
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

Generation of Sokoban Stages using Recurrent
Neural Networks

Muhammad Suleman, Farrukh Hasan Syed, Tahir Q. Syed, Saqib Arfeen, Sadaf I. Behlim, Behroz Mirza
Department of Computer Science

National University of Computer and Emerging Sciences, Karachi, Pakistan

Abstract—Puzzles and board games represent several im-
portant classes of AI problems, but also represent difficult
complexity classes. In this paper, we propose a deep learning
based alternative to train a neural network model to find solution
states of the popular puzzle game Sokoban. The network trains
against a classical solver that uses theorem proving as the oracle
of valid and invalid games states, in a setup that is similar to
the popular adversarial training framework. Using our approach,
we have been able to verify the validity of a Sokoban puzzle up
to an accuracy of 99% on the test set. We have also been able
to train our network to generate the next possible state of the
puzzle board up to an accuracy of 99% on the validation set. We
hope that through this approach, a trained neural network will
be able to replace human experts and classical rule-based AI in
generating new instances and solutions for such games.

Keywords—stepwise cooperative training; generative networks;
recurrent neural networks; Sokoban; puzzles; deep learning

I. INTRODUCTION

Solving board-games and puzzles is often NP-hard and
therefore arriving at a solution is not computationally feasible.
Many strategies for solving board games have been developed
using AI techniques. One important approach is to change
board logic into a constraint satisfaction problem (CSP) and
then solve the CSP using a theorem prover. Although most
theorem provers perform optimizations for specialized cases,
the generation of solution by theorem provers still remain
computationally infeasible for higher order problems. In this
paper we investigate whether we can speed up this process
for solving board games using neural networks. The basic
idea is to generate solved stages using the theorem prover
and use this stage data to make training and testing data set
for neural network. In other words, instead of solving games
using a game tree we are interested to discover whether a
trainable AI can replace the game tree. We therefore investigate
if we could suitably train a neural network which can give us
exact next stages after learning from training set provided by
theorem prover. This is different from all the other generative
neural network processes e.g. a generative adversarial network
(GAN) in which an approximate result is acceptable such as a
generated image that may be similar to an image in the dataset,
in our case approximate result is not acceptable since it can
result in deformed stages which lead to dead ends. The other
crucial difference is in the way training is performed. In GANs,
two networks compete against each other, where one generates
an example that may or may not be similar to the examples in
the training set’s distribution, something which is decided by a
discriminative network. Our discriminative network is replaced

by the puzzle-solving theorem prover which is guaranteed to
deterministically generate the next stage. We conclude that
with proper sampling we can get an exact next stage of board
games with high accuracy.

In our approach, we train a Recurrent Neural Network
(RNN) to classify Sokoban board states as valid or invalid,
and use one valid state to propose the next valid state, such
that each state brings us closer to the solution. The problem of
declaring a particular state of the Sokoban board may be easy
enough if all valid and invalid states could be enumerated,
but to decide a move onward from a particular board state
enumerating all following states may not be a combinatorially
appealing solution. There are several motivations for the work
being presented:

1) the trained network could be used for training new
players as well as provide in game help. The network
can be used to identify any state as either valid or
invalid. This in turn may be used to identify whenever
a player reaches a blocking state (from which there is
no solution) and guide the player to back-track some
steps. We can also use the model to design new levels
for the game. If our proposed solution works well for
Sokoban, it may be extended for more complicated
puzzles and problems.

2) methods proposed in the literature takes exponential
time to reach a solution in worst case. For example,
the theorem prover we used to generate the solution
takes around 5 minutes to solve many 8× 8 puzzle.
Larger puzzles will take increasingly more time. If
we could train neural networks to solve the puzzles,
solutions could be reached a lot quicker. If the
learning approach works well, the networks may be
trained to learn puzzles of any size just by watching
human players play. All other methods for solving
board games with single player and step by step
solution require extensive domain specific knowledge
to implement.

Concretely, our objectives are as follows:

1) to create some invalid Sokoban mazes. Invalid maze
means any maze which is unsolvable. We needed to
do this as although valid mazes are available on the
internet [1], invalid mazes are not.

2) to design and train neural network architecture that
could detect whether any given maze was valid or
invalid

3) to generate step by step solutions for valid mazes
using the theorem prover[2]

www.ijacsa.thesai.org 466 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

4) to use the solutions (from objective 3) to train a neural
network so it could produce solution steps for similar
mazes.

To the best of our knowledge, ours is the first work that:

1) applies a deep learning method to general puzzle-
solving, and

2) uses a hybrid generator-generator training where the
generator network is trained against a game-tree
generator.

II. LITERATURE REVIEW

Sokoban is a popular puzzle game. It was developed in the
1980s in Japan. The player is given a maze. The maze consists
of walls, boxes, floor, holes and one player. The player has to
push the boxes onto the holes. Any maze is valid if it satisfies
certain conditions. For example, if there are an equal number
of holes and boxes and some way for the player to push the
boxes so they cover all the holes, the maze is valid. A number
of approaches have been used to find optimal solutions to
Sokoban puzzles. Some solutions have used graph algorithms
such as breadth first and depth first search algorithms.

[3] has proposed solutions using Best-FS (Best-First
Search),Iterative-Deepening A* search, and Genetic algorithm.
Sokoban solutions can be viewed as expansion of trees of
possible actions based on a certain state of the puzzle. Both
Breadth first and Depth first graph algorithms will blindly
traverse the trees hoping to find the solution. The Best-FS
algorithm uses heuristics to decide which tree branch to take
based on which path will move a box closer to a hole.

In [4], a hierarchical decomposition approach has been
proposed where the problem is divided into a sequence of
higher actions and elementary actions. Secondly, a database
is maintained which keeps track of the mistake made by the
algorithm giving it the ability to learn.

[5] propose a method for finding optimal solutions using
Instance Dependent Pattern Databases. Using this method, the
puzzle is decomposed into a goal zone, entrance and maze
zone. A distance database is created from each box to a space
called an entrance which is any square from which the goal
may be reached.

In [6], an algorithm to generate Sokoban levels automat-
ically has been described where they create an empty room,
place goals in the room and find states farthest from the goal
state, i.e. go from the end state back to a start state.

In all the papers discussed, knowledge about Sokoban
and its rules is necessary to implement the solver or maze
generator. We propose to circumvent the need to know the rules
of a game for actual game-playing by the use of a generative
neural network.

III. METHODOLOGY

We constructed a dataset of 700 valid Sokoban puzzles
from [1]. We divided the dataset into halves so that one half
(i.e.350) represent the valid Sokoban puzzles and the other 350
are modified in a way that it leads to an invalid maze stage.
Each puzzle has a dimension of 8× 8. For puzzles which are
smaller in any dimension, we pad with walls.

Each level of Sokoban contains 7 elements shown in Fig.
3. This results in a state space of 764 stages. We then assign
each maze element an integer value as shown in Fig. 4. We
then convert all the elements to 1D as shown in Fig. 5.

There need to be a certain number of holes and a certain
number of boxes in the maze, and the elements of the maze,
i.e. the Walls, Boxes, Holes, and the Player need to be in a
particular pattern for the maze to be valid. Some of the valid
and invalid configurations of maze are shown in Fig. 1 and Fig.
2 respectively. Furthermore, since the player can only move in
four directions (up, down, left, right), each state is the result

www.ijacsa.thesai.org 467 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

TABLE I. MODEL LAYERS EXPERIMENT 1

Layer no. Layer type No. of Neurons
1 LSTM 128
2 Fully connected feed forward 2

of simple changes to the previous state, and is dependent on
the layout of the maze elements shown in Fig. 3.

Our experiments are done on Keras with a Tensorflow
backend. We used a special type of RNN called Long-Short
Term Memory (LSTM)[7]. The LSTM provides a mapping
betweennsequences of length 1. The input to the network at a
given time stamp is a board state, and the predicted output is
the next board state. For adversarial training, we limit the use
case to Sokoban and the theorem proven in [2] which outputs
a unique board state given the previous one.

IV. EXPERIMENTS

A. Experiment 1 - Prediction of Valid / Invalid state

There are many constraints which need to be fulfilled for
a Sokoban puzzle to be valid. E.g. The number of boxes
should be equal to number of holes. In other solvers these
constraints are explicitly checked using if else statements. In
deep learning approach, the network learns all of these just
by viewing examples, i.e. it frees programmer from writing
explicit constraints as if/else checks. Before coming to final
experiment for prediction of valid / invalid state, we did a
series of experiments to verify that our network can actually
learn all the constraints for finding valid / invalid state. Input
and Output of this experiment are shown in Fig. 6. Following
are brief descriptions of our prior experiments.

In our first experiment we made a Sokoban board with only
three symbols, Box = ’$’, Goal square ’.’, Floor ’(space)’, and
16 squares. Each square can contain any of the three symbols.
We marked a board as invalid if it contained unequal number
of ’$’ and ’.’. Our state space contained 316 = 43046721
examples. Out of these examples we randomly selected 2000
examples for our training data. After training our network up to
99.99% accuracy we tested our model on 50 unseen examples.
In almost all experiments, (49 out of 50) unseen examples were
correctly classified.

We subsequently experimented on an increasing number of
squares and training examples:

TABLE II. RESULTS: B=BOX, G=GOAL, SQ=SQUARE, SP=SPACE,
F=FLOOR, W=WALL

No. Size Symbols Exp. State space Acc. Cor. classified
2 64 B, G, Sq, Sp 8000 3exp(16) 99.99 49/50
3 128 B, G, Sq, Sp 8000 3exp(128) 99.99 46 − 48/50
4 16 B, G, Sq, F, W 2000 4exp(16) 99.99 49/50
5 64 B, G, Sq, F, W 4000 4exp(64) 99.99 49/50
6 128 B, G, Sq, F, W 8000 4exp(128) 99 46 − 48/50

TABLE III. MODEL LAYERS EXPERIMENT 2

Layer no. Layer type No. of Neurons
1 LSTM 128
2 Repeat Vector
3 LSTM 128
4 LSTM 8

We repeated above prior experiments for 3, 4 and 5
relations and results are same. This showed that our network
can learn up to 5 relations of length 128. More results can be
produced by performing further experiments.

In our final experiment we have 7 symbols Wall ’#’, Player
’’, Player on goal square ’+’, Box ’$’, Box on goal square ’*’,
Goal square ’.’, Floor ’(Space)’. We downloaded 696.txt from
[1]. This file contains 696 valid sokoban puzzles. We randomly
selected nearly 350 sokoban puzzles out of the 696 puzzles.
To make invalid puzzles we made little changes in each of
350 valid puzzles. Finally, we gave these 700 examples to our
network along with their respective labels. Around 27-29 out
of 30 unseen examples are correctly classified after training
our network up to 99 percent.

B. Experiment 2 - Next-state predictor

In this experiment we downloaded 54 puzzles of 8×8 from
696.txt [1]. We gave every puzzle to the theorem prover[2].
The input and output of theorem prover is shown in Figs. 7 and
8 respectively. For valid mazes, the theorem prover generated
step by step solutions. Fig. 8 demonstrates how the theorem
prover generated step by step solutions.

www.ijacsa.thesai.org 468 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

Our basic idea is to get board configuration in step 2 as the
output of board configuration 1. For example, the output in step
2 becomes input for step 1. If our puzzle is solved in 32 steps
than we will get 31 training rows for our network {1-2, 2-3,
3-4, 31-32}. Both X and Y contain 64 characters as shown
in Fig. 6. The model of our network is shown in Table III .
Each puzzle out of 54 puzzles gets solved in 16 to 64 steps.
As a result we get nearly 3000 rows for our initial experiment.
After achieving 99 percent accuracy on training data, we tried
to solve whole puzzles using our network. We randomly chose
a single puzzle from the 54 puzzles that we used for training
set. This was a puzzle that was solved by theorem prover in
64 steps. 57 out of these 64 steps are correctly guessed by our
network. For the other7 steps it gives an error of maximum
2 elements out of 64 elements in the maze. Next we fed
an unseen puzzle to the network. The theorem prover had
solved this puzzle in 64 steps as well. Although our trained
network was unable to guess any step up to complete 64 places
correctly, it guessed a maximum of 4 elements incorrectly out
of the total 64 elements. Most of the time, the error was only at
2 places out of 64 places. We think this shows that 54 puzzles
were not enough for solving Sokoban 8x8 puzzles. We will
discuss how to increase problem instances for our problem in
sections 5 and 6.

V. RESULTS AND DISCUSSION

Experiment 1 shows that we can find valid/invalid config-
uration for many board game with very few examples. Many

Sokoban solvers which use A*s search algorithm get stuck
when given an invalid sokoban puzzle with just 1 unmoveable
box, they keep on searching the whole state space for solution.
Our proposed solution is very simple. We train a network
which just guesses whether a given problem is valid or invalid.
If it is invalid, we won’t waste time in trying to find a solution.

We conduct our Experiment 2 to provide an efficient solver
for board games like Sokoban, Colour Bridge and other similar
games. The basic motivation for Experiment 2 is that once
trained properly, neural network can guess solution to any
Sokoban puzzle within seconds. In comparison, when we give
random examples of 8x8 sokoban puzzle to any current solver
which uses A* algorithm or theorem proving technique, it
normally takes atleast 60 seconds to solve a puzzle, and for
many 8x8 puzzles current solvers get stuck altogether. We have
not experimented on 9x9 or bigger instances of the puzzle
because most current solvers get stuck on these problems. As
a consequence, we are unable to generate the required amount
of train data.

There is a direct analogy between all the sequence to
sequence learning tasks. For example puzzle solving by our
method has direct analogy with question-answering task from
supervised learning. Both are sequence to sequence learning,
both have vocabulary. The difference is that the vocabulary is
very small in case of a Sokoban puzzle, i.e. just 7 words, while
in question-answering context, it is atleast 32 (as in the case
of babi rnn (facebook data)) for which an RNN gives 99%
accuracy for 1 word answers. Here we are trying to extract
a 49 or 64 word answer, so the error is expected. Bigger
dataset which expect answers of 10 or more length are not
extracted exactly i.e. giving 81% or less accuracy even by
state of the art results [squad references]. what we are trying
to discover is that if vocabulary size is small, is it possible to
extract exact answers of size 49 or greater. We conclude that
for the sample size we used in our experiments, we are able
to extract answers with an error of 2 characters most of the
time. For question- answering task, an answer with an error of
only two characters can be a most ideal answer, but for puzzle
solving we will need exact answers. We keep proper method
of sampling from puzzle state space as future work since
solution to the puzzle solving problem lies in proper sampling
according to our analysis. We keep implementation and result
enhancement using proper sampling method as future work.

VI. CONCLUSION AND FUTURE WORK

In this work we propose a variant of adversarial training
for the application of puzzle solving, where one generative
model is used to train another in a way similar to a human
oracle providing labels at each time step to a recurrent neural
netwrok. We obtain 99% accuracy on validation set which
implies network has learned whatever structure has been given
to it in training and validation set. Now if test data is similar
to training and testing set, the network will be able to extract
correct answer. Since this is not happening, it implies that
sample size is small. Several reasons mainly related to the
size of the possible state space of the puzzle problem suggest
that the problem lies in small size of training set. In other
words the sample size is not large or varied enough to train
the network properly.

www.ijacsa.thesai.org 469 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

There are many more reasons for comparing our work with
other sequence to sequence learning tasks. There are non-trivial
differences between Question-Answering (QA) and Puzzle
Solving. For example, QA can be based on comprehension
where answer spans searching through multiple interrelated
sentences in a monotonic order, while in puzzles a change of
just 1 position can result in new state. Variable-length answers
(which make the QA problem difficult) and a fixed-length
answer is also another key difference between QA and puzzle
solving task. Due to these differences we can expect that in
modeling sequence to sequence learning, the easiest task can
be modeling of state to state for puzzle solving (fixed length
answers, not dependent on many positions/sentences, with a
very small vocabulary size). This argument motivates us to
expect long exact answers for puzzle solving using sequence
to sequence modeling.

REFERENCES

[1] http://www.sourcecode.se/sokoban/levels/
[2] http://bach.istc.kobe-u.ac.jp/copris/puzzles/sokoban/
[3] M. Dorst, M. Gerontini et al, ”Solving the Sokoban Problem”, 2011
[4] Jean-Noel Demaret, Francois Van Lishout et al, ”Hierarchical Planning

and Learningfor Automatic Solving of Sokoban Problems”
[5] Andre Grahl Pereira et al, ”Finding Optimal Solutions to Sokoban

using Instance Dependent Pattern Databases”, Institute of Informations
Federal Univerity of Rio Grande do Sul, Brazil, Proceedings of the Sixth
International Symposium on Combinatorial Search, 2013

[6] J. Taylor, I. Parberry, ”Procedural Generation of Sokoban Levels”, Dept.
of Computer Science and Engineering, University of North Texas

[7] Hochreiter, Sepp and Schmidhuber, Jurgen, ”Long Short-Term Memory”,
Neural Computation, 9(8):1735-1780,1997

www.ijacsa.thesai.org 470 | P a g e

