
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

338 | P a g e

www.ijacsa.thesai.org

A New Comment on Reinforcement of Testing

Criteria

Monika Singh

College of Engineering and Technology,

Mody University of Science and Technology,

Lakshmangarh, Rajasthan, India

Vinod Kumar Jain

College of Engineering and Technology,

Mody University of Science and Technology,

Lakshmangarh, Rajasthan, India

Abstract—This paper presents the formal aspects of testing

criteria for Safety Critical Systems. A brief review of testing

strategies i.e. white box and black box is given along with their

various criteria’s. Z Notation; a formal specification language is

used to sever the purpose of formalization. Initially, the schemas

are formed for Statement Coverage (SC), Decision coverage

(DC), Path Coverage (PC), Equivalence Partition Class (EPC),

Boundary Value Analysis (BV) and Cause & Effect (C&F). The

completeness and correctness of test schema are enriched by

verifying these with Z/EVES; a Theorem Prover tool for Z

specification.

Keywords—Formal Methods; Safety Critical System; Z

Notation; Schema

I. INTRODUCTION

Testing [1] plays an important role for checking the
correctness of system implementations. To test system, test
cases are formed and system behavior has been observed
during execution. Based on test execution, the decision is
made for the correctly functioning of the system. However,
the criterion for the correctness of test cases has been specified
in the system specification. A specification prescribes “What”
part of the system i.e. the function that a system supposes to
do and accordingly forms the foundation for testing criteria.
As system specifications are documented in natural language
(informal), which is generally incomplete and ambiguous in
nature, due to this many problems may occur in testing
processes such as incompleteness, ambiguous and
inconsistency in test specifications. With an unclear
specification, it is next to impossible to predict how the
implemented system will behave; consequently testing will be
difficult as it is not clear what to test. This become more
severs specifically in case of Safety Critical System [2]. An
ambiguous system specification which further forms the root
for test specification may raise many problems such as
misinterpretation and therefore needs explanations of
specification‟s purpose. This requires rework of the system
specification during the testing phase of software
development. The rework process takes too much time, money
and efforts which ultimately delay the process of deployment
of system. Therefore, there is an utter need of usage of the
formal model [3] for testing criteria of Safety Critical Systems
[4] for test case‟s completeness and correctness. Formal
methods are equipped with rich mathematical axioms and tool
support. This rich tool support will help further verification of
test specification in automated environment. In this paper, the
purpose of formalization has been accomplished by Z

Notation [5] and simulation has been done with Z/EVES [6]:
an automated Theorem Prover.

Formal methods: Formal methods [3] are the methods
which use mathematical techniques as their foundation pillars
and are used to develop the software systems. They can be
applied at any phase of software development process, but
highly recommended to apply in early phases. By using formal
methods, one can reduce the chances of ambiguities and
incompleteness in requirements documents, design
specification and the test case specification. There is a range
of formal specification languages available to design the
software system such as Z notation [5], B-methods [7], VDM
[8] etc which are further verified by Theorem Prover [9] and
Model Checker [9]. Broadly, formal methods are categorized
into two groups:

a) Model based Formal methods: In this group, the

formal specifications are consisting of mathematical structures

such as relations, functions, sets and sequences to design

software system model. The members of this group are: Z

Notation [5], VDM [8], B-Methods [7], Petri net [10],

Communicating Sequential processes (CSP) [11].

b) Property oriented formal methods: Property oriented

formal methods, on the other hand, the specifications of

system are defined in terms of its properties, generally in form

of axioms which satisfied by the system. For example, OBJ,

LOTOS [12], Larch lies in this group.

In this paper, we use Z notation to write done the test
documents which is further analyzed by Z/EVES Theorem
Prover tool. Rest of the paper is organized as follow: Section 2
represents the methodology and research components. Section
3 presents the Formal aspect of testing strategies for Safety
Critical Systems. Section 4 advocates the simulation results
and discussions. At last, the conclusion is given base on
section 4 analysis in Section 5.

II. METHODOLOGY AND RESEARCH COMPONENTS

Initially the schemas of testing criteria i.e. SC, DC, PC,
EPC, BV and C&F are formed by using Z Notation. Once the
schemas are formed, they are checked for their completeness
and correctness using Z/EVES; automated Theorem Prover
tool for Z specification. If errors occur, corrections are made
in respective schema and again execute on Z/EVES. This
process is repeated until error free schemas are come as an
output. Figure 1 presents the formal model of testing
strategies which composed of following research components:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

339 | P a g e

www.ijacsa.thesai.org

A. White Box testing

White box testing [13] is more concerned about the
implementation details such as: programming style, control
methods: statements coverage, decision coverage, condition
coverage etc. It is also known as structural testing. It
emphasizes on internal structure of software artifact. The
internal structure mainly tested by using the following
scenarios:

 Statement coverage: Test cases are executed in such a
way that all statements have been covered once.

 Branch/decision coverage: Test cases are executed in
such a way that both if-branch and else –branch
covered.

 Path coverage: Test cases are executed in such a way
that each possible path has been executed once.

B. Black Box Testing

Black box testing [14] focuses on functional/ behavioral
testing of system without peeking into internal structure of
system. It is also known as functional testing. It can be done
by following ways:

 Equivalence partition classes: The input set is
partitioned into equivalence classes and a single test
case is executed for each class. The single test case is
valid for all the elements of a given class. However, the
classes chosen should be disjoint to avoid redundancy.

 Boundary value Analysis: In boundary value analysis
rather than taking input from the partition classes, test
cases are executed for boundary value points or near
the boundary of partition classes.

 Cause & Effect Graph: In cause and effect (CF) graph,
the combinations of inputs are analyzed. The cause is a
representation of inputs and effect is a symbol of
resultant output. Boolean graphs are used to link
various causes and their respective effects.

Fig. 1. Formal model of Testing Strategies

C. Z Schema

Schema is the notion used to structure the specification
written in Z notation. It‟s composed of three parts: schema
name, variable and constraints.

The generic structure of schema which showed in figure 2
consists of three parts as:

 Schema Name

 Variables declaration

 Constraints

 SchemaName

Variables declaration

constraints (preconditions or postconditions)

Fig. 2. Basic Schema structure

D. Z/EVES

Z/EVES toolset is an interactive tool for composing,
checking, and analyzing Z specifications. It is based on the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

340 | P a g e

www.ijacsa.thesai.org

EVES system, and uses its proof checker to carry out its proof
steps. The language accepted by Z/EVES is a LATEX markup
form [19]. This toolset helps in the analysis of Z specifications
in several ways: (1) syntax and type checking, (2) schema
expansion, (3) precondition calculation, (4) domain checking,
(5) and general theorem proving [7]. The model checker of the
Z/EVES is considered as user friendly and simple, especially
when compared with other related tools such as Isabelle-HOL
or Proof Power-Z. It could also prove its merit and popularity;
due to its power in proving the specifications of critical
systems written using the Z notation.

III. FORMAL ASPECT OF TESTING STRATEGIES

This section composed of two parts: Formal
transformation of White box testing and Formal
transformation of Black box testing.

A. Formal transformation of White box testing

White box testing focuses on internal structure of software
artifact. One of the ways to test internal structure is to use
either of following scenarios: Statement coverage, decision
coverage or path coverage (Figure 1). However, various
definitions of these scenarios may raise ambiguity. One
possible solution is the elaboration of formalized definition of
testing criteria by using rigorous mathematics such as set
theory graph theory, predicates logics etc. In this paper, Z
notation (Formal Specification Language) has been used to
serve the purpose.

To check the completeness and correctness of above
mention scenarios, mathematical structure i.e. Z –schema has
been used. For any testing criteria, the two basic sets are
required i.e.

[INPUT, STATEMENT]

Where INPUT is the set of all possible values of input
variable and STATEMENT is the set of all program
statements. Since in Statement coverage, every statement in
the program has been executed at least once, therefore we
define a function path from INPUT to STATEMENT as

Path i: INPUT →STATEMENT

Along with path function, we need to define two other set
i.e. BOOL, INPUT-PART and COND as follow:

BOOL= {0, 1}

Which are respective values of executed conditions (as 1)
and non-executed conditions (as 0)

INPUT-PART= P INPUT \ {INPUT}

i.e. non-empty set of input variables which yet not
executed. Moreover, INPUT-PART is a subset of INPUT.

COND is a non-empty set which contain values by
mapping an input i ∈ INPUT to true condition (as 1) and false
condition (as 0).

COND== INPUT → BOOL

Now the formal definition of Statement coverage is given
by using Z schema as:

 SC

decinput !: ℙ1INPUT

decst ?: STATEMENT

decinput 0, decinput 1: INPUT-PART

decinput = {i: INPUT |decst ∈ path i}

<decinput 0, decinput 1> partitions decinput

Dom value = decinput

The constraints are: (i) the domain all values should be the
set of input; (ii) The input values partition the set of input and
(iii) For each i, the function path maps the input to respective
statement. Therefore based on this, test_ data has been built
which satisfy or not satisfy testing criteria.

Now the Decision Coverage (DC) is formally defined as:

 DC

ΔSC

∀ d:dec ⦁ (test-data ∩ d ⦁ decinput 0 ≠ ∅) ∧

(test-data ∩ d⦁ decinput 1) ≠ ∅

The constraints of DC schema are defined as: if there is if-
else condition, both of the decision will execute which
consequently satisfy the definition of decision coverage.
However, there would be change in statement coverage
schema which has been shown by ΔSC.

The next schema is Path Coverage (PC)

 PC

ΔSC

ΔDC

∀ i, j ∈ℕ, (path i ∩ path j = ∅) ∧

(path i ∪ path j = test-data)

The constraints of DC schema are: (i) all the possible paths
are covered at least once and if and two paths are identical.

B. Formal Transformation of Black box testing

The three black box testing criteria which are considered
here are:

 Equivalence partitions class (EPC)

 Boundary Value Analysis (BV)

 Cause & Effect (C&E)

As mentioned in section 2 (b), the test data is partitioned
into equal classes and for each class only one value from test
data is tested. Therefore for schema, two basic sets are:

[TEST_DATA, CLASS]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

341 | P a g e

www.ijacsa.thesai.org

Now the schema of EPC is as follow:

 EPC

tstdat: TEST_DATA

cls: CLASS

∀ i, j∈ ℕ, tst1, tst 2 ∈ TEST_DATA ∧

tst 1 ∩ tst 2 = ∅ ∧

∀ i ∈ℕ, cls1, cls2 ∈ CLASS ∧

cls1 ∩cls2 = ∅ ∧

∪cls i = CLASS

The constraints are: All the partitions are disjoint and one
test value should be chosen from one class. For Boundary
value analysis, the boundary values of each class are tested. In
other words, we need to test the five values for each class i.e.
(i) Minimum (ii) Just above the minimum (iii) A nominal
value (iv)Just below the maximum and (v) Maximum.
Therefore the schema for boundary value is:

 BV

Δ EPC

min, max, nominal ∈TEST-DATA ∧

jst-abv-min, jst-blw-max ∈ TEST-DATA

IV. SIMULATION AND DISCUSSION

Although the formal specification languages uses
mathematics notation (in this paper Z notation has been used),
yet chances of ambiguities are still there. Automated or semi-
automated tool are used to check the Z specification.
Z/EVES; a Theorem Prover tool for syntax, type checking and
domain checking is used for checking the Z specification. The
graphical interface of Z/EVES tool consists of two columns:
Syntax and Proof. The columns with „Y‟ value show that there
is no error. Once the specification written, the file has been
stored with extension “.zev”. Figure 3 depicts the execution of
Statement Coverage (SC) specification for syntax and type
checking. It is cleared from figure 3 that both the columns
have value „Y‟ indicating that SC schema is free from syntax
and domain errors. Similarly, Fig. 4, 5 represents the formal
part of Path coverage (PC) and Equivalence Partition Class
(EPC) respectively.

Fig. 3. Formalization of SC schema

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

342 | P a g e

www.ijacsa.thesai.org

Fig. 4. Formalization of Path Coverage specification

Fig. 5. Execution of EPC for syntax and Domain checking

V. CONCLUSION

The main idea of this article is formalization of testing
criteria for safety critical systems. Software Testing
Techniques are broadly partitioned into two groups i.e. white
box testing and black box testing. For white box testing, three
criteria‟s are used i.e. Statement Coverage (SC), condition
Coverage (CC), Path Coverage(PC) and for Black Box testing,
the criteria‟s which has been used are Boundary Value
Analysis (BV), Equivalence Partition (EP)class, Cause &
Effect (C&E). All these criteria used to figuring out the branch
and loop structure using logical expressions in program. For
fulfilling the definition of formalization, Z notation is used.
Initially Z schemas are formed for each criterion‟s .i.e. SC,
PC, BC, EP, BV and C&F. To check the correctness and
completeness of schemas, Z/EVES tool is used further. The
findings of Z/EVES are syntax checking, domain checking
and type checking.

REFERENCES

[1] Glenford J. Myers. The Art of Software Testing, John Wiley & Sons, 2nd
Edition, 2004.

[2] IPL. An Introduction to Safety Critical System, executive summary,
1997.

[3] Monin, Jean-Francois. Understanding Formal Methods, 2003,
Springer.

[4] Jonathan Bowen. Safety Critical Systems, Formal Methods and
Standards, 1992, Software Engineering Journal.

[5] J. Michael Spivey. The Z Notation: A Reference Manual, 2001, 2nd eds.
Prentice Hall.

[6] Saaltink, M. The Z/EVES 2.0 User‟s Guide, Technical Report TR-99-
5493-06a, ORA Canada, One Nicholas Street, Suite 1208 - Ottawa,
Ontario K1N 7B7 - CANADA, 1999.

[7] S. Schneider. B Method- an Introduction Palgrave, Cornerstones of
Computing series, 2001.

[8] C. B. Jones. Systematic Software Development using VDM, 1990, In
Prentice Hall.

[9] Hasan Amjad. Combining model checking and theorem proving, 2004,
technical report, University of Cambridge, computer Laboratory.
UCAM-CL-TR-601, ISSN 1476-2986.

[10] Reisig, Wolfgang. Understanding Petri Nets: Modeling Techniques,
Analysis Methods, Case Studies, 2013, 1st Eds. Springer-Verlag Berlin
Heidelberg, ISBN 978-642-33277-7.

[11] C. A. R. Hoare. Communicating Sequential Processes, 1985, In Prentice
Hall.

[12] Howard Bowman. A LOTOS based tutorial on formal methods for
object-oriented distributed systems, New Generation Computing, Vol.
16, Issue 4, pp 343-372.

[13] Glenford J. Myers, Corey Sandler, Tom Badgett. The Art of Software
Testing, 2011 3rd Eds. Wiley.

[14] Paul C. Jorgensen. Software Testing: A Craftsman‟s Approach, 2013, 4th
Eds. Auerbach Publications.

http://link.springer.com/journal/354
http://link.springer.com/journal/354/16/4/page/1
http://link.springer.com/journal/354/16/4/page/1
http://as.wiley.com/WileyCDA/Section/id-302477.html?query=Glenford+J.+Myers
http://as.wiley.com/WileyCDA/Section/id-302477.html?query=Corey+Sandler
http://as.wiley.com/WileyCDA/Section/id-302477.html?query=Tom+Badgett

