xilinx
ISE design suit [15]. We used Xilinx Spartan-6 FPGA SP605
Evaluation Kit [17] and Xilinx Embedded Development Kit
(EDK) [15] for the implementation. The Hardware/Software
co-design is a well established technique which improves
the performance of the system [16-19]. Xilinx Microblaze
soft core processor [16] was used to run the software im-
plementation of CRC. There are two ways to integrate a
hardware accelerator core into a MicroBlaze-based embedded
soft processor system. One way is to connect the accelerator
through the Processor Local Bus (PLB). The second way is
to connect it using MicroBlaze dedicated Fast Simplex Link
(FSL) bus system [18]. First PLB was tried but it was taking
a lot of cycles. Because it is a traditional memory mapped
transaction bus. Then it was decided to integrate our CRC

Figure 6: Low-power CRC accelerator unit.

accelerator unit using a dedicated FIFO style FSL Bus with
the MicroBlaze processor system, shown in Fig. 7.

Figure 7: CRC Accelerator Unit with MicroBlaze Processor
System

The software only C code for CRC5, CRC8, CRC16,
CRC32 was implemented and verified. Later these C codes
were executed on the MicroBlaze processor using Xilinx
Software Development Kit (SDK) [15]. The cycle count for

www.ijacsa.thesai.org 323 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

the complete software implementations of CRC was measured
using the XPS hardware timer block, shown in Table II. Fig. 8
and 9 shows the cycle count and energy dissipation of different
architectures, respectively.

Table II: Cycle Count and Energy Dissipation at Clock Period
20ns

Architecture #Cycles Power Energy*
(mW) (µJ)

CRC5 SW 1086 178 3.8661
CRC8 SW 2652 178 9.4411
CRC16 SW 5200 178 18.512
CRC32 SW 5373 178 19.1278
CRC HW 35 184 0.13
*: Energy = #cycles × clock period × power.

The CRC accelerator unit was attached with the Microblaze
processor system via FSL bus using Xilinx Platform Studio
(XPS) [15]. The software part of CRC accelerator unit was im-
plemented in C programming with Xilinx SDK. The predefined
C functions of SDK were used to communicate with hardware
part of CRC accelerator unit via FSL bus. Our evaluation
shows that an accelerated MicroBlaze processor datapath is
153 times more cycle and energy efficient than a datapath
lacking CRC accelerator.

Figure 8: Cycle count of various CRC implementations.

V. CONCLUSION

In this paper, we have designed a flexible CRC accelerator
unit using VHDL. We have integrated the CRC accelerator
unit with the Microblaze Softcore processor system using
FSL Bus to enhance the processor performance. We used
Xilinx Spartan-6 FPGA Evaluation Kit and Xilinx Embedded
Development Kit (EDK) for the implementation. We have

Figure 9: Energy dissipation of various CRC implementations.

shown that a CRC accelerated Microblaze embedded processor
datapath is 153 times more cycle and energy efficient that a
datapath lacking a CRC accelerator with some area overhead.

ACKNOWLEDGMENT

This work is partially supported by the Chinese Academy
of Sciences and The World Academy of Sciences CAS-TWAS
President’s Fellowship 2013-2017.

REFERENCES

[1] M. F. Brejza, L. Li, R. G. Maunder, B. Al-Hashimi, C. Berrou, L. Hanzo,
“20 years of turbo coding and energy-aware design guidelines for energy-
constrained wireless applications”, IEEE Commun. Surveys Tuts., vol.
18, no. 1, pp. 8-28, 1st Quart. 2016.

[2] Mehran Mozaffari Kermani, Vineeta Singh, Reza Azarderakhsh, “Re-
liable Low-Latency Viterbi Algorithm Architectures Benchmarked on
ASIC and FPGA,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 64, no. 1, pp. 208-216, 2017.

[3] Linjia Chang, Avhishek Chatterjee, Lav R. Varshney, “Performance of
LDPC Decoders With Missing Connections,” IEEE Transactions on
Communications, vol. 65, no. 2, pp. 511-524, 2017.

[4] Salvatore Pontarelli, Pedro Reviriego, Marco Ottavi, Juan Antonio Mae-
stro, “Low Delay Single Symbol Error Correction Codes Based on Reed
Solomon Codes,” IEEE Transactions on Computers, vol. 64, no. 5, pp.
1497-1501, 2015.

[5] Atmel, “Secure microcontroller for smart cards.” [Online]. Available:
http://www.atmel.com

[6] Freescale, “MAPLE hardware accelerator and SC3850 DSP core.” [On-
line]. Available: http://www.freescale.com

[7] Microchip, “PIC32mx775f512l datasheet.” [Online]. Available:
http://www.microchip.com

[8] K. K. Parhi, VLSI Digital Signal Processing Systems - Design and
Implementation. Wiley-Interscience Publishers Inc., 1999.

[9] C. Cheng and K. K. Parhi, “High-Speed Parallel CRC Implementation
Based on Unfolding, Pipelining, and Retiming,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 53, no. 10, pp. 1017-1021,
2006.

www.ijacsa.thesai.org 324 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

[10] T.-B. Pei and C. Zukowski, “High-Speed Parallel CRC Circuits in
VLSI,” IEEE Transactions on Communications, vol. 40, no. 4, pp. 653-
657, Apr. 1992.

[11] J. H. Derby, “High-Speed CRC Computation Using State-Space Trans-
formations,” in IEEE International Global Telecommunications Confer-
ence, Nov. 2001, pp. 166-170.

[12] G. Campobello, G. Patane, and M. Russo, “Parallel CRC Realization,”
IEEE Transactions on Computers, vol. 52, no. 10, pp. 1312-1319, Oct.
2003.

[13] E. Stavinov, “A practical parallel CRC generation method.” [Online].
Available: www.OutputLogic.com

[14] Muhammad Waqar Azhar, Tung Thanh Hoang, and Per Larsson-
Edefors, “Cyclic Redundancy Checking (CRC) Accelerator for the Flex-
Core Processor,” in Proc. of EUROMICRO Conf. on Digital System
Design, 2010, pp. 675-680.

[15] Xilinx Inc. FPGA Design Tools. Silicon Devices. [Online]. Available:
http://www.xilinx.com

[16] Xilinx MicroBlaze [Online] www.xilinx.com/tools/microblaze.htm
[17] Xilinx Spartan-6 FPGA SP605 Evaluation Kit. [Online] Available:

www.xilinx.com/products/boards-and-kits/ek-s6-sp605-g.html
[18] Xilinx Fast Simplex Link (FSL). [Online] Available:

http://www.xilinx.com/products/intellectual-property/fsl.html
[19] Abdul Rehman Buzdar, Liguo Sun, Azhar Latif and Abdullah Buzdar,

“Distance and Speed Measurements using FPGA and ASIC on a high
data rate system” International Journal of Advanced Computer Science
and Applications(IJACSA), 6(10), 2015, pp.273-282.

[20] Abdul Rehman Buzdar, Liguo Sun, Azhar Latif and Abdullah Buzdar,
“Instruction Decompressor Design for a VLIW Processor”, Informacije
MIDEM-Journal of Microelectronics, Electronic Components and Mate-
rials Vol. 45, No. 4 (2015), pp.225-236.

[21] Abdul Rehman Buzdar, Azhar Latif, Liguo Sun and Abdullah Buzdar,
“FPGA Prototype Implementation of Digital Hearing Aid from Software
to Complete Hardware Design” International Journal of Advanced Com-
puter Science and Applications(IJACSA), 7(1), 2016, pp.649-658.

[22] Abdul Rehman Buzdar, Liguo Sun, Shoab Ahmed Khan, Abdullah
Buzdar, “Area and Energy efficient CORDIC Accelerator for Embedded
Processor Datapaths” Informacije MIDEM-Journal of Microelectronics,
Electronic Components and Materials Vol. 46, No. 4(2016), pp.197-208

www.ijacsa.thesai.org 325 | P a g e


