
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

Autonomous Software Installation using a Sequence
of Predictions from Bayesian Networks

Behraj Khan, Umar Manzoor, Tahir Syed
National University of Computer and Emerging Sciences, Karachi, Pakistan

Abstract—The idea of automated installation/un-installation
is a direct consequence of the tedious and time consuming
manual efforts put into installing or uninstalling multiple software
over hundreds of machines. In this work we propose what
is to the best of our knowledge the first learnable method
of autonomous software installation/un-installation. The method
leverages text classification using as data textual guidelines given
for users on the installation window. This is used to arrive at the
Next/Pause/Abort decisions for each installation window using
multiple classifier schemes. We report the best results using a
full Bayesian Network with accuracy level of 94%, while Naı̈ve
Bayes and rule-based inference accuracy was 42% and 88%. We
attribute this to the sequential nature of the Bayesian network
that corresponds to the sequential nature of natural language
data.

Keywords—Multiagent System; Machine Learning; Software
installation/un-installation

I. INTRODUCTION

With the evolution in distributed environments both net-
work size and complexity have increased substantially. The
task of maintaining and improving a network generally re-
quires multiple software installation and un-installation pro-
cesses. This is greatly dependent on manual effort and
therefore scales poorly. Consider the whole process of
installation/un-installation which starts with initializing and
running the setup wizard, at every screen/step reading the
message/text displayed, analyze that text and then choose
the appropriate action. This process is repeated till the
installation/un-installation finishes successfully. Some software
provides the option of silent or unattended installation in the
form of set of switches [4]. Silent installation is the one which
does not require interaction with the user at every screen/step
to proceed further. Rather, it will be initialized by the user in
the beginning and rest of the action sequence will be performed
by the application itself.

However, silent installation proves to be a non-desirable
choice for a distributed environment. This kind of silent
installers are software- and vendor-specific. The degree of
required human computer interaction for accessing every ma-
chine and initializing the setup is also very high. In addition
to that this silent installation feature is provided for installing
software only; to uninstall software no such facility is sup-
ported. Not all the software provides the silent installation op-
tion. The focus had majorly been upon automated installation
on a standalone system within a non-distributed environment.

Automating installation/un-installation in a distributed en-
vironment where there might be several sub networks inter-
linked to each other is a complex and difficult goal to achieve
as it increases the size and complexity of the autonomous

framework. It may also involve the complexity of finding
path over the relevant sub network to reach the destination
node, than transferring files to that node. The process of
safe and reliable transfer of files precedes the verification and
initialization steps which are followed by running the setup and
finally it concludes with the update in the system directories
and sending the acknowledgment.

Some frameworks for silent/automated aid for software
installation / un-installation has been proposed by U. Manzoor
and S. Nefti (NDMAS [1], ABSAMN [2] and SUIPM [3]).
These models were based upon rule based analysis of the
text which is not very efficient and effective in unknown
environments.

The installation/un-installation procedure is traditionally a
resource dependent task and requires much of manual aid. To
lessen this manual dependency and effort this task could be
assigned to multiple intelligent agents with efficient learning
and text classification capabilities. We automate the process
of installation through setup wizard into silent installation. In
this paper we propose a framework for installing a software
without human intervention, i.e. by automating the process of
the so-called silent installation/un-installation. This is done by
interpreting the text that appears on installation screens and
thereby predicting the action to be taken next. In our proposed
framework the installer agent (the artificially-intelligent agent
which will install software autonomously) activates once the
particular installation file is run. The agent activated it extract
all the information on application window and on UI controls
(e.g. text on buttons like ”‘Next”’, ”‘Back”’, ”‘Cancel”’). That
helps the installer agent classify the text on the windows
using classifiers such as a Bayesian network and thereby
decide to continue installing the particular software or to quit
installation. To summarize, our method works in the following
manner:

• Access installation package and network nodes’ re-
sources,

• Read the text on an installer window,

• Classify the text using a number of classifiers and
decide between classes ’Next’ versus ’Cancel’.

Therefore, this work represents the use of text classification
as a means to address a problem in distributed assisted software
installation/un-installation.

The rest of the paper is organized as following: Section
2 presents the related work in the field, Section 3 presents
the system architecture that would serve as a guide for the
following sections that describe the algorithms that plug into
components of this architecture, and in section 4 classification

www.ijacsa.thesai.org 458 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

models are presented. Section 5 and 6 will focus on experi-
mentation and analysis followed by conclusion.

II. RELATED WORK

The idea of intelligent installation/un-installation agents
has received attention from a niche group within the machine
learning community. Manzoor & Nefti implement multi-agent
aided network monitoring and installation application like
”SUIPM”, in which they proposed silent unattended instal-
lation package manager which generates silent unatteneded
installation packages before installation. SUIPM supports all
kind of software installation over the heterogeneous setting on
different nodes. SUIPM does not require any client software
for installing a particular software. However the proposed
method has no intelligence, requiring initial training for the
operator for installing software. SUIPM generates its own
packages for installation which may be twice in size of the
original setup[1].

Manzoor & Nefti propose a method in Cognitive Agent for
Automated Software Installtion ”CAASI”[2] that rectifies the
shortcomings on [1]. The proposed method is able to install a
particular software intelligently and the setup size of particular
installing software remain as original setup, but the proposed
method still required training before installing a software.

Manzoor & Nefti propose ”ABSAMN”[3], which is an
agent-based architecture for activity monitoring over the net-
work. The proposed method watch activity monitoring like
user activity, node level activity, and internet monitoring au-
tonomously.

Manzoor & Nefti proposed a framework Smart network in-
staller and tester for installing software autonomously ”SNIT”.
SNIT is also agent based and motivated by An agent based
system for activity monitoring on Network ”ABSAMN”. The
proposed method supports unattended installation over the
network intelligently. The proposed method install a software
intelligently without any kind of training. SNIT do not require
any specific kind of setup before installation.

Herrick & Tyndall [22] proposed a method Sustainable
Automated Software Deployment Practices for automating
software installation SASDP. but the proposed method have
no intelligence and user have to watch the installation process
till completion. SASDP requires a particular MSI software
for running the application, and also give manual installation
facility to user.

In the above applications, rule-based text classifiers were
implemented for the learning of agents. The short comings
of rule based classifiers are observed to be large and slow
knowledge-base along with the inefficient performance in
unknown environments.

Installation agents may learn through text classification
schemes. Text classification is a challenging domain because of
a vast number of attributes in the form of words. Many of the
efficient text classifier models are designed for the domains
with relatively short vocabulary set. But the more practical
scenarios usually consist of complex and large vocabulary set
(more than thousand words). Many text classification schemes
have been proposed and implemented for large vocabulary sets
(a detailed comparison has been presented in the table 1). For

our research we will classify the text using the Naı̈ve Bayes
and Bayesian belief networks.

In their work, Domingos and Pazzanihas [4], [5] concluded
that Naı̈ve Bayes based text classification promises very opti-
mistic results with the constraints of zero significance level of
the probability calculated by the Naı̈ve Bayes . Some literature
shows the implementation of Naı̈ve Bayes classifiers using a
binary feature vector. The implementation does not capture the
total occurrences of a word in the text rather it captures the
probability of all attribute values (both present and absent). A
binary feature vectors represents absence or presence of every
word.

Therefore, the text is modeled as an event with related
binary attributes. This category of implementation is called
multivariate Bernoulli Naı̈ve Bayes. This model is closest
to the traditional Naı̈ve Bayes. The shortcomings of this
implementation is its inability to exploit word frequencies in
the text and its suitability for tasks with fixed number of
attributes (small documents).This approach has been applied
for various text classifiers.

The other Naı̈ve Bayes text classifier implemented is the
multinomial model or the standard Naı̈ve Bayes text classifier
[6], [7], [8], [9].This model focuses on the number of occur-
rences of a word, showing the words as events. The order
of appearance becomes insignificant and the probability of
a particular word becomes significant.This approach has also
been applied to multiple domains of text classification like
speech recognition and spam filtering.

The standard Naı̈ve Bayes text classifier does not show
better performance in comparison with other statistical learning
methods like support vector machines [11], nearest-neighbor
classifiers [8], and boosting [10]. However, the shortcomings
of this model are its rough parameter estimation.Latest re-
searches have focused on exploiting the efficient and simple
implementation scheme in multiple practical domains of text
classification like web mining and news article classification.

A Bayesian belief model focuses on relationship among
the attributes. It could also be applied with different statistical
methods to gain enhanced performance and avoidance of data
over fitness. It shows good results even if some data entries are
missing as it models the dependencies amongst all attributes.
This model could be applied to gain better understanding of the
problem domain. It is widely used in different application areas
of classification. These networks can be learned automatically
on the basis of statistical analysis. Naı̈ve Bayes is a special
case of these networks. Many text classifiers based of Bayesian
belief networks has been introduced [12][13] for multiple
domains like disease and cancer diagnosis.

III. PROPOSED SYSTEM

The proposed framework will work in a layered fash-
ion/architecture. The top most layer in the hierarchy is the
supervisor layer, that controls the whole framework. The
supervisor layer controls the controller layer which controls
the verification layer. The lowest layer in the framework is the
installation/un-installation layer.

A typical distributed environment could be seen as a
network of multiple networks. A supervisor agent is moni-

www.ijacsa.thesai.org 459 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

TABLE I. COMPARISON OF TEXT CLASSIFIERS

Text Classification Model Application Domains Advantages and disadvantage
Decision Trees Hierarchical distribution Simple knowledge representation

[22] Skewed class patterns Fast learning and qualitative analysis
Predicate based, divide and conquer strat-
egy

Inefficient when there is noise in the train-
ing data [5]

Rule based classifiers Based on simple rules to represent text
categories

Easy to understand and modify

[24] Classification rules are defined manually Easy incremental update by other machine
learning models

Decision support systems Use of more than one feature values simul-
taneously
Inefficient with the exponential growth of
feature space
Large number of training rules [25]
Conflicting rules and low coverage
Change in rules with the change in an
environment

SVM Classifiers Supervised classification algorithms Parti-
tioning of data space into different classes

No transformed space is required

[26] Consistent solutions
Focuses on linear separators and robust
over fitting
applicable to binary classifications only
frequent generation of zero values
Time consumin [27]

Neural Network Classifiers Multi-Output Perception Learning algo-
rithm (MOPL)

Quantitative analysis

[28] Back-Propagation Neural Network
(BPNN).

Complex knowledge representation,

Slow learning and converges on local min-
ima
For long trainings it starts over fitting
Multiple training runs are required for as-
sessing the applied model [Yao and Zhi-
Min et al., 2011],[Manning et al., 2009]

Naı̈ve Byes classifiers Attributes are considered as independent Simple, fast and efficient
Web mining, news group classification Cheap implementation cost

Bernoulli Naı̈ve Bayes Speech recognition, Web mining, Spam
filter etc

Restrictive conditional independence, poor
performance for strongly correlated data
[5],[5]

Multinomial Naı̈ve Bayes lack of uniformity in training data [24]
some attributes might remain less trained
in comparison with other

Bayesian Belief networks Attributes are considered correlated to each
other

Fast and efficient

Missing attributes could be computed Delivers better understanding of the do-
main knowledge

toring the whole framework at the master server level and
multiple controller agents are assisting and coordinating with it
.Whereas every controller agent is monitoring a separate sub
network. Multiple file transfer agents will serve the purpose
of IS-UIS file transferring over the path on the network from
source to destination node under the supervision of their
respective controller agent. The main and primary objective
of the application is to design classifiers to support the
installation/Un-installation tasks and to update the knowledge
base of the system. The application/program to be installed/un-
installed will be pre-processed by the system agents. This task
involves gathering the information on every screen as given in
figure 1 below:

The information on the screen is in the given format:

• Screen label

• Text/data

• Buttons/text boxes/ check boxes/ option groups along
with their text . . .

The data (above mentioned) will then be transferred to the
classifiers and then data will be processed to make it ready for
the classification task as given in figure 2 below:

The information on the software installation window will
be extracted first from that window which contain standard
amount of text, after extracting data will be pre-processed
means that the words like (a, an, the, are, is, of, to, will)
be removed from data and then will be given to classifier.
The classifier would have a knowledge base on basis of which

www.ijacsa.thesai.org 460 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

Fig. 1. Gathering Information

Fig. 2. System srchitecture

it would classify the text and would give the result to event
generation model, event generation model would generate an
event and then event will be posted.

A feedback module has been added to the application to
enhance the accuracy of test cases and to achieve more accurate
and promising results for the test data. The feedback module
starts working after the completion of classification and it asks
the user to help identifying the unidentified cases by giving the
class labels as input as given figure 3 below:

The knowledge base is updated according to the user input
and whenever new data is tested, the existing knowledge base
is also referenced. The processing data will be divided into
classes and attributes (tokenized) in order to find the probabili-

Fig. 3. Feedback Module

ties of relevant attributes according to their expected/classified
class labels. A knowledge-base will be maintained to break
down the attributes from the data. That knowledge base of data
attributes will be used by the three classification algorithms to
compute the probabilities and relationships. The classification
task comprises of two steps:

• Classification of class label,

• Identification/selection of appropriate action.

Once a screen/attribute has been classified correctly, the
objective is to identify the appropriate action/button selection
for that particular screen/attribute. Knowledge-base will be
maintained by the application to keep track of the expected
desired options to be selected/opted by the user against each
class to help identifying the action/button to be finalized.

A. Agent Infrastructure

In an autonomous environment the role and behavior
of an intelligent mobile agent has always been an ideal
choice to represent flexibility and reliability towards achieving
the design objective in a distributed environment. The aim
of this research is to present an agent based autonomous
framework for software installation/un-installation in a dis-
tributed environment. The agent based autonomous software
installation/un-installation framework will conduct the auto-
mated installation/un-installation task over a network. The
intelligent software installation/ un-installation agents will be
trained using Naı̈ve Bayes and Bayesian Belief classifiers. The
system consists of five agents:

B. Server Agent

Server agent is the main agent of the system it initializes
the whole system. SA loads the network configurations which
contains the IP address and name of the sub server and it
also contains the range of the sub server network on which
particular software to be installed.

C. Sub-Server Agent

Server Agent initiate sub server agent, then sub sever move
to each sub server and perform the following steps. Sub Server

www.ijacsa.thesai.org 461 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

Agent load the configuration file and also load the Knowledge
Base. Sub Server Agent is also responsible for creating and
initializing File Transfer Agent and Installer Agent.

D. File Transfer Agent

File Transfer Agent is responsible to transfer the software
to each node over the network. It distributes the file from a
file server to a large number of machines over the network.
FTA (File Transfer Agent) transfers the software into chunks
and then merges it on each node.

E. Installer Agent

As the FTA completes their task then Installer Agent is
initialized. IA contains the list of nodes on which particular
software to be installed. Then it moves to first node in the
list, loads the Knowledge Base, software profile and also the
information passed by the Sub Server Agent. Before starting
the installation, Installer Agent will fist check the constraints
like space available in the target drive or not.

F. Verifier Agent

After initializing verifier Agent (VA), VA moves to each
node and verify that the product installed on each node.
After verifying the information about product VA will run the
application in back ground and then moves to other node. The
method proposed by Umar et al. [19] installed software over
the heterogeneous network autonomously. SNIT installs the
software(s) over the network autonomously, but the proposed
method is rule based and failed in some cases. To overcome
this problem we proposed a method in which we extend the
SNIT and proposed autonomous installation using Bayesian
Belief Network. In this thesis I only modify the Installer Agent
of SNIT and named them Cognitive Installer Agent (CIA).
CIA installs software over the network autonomously using
Bayesian Belief Network. CIA is more intelligent than installer
agent, and it can handle all type of software installation and
un-installation without any user interaction.

IV. TEXT CLASSIFICATION MODELS FOR THE INSTALLER
AGENT

Different installation packages may have differently-
worded text showing on installation wizard screens, but at
the same time there are many similarities among the text
displayed, beginning with the standard text on UI controls like
buttons and keywords that on their own may be sufficient for
classification under the iid ssumption that for instance Naı̈ve
Bayes takes. So for the task at hand we work with a number
of successful classifiers from the text retrieval community
like Naı̈ve Bayes, Bayesian Belief Network, and rule-based
classifier and compare their performance.

A. Naı̈ve Bayesian classifier

Naı̈ve Bayesian classifier are used commonly for text clas-
sification because of its success in this field and its ability to
work with limited amounts of data. In Naı̈ve Bayesian classifier
we attempt to make a probabilistic classifier which is based
on molding the fundamental word features in different classes.

The main idea behind is to classify the text on the base of
posterior and prior probability. In nave Bayesian classification
we trained our classifier in such a way that the target class
is known, and then we test the classifier for unknown target
class. The classifier has to learn on the input data along with
output data.

With the Naı̈ve Bayesian classifier, we first calculate the
probability of the target class in the document in the training
set and then the probability of each attribute with respect to
the target class, after that when the new data is provided to the
classifier as test data then it assigns the data target class which
probability is higher [3]. The Naı̈ve Bayesian classifier gives
the precise result when it is provided a large number of data
set. Still it is often difficult that we have a large number of data
sets. Beside these when the datasets are large then it required
more space and have more time complexity for running. So
the case in which we have small data set as is our problem
then it give us quick result.

Classification of text is a becomes more challenging with
the amount of data present. But classification of large amount
of text is much easier than small amount of text document.
Our problem is very challenging task because in this particular
problem amount of text is very small as text on installation
software text window which is very small in amount and
consists of standard keywords as given in figure 4 below:

Fig. 4. Installation Window

The text extracted from this window is:

Caption
MathWorks Installer
Labels
Install MathWorks Software
This program will install MathWork products on your computer.
You may also be Required to activate your software.
Radio Buttons
Install using Internet
Install without using Internet
Button
Connection Settings
Labels
MathWork Products are protected by patents
(see www.mathwork.com/patents) and copyright laws.
By entering into the Software License Agreement that follows,
you will also agree to additional restrictions on your use
of these programs. Any unauthorized use, reproduction, or

www.ijacsa.thesai.org 462 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

distribution may result in the civil and criminal penalties.
MATLAB and Simulink are registered trademarks of The
MahthWorks, Inc. Please see www.mathworks.com/trademarks for
a list of additional trademarks. Other product or brand names
may be trademarks or registered trademarks of their respective
holders.
Buttons
Next
Cancel
Help
:

As we discussed in previous section that the text on the
installation wizard window is small and consists of standard
keywords.Now the problem is how to classify this text. Among
different types of classifiers which we studied earlier the most
suitable classifier for classifying the smaller and standard text
is the Bayesian Belief Network which gives us better result
than others.

After initialization of co-installer agent, filtered text (stan-
dard keyword) of particular window will be passed to classifier.
The classifier represents the received information as given in
figure 5:

Fig. 5. Naı̈ve Bayes

Above is the model for the very first window of installation
process which is Introduction. After classification the result
is given to event generation model and then other screen of
setup wizard provided to the classifier autonomously and a
description similar to the figure is generated for each of them.

B. Bayesian Belief

Bayesian Network is a probabilistic graphical model that
represents a problem into set of random variable. In Bayesian
Network model a problem is represented in the form of
directed acyclic graphical model in which every node have
probability. In directed acyclic graph, nodes represent variables
and edges represent the probability among nodes. Each of
variable have some variables (nodes) on which it depends
that is called parent of them. Each of variable have their
parents. Besides these Belief Network also has a probability
table which shows the probability of each child with their
parents. The conditional probability (CPT) of X and its parents
is represented by a clique of size (k+1) in the graph and have
dk(d − 1) parameters. Learning process in Belief Network
consists of two parts one is learning the network graph
structure and other is learning the probability [13]. Bayesian
Networks have three types of connections serial, diverging and
converging.

In Bayesian learning the network is learned on trained data
which contain output classes and then data without output
classes are given to the network for testing[6].

The Bayesian network based classification is gaining pop-
ularity in almost every field of evolutionary sciences. It has
been found very useful especially when the data is missing
and incomplete. The Bayesian based classification has different
forms. The focus of the research is performance measuring of
Naı̈ve Bayes, Bayesian Belief and Tree Augmented based clas-
sifiers and their comparison on the installation/un-installation
data. Following is a brief description of the working of each
of the three models along with the design details.

In our proposed design as the co-installer starts initializa-
tion it takes the extracted information from the window screen
and provide it to the Bayesian belief classifier. Bayesian belief
classifier represents the received information in network like
structure and calculates the probability for the provided screen
and passes it to event generation model. Following figure 6 is
a brief model for the very first screen of setup wizard.

Fig. 6. Bayesian Belief

After classifying first screen, remaining windows of instal-
lation process are provided to the classifier in same fashion.

C. Tree augmented Bayesian

As co-installer initialized it takes preprocessed text of
the very first window screen of the installation setup wizard
window and provide it to augmented tree for classification.
Augmented tree takes the received information from co-
installer agent and represent it in tree like structure as shown
in figure 7 below for classification.

Fig. 7. Tree-augmented Bayesian Belief Network

Above is a brief model for very first model, same is
generated for every window screen after receiving from co-
installer agent.

www.ijacsa.thesai.org 463 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

V. EXPERIMENTS AND DISCUSSION

The classification models were trained for exemplars taken
from 25 different installation software programs and then
tested for unknown test data set collected from 15 other
software; a ratio of 62% training data set and 38% testing data
set. Over all the results of the Bayesian Belief are found very
promising. Following is a brief description that illustrates the
performance of both the classification techniques with respect
to different attributes.

Overall, the Naı̈ve Bayes based classifier shows 42%
accuracy rate with 84 exemplars classified correctly, rule-based
showed 88% accuracy with 174 exemplars classified correctly,
while the Bayesian Belief model classifier outperforms the
others with an accuracy level of about 94% by classifying
187 cases correctly. The failure rate in terms of incorrect
classification is 58%, 12% and 6% for Naı̈ve Bayesian, rule-
based inference and Bayesian Belief based models respectively.

In terms of training and testing data set; the Naı̈ve Bayes
based classifiers show 60% and 38% accuracy, rule-based
inference shows 87% and 13% accuracy for training and testing
data set respectively. Whereas the Bayesian Belief classifier
performed very well by correctly classifying 96% and 92%
of training and testing dataset respectively. The graph given
below represents the overall performance presented by both
the classification models.

Fig. 8. Performance comparison of Naı̈ve Bayes, Rule-based and Bayesian
Belief Network

The dataset is categorized both by classifiers and also by
rule-based inference. There were a total of 21 classes; each
containing their relevant set of exemplars. We also measure the
performance of the rule-based, Naı̈ve Bayesian and Bayesian
Belief classifiers for each class label. As discussed above
the Bayesian Belief model was found to be more accurate
and promising for each class (both training and testing data).
The class design was based upon the output action selection
attribute; Run, Next, Finish etc. As Bayesian Belief model
focuses more upon attribute dependencies it performed well.
On the other hand the Naı̈ve Bayesian model assumes no
dependencies amongst the data and depicted poor performance.

Given in Fig. 9 below is the graph showing the performance
comparison of both the classifiers for 13 classes out of 21 as
they demonstrate the good and true representation of all the
classes (the similar trend was observed in the remaining classes
as well). The total number of exemplars per class varied as the
data was taken from installation software screens.

Fig. 9. Analysis of correct cases per class

As discussed above the screens/cases of a total of 40
software were used as the dataset for our research. Each
individual screen while running software was considered as
an individual and distinct exemplar. We collected a total of
198 exemplars for our experimentation. For a probabilistic
classification paradigm this figure/number is considered to be
sufficient. To measure the performance of any classification
model the accuracy of results are the primary concern followed
by the time constraints as the secondary point of focus. The
time complexity of a Naı̈ve Bayesian model is simpler and less
than that of Bayesian Belief model and Rule Base in terms of
time taken as well as the number of steps involved in the
classification process.

Another comparison to judge the time based performance
of both the classifiers and Rule Base system is to compare the
time taken to classify/ predict single independent installation
software. A total of 8 distinct software were selected and
classified using both the models and also on Rule Base to
measure the time taken to classify all the screens/dataset
for each. Once again due to its simplicity of relationship
and absence of inter dependency amongst the attributes the
Bayesian Belief model showed better results.

Fig. 10 shows the graph representing a comparison of time
efficiency of both the classification models and Rule Base for
8 different installation software.

Fig. 10. Analysis of time

The whole research is focused upon the concept of auto-
mated installation; the support to this prime task is essential to
be discussed. Hence their performance while running software
was also judged along with measuring the outcome of both

www.ijacsa.thesai.org 464 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

classifiers, Randomly 5 different installation software were se-
lected and the screens/data set from all of them were classified
using both the models. The results of the Bayesian Belief
model were amazing; in some software it showed even 100%
performance by selecting the correct output class. Whereas the
output of Naı̈ve Bayes model and rule-based inference was
disappointing as in some software it could not show more
than 40% correct classfication. During installation Bayesian
Belief Model is found to be resource-hungry in terms of time
as compare to Naı̈ve Bayesian and rule-based inference,which
may affect system scalability once deployed, but our main
focus is on accuracy of the number of softwares that are
correctly installed. So Bayesian Belief Model is the method
of choice available. We surmise that the major reason for its
success is the fact that it does not ignore temporal relationships
(i.e. one word following a certain number of others) between
variables.

VI. CONCLUSION

In this chapter we compare the result of different classifiers
like Naı̈ve Bayesian, Bayesian Belief Network, augmented tree
and rule base classifier. We also generalize in this chapter that
which classifier performance is best than others. The proposed
frame work is unique to the best of our knowledge as it
will guide the installation/un-installation setup on the basis of
information retrieved from the knowledge base; designed and
modeled upon the Naı̈ve Bayes and Bayesian belief classifiers.
The autonomous framework is capable of handling unexpected
situations and responds to the changes in the environment
during the execution. In addition to this, it is capable of
learning by adding new facts to the knowledge base. We also
validate an implementable system architecture or framework,
based upon a multi-agent environment interact and cooperate
with each other in order to meet their design goal [21, 22].

REFERENCES

[1] Charu C. Aggarwal and ChengXiang Zhai. 2011. A Survey of Text
Classification Algorithms, Pattern Recognition, volume 37, Issue 3,(28
May 2011): pp 169-180, DOI: 10.1007/978-1-4614-3223-4-6.

[2] George Tsatsaronis and Vicky Panagiotopoulou. 2011. A Generalized
Vector Space Model for Text Retrieval Based on Semantic Relatedness,
(2009):Pages 70-78

[3] Gerhard Weiss. 1999. Multiagent Systems: A Modern Approach to
Distributed Modern Approach to Artificial Intelligence (USA: MIT
Press, 1999) ISBN 0-262-23203-0.

[4] H. Van Dyke Parunak , Paul Nielsen , Sven Brueckner and Rafael
Alonso. 2007. Hybrid Multi-Agent Systems: Integrating Swarming and
BDI Agents, Volume 4335, (2007), pp1-14.

[5] Han-joon Kim1 and Jae-young Chang. 2003. Improving Naı̈ve Bayes
Text Classier with Mo died EM Algorithm, Volume 2871, (2003): pp
326-333, DOI: 10.1007/978-3-540-39592-845.

[6] Ian H. Witten, Eibe Frank and Mark A Hall. 2011. Data Mining: Prac-
tical Machine Learning Tools and Techniques.(USA: Elsevier, 2011).

[7] James Allen, Nate Blaylock and George Ferguson. 2002. A Prob-
lem Solving Model for Collaborative Agents.,(July 15-19, 2002),
DOI:10.1145/544862.544923.

[8] James Ingham. 1997., What is an Agent?, Technical Report 6/99
(1997),.

[9] Kotz, David, Mattern, and Friedsmann. 2000. Mobile agent applications,
Volume 1882 (September 13-15, 2000) ISBN 978-3-540-45347-5.

[10] Keith S. Decker and Katia Sycara. 1997. Intelligent Adaptive Infor-
mation Agents, Volume9, Issue 3, (1997/11/12): pp239-260. Klaus
Dorer, Applications of Multi-Agent Systems in Logistic:Lecture 10.
Hochschule Offenburg University of Applied Sciences.

[11] Manzoor and Nefti. 2010.,QUIET: A Methodology for Autonomous
Software Deployment using Mobile Agents. Volume 33, Issue
6,(November 2010): Pages 696706, DOI: 10.1016/j.jnca.2010.03.015.

[12] Manzoor and Nefti. 2011 ” Autonomous agents: Smart network installer
and tester (SNIT).” Volume 38, Issue 1,(January 2011): Pages 884893,
DOI: 10.1016/j.eswa.2010.07.066.

[13] Manzoor and Nefti. 2009. An agent based system for activity monitoring
on network, Volume 36, Issue 8 (October 2009): Pages 10987-10994,
doi:10.1016/j.eswa.2009.02.060

[14] Peter Stone and Manuela Veloso. 2000. Multiagent Systems: A Survey
from a Machine Learning Perspective, volume 8, Issue 3, (June 2000):
pp 345-383.

[15] Christopher D. Manning, Prabhakar Raghavan, Hinrich Schtze: An
Introduction to Information Retrieval, page 181. Cambridge University
Press, 2009

[16] Stuart J. Russell, Peter Norvig. 1995. Artificial Intelligence: A Modern
Approach. (New Jersey: Prentice Hall, 1995), 07632.

[17] Sang-Bum Kim, Hee-CheolSeo and Hae-Chang Rim,Poisson Naive
Bayes for Text Classication with Feature Weighting Volume 11,(2003):
Pages33-40 doi:10.3115/1118935.1118940.

[18] Songbo Tan , Yuefen Wang and Gaowei Wu. 2011. Adapting centroid
classier for document categorization, Volume 38, Issue 8, (August
2011): Pages 10264-10273, DOI: 10.1016/j.eswa.2011.02.114.

[19] Songbo Tan. 2006. , An effective renement strategy for KNN text
classier, Volume 30, Issue 2, (February 2006): Pages 290-298 ,
doi:10.1016/j.eswa.2005.07.019.

[20] Taeho Jo, 2009. NTC (Neural Text Categorizer): Neural Network for
Text Categorization, Volume 2, Issue 2, (28 October 2009).

[21] Zhao Yao and Chen Zhi-Min. 2012. ,An Optimized NBC Approach in
Text Classification ,Volume 24, Part C (2012): Pages 1910-1914, DOI:
10.1016/j.phpro.2012.02.281.

[22] Dan R. Herrick and John B . Tyndall. 2013. ,Sustainable
Automated Software Deployment Practices , (8 Nov 2013),
http://dx.doi.org/10.1145/2504776.2504802.

[23] IEEE Intelligent System, 13(4):18-28, 1998. BibTeX entry. [9], Thorsten
Joachims. Text categorization with support vector machines: learning
with many relevant

[24] Phil Hayes, software that finds names in text, Intelligent Multimedia on
Innovative Applications of Artificial Intelligence, p.49-64, May 01-03,
1990.

[25] Mining text data, CC Aggarwal, CX Zhai, Springer Science & Business
Media.

[26] Inductive learning algorithms and representations for text categorization
S Dumais, J Platt, D Heckerman, M Sahami, Proceedings of the seventh
international conference on Information and

[27] Songbo Tan, Yuefen Wang, Gaowei Wu, Expert Systems with Appli-
cations: An International Journal archive, Volume 38 Issue 8, August,
2011, Pages 10264-10273, Pergamon Press, Inc. Tarrytown, NY, USA

[28] A re-examination of text categorization methods. Yiming Yang and
Xin Liu. School of Computer Science, Carnegie Mellon University.
Pittsburgh, PA 15213-3702

www.ijacsa.thesai.org 465 | P a g e

