
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

Area and Energy Efficient Viterbi Accelerator for
Embedded Processor Datapaths

Abdul Rehman Buzdar∗, Liguo Sun∗, Muhammad Waqar Azhar‡, Muhammad Imran Khan†§, Rao Kashif†
∗Department of Electronic Engineering and Information Science
†Micro/Nano Electronic System Integration R & D Center (MESIC)

University of Science and Technology of China (USTC), Hefei, China
‡Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden

§Department of Electronics Engineering, University of Engineering and Technology Taxila, Pakistan

Abstract—Viterbi algorithm is widely used in communication
systems to efficiently decode the convolutional codes. This algo-
rithm is used in many applications including cellular and satel-
lite communication systems. Moreover, Serializer-deserializers
(SERDESs) having critical latency constraint also use viterbi
algorithm for hardware implementation. We present the inte-
gration of a mixed hardware/software viterbi accelerator unit
with an embedded processor datapath to enhance the processor
performance in terms of execution time and energy efficiency.
Later we investigate the performance of viterbi accelerated em-
bedded processor datapath in terms of execution time and energy
efficiency. Our evaluation shows that the viterbi accelerated
Microblaze soft-core embedded processor datapath is three times
more cycle and energy efficient than a datapath lacking a viterbi
accelerator unit. This acceleration is achieved at the cost of some
area overhead.

Keywords—Viterbi decoder; Codesign; FPGA; MicroBlaze; Em-
bedded Processor

I. INTRODUCTION

Channel coding is used in wireless communication systems
for reliable data transfer over noise prone communication
channels. Various forward error correction (FEC) schemes e.g.
Low-density parity-check (LDPC), Reed Solomon, Viterbi and
Turbo codes are used to meet the growing need to improve the
spectrum efficiency [1], [2], [3], [4], [5]. In FEC schemes the
encoding of data is done using convolutional encoding and
at the receiver end the decoding process is done by viterbi
or turbo decoders [21-31]. The viterbi decoder is suitable
in wireless communication systems in which the transmitted
signals are corrupted by additive white Gaussian noise [6].

The decoding process in FEC schemes is computationally
intensive and power hungry. The hand held devices are battery
powered, so they must be energy efficient. The customized
hardware implementation of these FEC decoders are perfor-
mance and power efficient but lacks flexibility. As the wireless
standards evolve with time, so the hardware needs to be
flexible. The viterbi decoder can be implemented in software
and executed on an embedded processor but it will require a lot
of clock cycles. The viterbi decoder can be implemented more
efficiently in dedicated hardware which will require few clock
cycles at the cost of flexibility. The high speed communication
systems today requires fast data rates which can only be
delivered using dedicated hardware solutions.

Different hardware modules like USB, Ethernet, TCP/IP,
CRC and CAN protocol are included in modern embedded

processors [7], [8], [9] to speedup certain parts of application
in areas like signal processing, communication and control
systems. This provides effective use of viterbi accelerator in
programming systems where a series of viterbi decoding is
required to be computed.

II. CONVOLUTIONAL ENCODING AND VITERBI
DECODING

Convolutional encoding of data is implemented with a shift
register having K−1 memory elements and cascaded network
of exclusive-or gates. Here K is the constraint length and
having 2K+1 encoder states. The shift register is a chain of
flip-flops and the output of nth flip-flop goes as input into the
(n+1)th flip-flop. The data in the registers is shifted to the next
register and the value in the last register gets discarded. The
combinational logic consisting of exclusive-or gates is used to
perform modulo-2 addition. The encoder outputs n symbols
using generator polynomials and values in the shift register.
Fig. 1 shows a convolutional encoder for K = 3, R = 1/2
and generator polynomials G1 = (1, 1, 1) and G2 = (1, 0, 1).
The code rate is the ratio of the number of input bits to
the number of output bits (R = m/n). The reason for the
convolutional codes being efficient compared to block codes
is the fact that every input bit has an impact on K successive
output symbols [10]. The value of K is directly proportional
to the code complexity and error correction capability. The
decoder complexity and memory requirements increases with
increasing K.

Figure 1: Convolutional Encoder general architecture.

Trellis diagram is used to visualize the state transitions of
an encoder, as shown in Fig. 2. The black lines represent input
bit 0 and the dotted lines represent input bit 1. The trellis
path of input sequence is represented by the red lines. The
basic concept is that the valid path through trellis diagram is

www.ijacsa.thesai.org 402 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

generated by the sequence of input bits from left to right. The
viterbi decoder is able to find the valid path on trellis which
is closest match when some transmission error occurs [11].
In start the reset state of encoder is “00”. If the input is 0
the encoder state will become 00 as shown by the black line.
The encoder will transmit 00 as output. The viterbi decoder
reconstructs the valid input bit. If the input bit is 1 the decoder
goes to state “10” and “11” is transmitted.

Figure 2: Trellis diagram.

The main concept of viterbi decoder is mapping received
symbols to most likely valid sequence. The decoding process
consist of following steps.

1) Branch Metric Unit: In this step difference is calculated
between received symbol and every possible encoder output
combinations. In hard decision decoder the difference is the
Hamming distance and in case of soft decision decoder the
Euclidean distance is used. There can be 2K output combi-
nations for an encoder with 2K+1 states and 0 or 1 as input
bit.

2) Path Metric Unit: This step is very computationally
intensive. It performs add compare select (ACS) operation on
branch metric which comes from previous step to calculate
path metric which is accumulated distance. The branch having
biggest accumulated distance gets discarded.

3) Trace Back Unit: In trace back unit accumulated column
error metrics are traced back beginning from the last smallest
metric value. The next step in trace back unit is finding
previous two possible states and the state with smallest entry
is picked. They are stored in survivor state table. These steps
are continued until metric table’s first column is reached. The
survivor table state transitions are used to recreate original
message in the last step of the viterbi decoding process.

The decoder output table size is 2K+1.2m.n bits. Where as
the size of metric table is 2k−1.b.(5k+1) bits. Here b represent
number of bits of every entry in metric table. Implementing
viterbi decoder in a memory efficient way is a challenging
task. For every symbol output table’s each entry is accessed
once. During decoding process the output table is accessed 2k

times and every entry of metric table is accessed two times for
each symbol. The calculation of one entry of the metric table
requires two distance calculations and one ACS operation. To
calculate one metric table column for each received symbol
2k−1 ACS operations and 2k distance calculations are needed.
This process is done for every symbol.

III. VITERBI ACCELERATOR UNIT

The aim of this paper is to design and integrate a viterbi
accelerator unit with Microblaze soft-core processor datapath.

To enhance the processor performance in terms of execution
time and energy efficiency. The integration of accelerator will
have an impact on the performance of processor. So the
accelerator unit should be area, timing and power efficient.

Figure 3: Metric Table memory size variation.

A. Initial Viterbi Decoder

The initial viterbi decoder consist of one ACS unit and one
hamming distance calculation unit. For every ACS operation
hamming distance unit is used twice sequentially. The control
unit is implemented as a state machine. The initial viterbi
decoder is shown in Fig. 4. Fig. 3 shows the impact of increas-
ing constraint length K. Here b represents each metric table
entry bits and n represent number of output bits. This initial
implementation of viterbi decoder with different constraint
lengths was synthesized on 7vx485tffg1157-3 Virtex-7 FPGA
device which is based on a 28nm technology. Fig. 7 shows the
area of implementation for three different constraint lengths.
As can be seen the area of decoder increases exponentially
with increasing constraint length K. It is observed that major
portion of decoder area is consumed by metric table.

Figure 4: Initial Viterbi decoder architecture.

www.ijacsa.thesai.org 403 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

Figure 5: Flow chart for Viterbi Decoder in Full mode.

Figure 6: Flow chart for Viterbi Decoder in Sub-State mode.

B. Mixed HW/SW Viterbi Accelerator

The mixed hardware/software approach helps to achieve
a good balance between flexibility and performance. We
intend to implement the portion of viterbi code in part of
accelerator which is computational and memory intensive.
The remaining portion of the code which is not frequently
executed will be handled by the processor. The decision to
define a suitable boundary between hardware and software
in designing accelerator-centric heterogeneous systems is a
challenging task. Based on the analysis done in the previous
section we have made the following conclusions:

• The branch metric and path metric are computational
intensive calculations and repeating steps.

• Output table is initialized once.

• After the computation of complete metric table, Trace-
back is needed once.

• Output table and previous column of metric table is
needed for the computation of new column.

Based on these observations we intend to perform branch
metric and path metric calculations in hardware part of mixed

Table I: Synthesis Results of Viterbi Accelerator

Power 241mW
Max Freq 179.808MHz
Latency 5.562ns

Slice Registers 1087
Slice LUTs 3079

Occupied Slices 1038

hardware/software viterbi accelerator. The output table and
traceback computations are done in software and executed
on the Microblaze soft-core processor. As the metric table is
very computation-intensive and its parallelism can be exploited
in hardware implementation. The last metric table column is
important for the computation of next column that is why they
are stored in the local memory of hardware accelerator. The
full metric table is kept in main memory of processor which
is needed for trace-back operation. Fig. 8 shows the mixed
Hardware/Software viterbi decoder having four computational
blocks. Every computational block has one ACS unit and
two Euclidian distance computation units for increasing the
throughput. This viterbi accelerator is capable to support any

www.ijacsa.thesai.org 404 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

constraint lenght K. The full metric table computations are
performed in hardware when applications constraint length is
less than or equal to viterbi accelerator constraint length. Fig.
5 shows flow chart for viterbi decoding in Full mode. Whereas
in situations in which the constraint length of applications
is greater than viterbi hardware accelerator constraint length
and accelerator memory is not enough then Sub-State mode
is used. In this mode metric table value is received from
the MicroBlaze processor register file. Fig. 6 shows the flow
chart for the steps performed in Sub-State mode by the mixed
Hardware/Software viterbi decoder. The gray boxes in Fig.
5 and Fig. 6 represent part of the code that is executed in
software, whereas the transparent boxes show the steps done
in hardware accelerator.

IV. INTEGRATION OF VITERBI ACCELERATOR UNIT WITH
MICROBLAZE PROCESSOR

We have implemented the viterbi accelerator unit in VHDL
hardware description language and verified it using Xil-
inx ISE design suit [12]. We used Xilinx Spartan-6 FPGA
SP605 Evaluation Kit [14] and Xilinx Embedded Development
Kit(EDK) [12] for the implementation. Xilinx Microblaze soft-
core processor [13] was used to run the software implementa-
tion of viterbi decoder. The Hardware/Software co-design is a
well established technique which improves the performance
of the system [16-20]. There are two ways to integrate a
hardware accelerator core into a MicroBlaze-based embedded
soft processor system. One way is to connect the accelerator
through the Processor Local Bus (PLB). The second way is
to connect it using MicroBlaze dedicated Fast Simplex Link
(FSL) bus system [15]. First PLB was tried but it was taking
a lot of cycles. Because it is a traditional memory mapped
transaction bus. Then it was decided to integrate our viterbi
accelerator unit using a dedicated FIFO style FSL Bus with
the MicroBlaze processor system, shown in Fig. 9.

Figure 7: Total area for different constraint lengths.

The software only C code for viterbi decoder was imple-
mented and verified. Later this C code was executed on the
MicroBlaze processor using Xilinx Software Development Kit
(SDK) [12]. The cycle count for the complete software im-
plementation of viterbi was measured using the XPS hardware
timer block, shown in Table II. Fig. 10 and 11 shows the cycle

Figure 8: Mixed HW/SW Viterbi decoder architecture.

Figure 9: Viterbi Accelerator Unit with MicroBlaze Processor
System

count and energy dissipation of two Viterbi implementations,
respectively.

The viterbi accelerator unit was attached with the Mi-

www.ijacsa.thesai.org 405 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

Table II: Cycle Count and Energy Dissipation at Clock Period
20ns

Architecture #Cycles Power Energy*
(mW) (µJ)

Software Only 8312 178 29.590
Accelerated 2518 185 9.3166
*: Energy = #cycles × clock period × power.

croblaze processor system via FSL bus using Xilinx Platform
Studio (XPS) [12]. The software part of viterbi accelerator unit
was implemented in C programming with Xilinx SDK. The
predefined C functions of SDK were used to communicate
with hardware part of viterbi accelerator unit via FSL bus.
Our evaluation shows that an accelerated MicroBlaze processor
datapath is three times more cycle and energy efficient than
a datapath lacking viterbi accelerator. This acceleration is
achieved at some area overhead.

Figure 10: Cycle count of two Viterbi implementations.

V. CONCLUSION

In this paper, we have designed a mixed hardware/software
viterbi accelerator unit using VHDL. We have integrated the
viterbi accelerator unit with the Microblaze soft-core processor
system using FSL Bus to enhance the processor performance
in terms execution time and energy efficiency. We used Xilinx
Spartan-6 FPGA Evaluation Kit and Xilinx Embedded Devel-
opment Kit (EDK) for the implementation. We have shown that
a viterbi accelerated Microblaze embedded processor datapath
is three times more cycle and energy efficient that a datapath
lacking a viterbi accelerator. This acceleration is achieved at
the cost of some area overhead.

Figure 11: Energy dissipation of two Viterbi implementations.

ACKNOWLEDGMENT

This work is partially supported by the Chinese Academy
of Sciences and The World Academy of Sciences CAS-TWAS
President’s Fellowship 2013-2017.

REFERENCES

[1] M. F. Brejza, L. Li, R. G. Maunder, B. Al-Hashimi, C. Berrou, L. Hanzo,
“20 years of turbo coding and energy-aware design guidelines for energy-
constrained wireless applications”, IEEE Commun. Surveys Tuts., vol.
18, no. 1, pp. 8-28, 1st Quart. 2016.

[2] Mehran Mozaffari Kermani, Vineeta Singh, Reza Azarderakhsh, “Re-
liable Low-Latency Viterbi Algorithm Architectures Benchmarked on
ASIC and FPGA,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 64, no. 1, pp. 208-216, 2017.

[3] Linjia Chang, Avhishek Chatterjee, Lav R. Varshney, “Performance of
LDPC Decoders With Missing Connections,” IEEE Transactions on
Communications, vol. 65, no. 2, pp. 511-524, 2017.

[4] Salvatore Pontarelli, Pedro Reviriego, Marco Ottavi, Juan Antonio Mae-
stro, “Low Delay Single Symbol Error Correction Codes Based on Reed
Solomon Codes,” IEEE Transactions on Computers, vol. 64, no. 5, pp.
1497-1501, 2015.

[5] G. Krishnaiah, N. Engin, and S. Sawitzki, “Scalable Reconfigurable
Channel Decoder Architecture for Future Wireless Handsets,” in IEEE
Design, Automation Test in Europe Conference, Apr. 2007, pp. 1-6.

[6] R. Johannesson and K. S. Zigangirov, “Fundamentals of Convolutional
Coding”. Wiley-IEEE Press, 1999.

[7] Atmel, “Secure microcontroller for smart cards.” [Online]. Available:
http://www.atmel.com

[8] Freescale, “MAPLE hardware accelerator and SC3850 DSP core.” [On-
line]. Available: http://www.freescale.com

[9] Microchip, “PIC32mx775f512l datasheet.” [Online]. Available:
http://www.microchip.com

[10] O. O. Khalifa, T. Al-Maznaee, M. Munjid, and A.-H. A. Hashim,
“Convolution Coder Software Implementation Using Viterbi Decoding
Algorithm,” J. Computer Science, vol. 4, no. 10, pp. 847-856, 2008.

[11] G. D. Forney, Jr., “The Viterbi Algorithm,” Proceedings of the IEEE,
vol. 61, no. 3, pp. 268278, Mar. 1973.

[12] Xilinx Inc. FPGA Design Tools. Silicon Devices. [Online]. Available:
http://www.xilinx.com

www.ijacsa.thesai.org 406 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

[13] Xilinx MicroBlaze [Online] www.xilinx.com/tools/microblaze.htm
[14] Xilinx Spartan-6 FPGA SP605 Evaluation Kit. [Online] Available:

www.xilinx.com/products/boards-and-kits/ek-s6-sp605-g.html
[15] Xilinx Fast Simplex Link (FSL). [Online] Available:

http://www.xilinx.com/products/intellectual-property/fsl.html
[16] Abdul Rehman Buzdar, Liguo Sun, Azhar Latif and Abdullah Buzdar,

“Distance and Speed Measurements using FPGA and ASIC on a high
data rate system” International Journal of Advanced Computer Science
and Applications(IJACSA), 6(10), 2015, pp.273-282.

[17] Abdul Rehman Buzdar, Liguo Sun, Azhar Latif and Abdullah Buzdar,
“Instruction Decompressor Design for a VLIW Processor”, Informacije
MIDEM-Journal of Microelectronics, Electronic Components and Mate-
rials Vol. 45, No. 4 (2015), pp.225-236.

[18] Abdul Rehman Buzdar, Azhar Latif, Liguo Sun and Abdullah Buzdar,
“FPGA Prototype Implementation of Digital Hearing Aid from Software
to Complete Hardware Design” International Journal of Advanced Com-
puter Science and Applications(IJACSA), 7(1), 2016, pp.649-658.

[19] Abdul Rehman Buzdar, Liguo Sun, Shoab Ahmed Khan, Abdullah
Buzdar, “Area and Energy efficient CORDIC Accelerator for Embedded
Processor Datapaths” Informacije MIDEM-Journal of Microelectronics,
Electronic Components and Materials Vol. 46, No. 4(2016), pp.197-208

[20] Abdul Rehman Buzdar, Liguo Sun, Rao Kashif, Muhammad Waqar
Azhar, Muhammad Imran Khan, “Cyclic Redundancy Checking (CRC)
Accelerator for Embedded Processor Datapaths” International Journal
of Advanced Computer Science and Applications(IJACSA), 8(2), 2017,
pp.321-325.

[21] Muhammad Waqar Azhar, Magnus Sjlander, Hasan Ali, Akshay Vi-
jayashekar, Tung Thanh Hoang, K. K. Ansari, and Per Larsson-Edefors,
“Viterbi Accelerator for Embedded Processor Datapaths,” in Proc. of
IEEE Int. Conf. on Applicationspecific Systems, Architectures and Pro-
cessors, 2012.

[22] J. Heller and I. Jacobs, Viterbi Decoding for Satellite and Space
Communication, IEEE Trans. Communication Technology, vol. 19, no.
5, pp. 835848, Oct. 1971.

[23] T. Gemmeke, M. Gansen, and T. G. Noll, “Implementation of Scalable
Power and Area Efficient High-Throughput Viterbi Decoders,” IEEE J.
Solid-State Circuits, vol. 37, no. 7, pp. 941-948, Jul. 2002.

[24] M. Kawokgy and C. A. T. Salama, “A Low-Power CSCD Asynchronous
Viterbi Decoder for Wireless Applications,” in Proc. Int. Symp. Low
Power Electronics and Design, 2007, pp. 363-366.

[25] M. Kamuf, V. wall, and J. B. Anderson, “Optimization and Implemen-
tation of a Viterbi Decoder Under Flexibility Constraints,” IEEE Trans.
Circuits and Systems I: Regular Papers, vol. 55, no. 8, pp. 2411-2422,
Sep. 2008.

[26] M. A. Anders, S. K. Mathew, S. K. Hsu, R. K. Krishnamurthy, and
S. Borkar, “A 1.9 Gb/s 358 mW 16-256 State Reconfigurable Viterbi
Accelerator in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no.
1, pp. 214-222, Jan. 2008.

[27] C.-C. Lin, Y.-H. Shih, H.-C. Chang, and C.-Y. Lee, “A Low Power
Turbo/Viterbi Decoder for 3GPP2 Applications,” IEEE Trans. Very Large
Scale Integration (VLSI) Systems, vol. 14, no. 4, pp. 426-430, Apr. 2006.

[28] M. A. Bickerstaff et al., “A Unified Turbo/Viterbi Channel Decoder for
3GPP Mobile Wireless in 0.18-m CMOS,” IEEE J. Solid-State Circuits,
vol. 37, no. 11, pp. 1555-1564, Nov. 2002.

[29] J. R. Cavallaro and M. Vaya, “Viturbo: A Reconfigurable Architecture
for Viterbi and Turbo Decoding,” in Proc. IEEE Int. Conf. Acoustics,
Speech, and Signal Processing, vol. 2, Apr. 2003, pp. 497-500.

[30] D. E. Hocevar and A. Gatherer, “Achieving Flexibility in a Viterbi
Decoder DSP Coprocessor,” in Proc. 52nd IEEE Vehicular Technology
Conf., vol. 5, 2000, pp. 2257-2264, vol.5.

[31] A. Niktash, H. Parizi, and N. Bagherzadeh, “A Reconfigurable Processor
for Forward Error Correction,” in Proc. Int. Conf. on Architecture of
Computing Systems, 2007, pp. 1-13.

www.ijacsa.thesai.org 407 | P a g e


