
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

98 | P a g e

 www.ijacsa.thesai.org

A Novel Representation and Searching Algorithm for

Opening Hours

Teodora Husar

Department of Computer Science and Information

Technology,

University of Oradea

Oradea, Romania

Cornelia Győrödi

Department of Computer Science and Information

Technology,

University of Oradea

Oradea, Romania

Robert Győrödi

Department of Computer Science and Information

Technology,

University of Oradea

Oradea, Romania

Sorin Sarca

Department of Informatics, Faculty of Sciences

University of Oradea

Oradea,

Romania

Abstract—Opening Hours can be considered a data type

having a human representation; this means that it can be

easily understood by human beings and hardly understood by

computers because the lack of a standard structured

representation. In essence, the opening hours gives us a simple

information: opening state at a certain date and time, and this is

our focus in this paper. So far, this kind of functionality does not

exists in today's database management systems because there are

no algorithms developed in this way. The purpose of this paper is

to presents a novel and easy to implement algorithm for encoding

opening hours in order to quickly search and get the opening

state for records.

Keywords—Opening Hours; Java; optimizations

I. INTRODUCTION

A few years ago an application normally only used to have
thousands of users to tens of thousands of users in the most
extreme cases, and currently there are applications that have
millions of users and amount of data is increasing, so is very
important to perform efficient search to get relevant
information from data [7]. It is important to use search engines
to access information, that has grown tremendously based on
the needs of users [2]. The goal of information extraction
methods is the extraction of specific information from data
documents [1].

Opening Hours are becoming increasingly significant in
online environment, because it is very important to know when
a restaurant, store or other business is open, this information
can help you avoid unnecessary roads, or in late hours you
can search for open places where you can fix urgent
problems: dentist, auto service and so on. Businesses is
usually listed in directories where you can perform a search
to get relevant results, but these results are not relevant to
current time, nor the results will not be relevant for a future
date.

If there would be a way to filter the results only get the
ones that are open now or in a future date, then you will save a

lot of time, otherwise you have to loop over the result list and
check each opening hour. So far, there is no efficient
algorithm to solve this problem.

This paper proposes an encoding of the opening hours,
which can show in a very short time if it is opened or closed at
a certain date and time. There are many representations for
opening hours but this encoding is not assuming any, because
there is not a standard representation. Instead it is a byte
sequence, not easily readable by humans, which encapsulates
opening hours info, so that if given a date and hour it can
determine very fast if it is open or closed. This paper makes a
first attempt to describe a new algorithm for searching through
opening hours. To perform comparisons tests, we also achieved
an implementation of algorithm written in Java language [4][5]
for Apache Solr [6].

II. THE ALGORITHM REPRESENTATION

Opening Hours can be composed from many entities (day
of week, date, time) and to easily represent them we must
choose some notations. We consider the following primitives:

 Z - represents the day of the week using one digit, 1 (for
Monday) through 7 (for Sunday)

 H - represents hour of the day using four digits, 0000
(for 00:00) to 2359 (for 23:59)

 D - represents the date of year (only month and day)
using four digits, 0101 (for January 1) to 1231 (for
December 31).

Having these three primitives, we can move forward and
create some types representing time intervals.

A. ZHH type

With this format, we can encode one interval of opening
hours in a single day. Therefore, encoding “Monday from 8:00
to 16:00” will produce 108001600. We can see this
representation in Table 1 that indicates every primitive used:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

99 | P a g e

 www.ijacsa.thesai.org

TABLE. I. THE REPRESENTATION OF THE ZHH TYPE

B. DHH type

Similar to ZHH but specifies an exact date instead of day of
week. This is just great if you have some special hours in a date,
because it can encode something like “Opened on December
25 from 9:00 to 12:00” to 122509001200, and the Christmas
day is saved. We can see this representation in Table 2.

TABLE. II. THE REPRESENTATION OF THE DHH TYPE

C. ZDDHH type

This type extends ZHH and DHH types by adding a date
interval. More precisely, it can encode something like “Opened
every Sunday from 9:00 to 18:00 between February 12 and
March 16” to 70212031609001800, so you can easily represent
opening hours for seasons. The date interval must be greater
than a week, otherwise you can use ZHH or DHH types. This
representation is shown in Table 3.

TABLE. III. THE REPRESENTATION OF THE ZDDHH TYPE

D. -D

We can use this type to represent a closed date. Therefore,
if we close on December 25 the encoding will be -1225. This
representation is shown in Table 4.

TABLE. IV. THE REPRESENTATION OF THE -D TYPE

E. -DD

This type is just like -D type but specifies a date interval
instead of a single date. Can encode a range of closed dates,
“Closed between January 1 and January 3” to -01010103. We
show this representation in Table 5.

TABLE. V. THE REPRESENTATION OF THE -DD TYPE

Examples of encoded hours

Now that we have our types, we can go ahead and try to
encode some opening hours. For example:

 Monday – Friday from 8:00 to 16:00

For each day of week, we must add a separate record of
type ZHH: 108001600, 208001600, 308001600, 408001600,

508001600.

 Saturday from 9:00 to 13:00

Simply use a ZHH record: 609001300.

 Sunday - closed

We do not have to do anything, if there is no other data for
opening hours we assume it is closed.

 Monday – Friday from 8:00 to 12:00 and from 14:00 to
18:00

Because each day contains two intervals of opening time
we must add a ZHH record for each interval: (108001200,
114001800), (208001200, 214001800), …, (508001200,
514001800).

 Sunday from 9:00 to 12:00 – only during summer
season

Considering the summer season as being between June 1
and August 31, we could just use a ZDDHH record:
70601083109001200.

There are some special hours:

December 24 from 9:00 to 13:00

December 25 - closed

January 1 & 2 - closed

For December 24 we must use a DHH record:
122409001300, for December 25 a -D record: -1225 and for
January 1 & 2 a -DD record: -01010102.

We consider specifying a closed date record (-D or -DD)
implies that you also use the other types to specify opening
hours, otherwise it is pointless.

Z H H

1 0800 1600

Monday 8:00 16:00

D H H

1225 0900 1200

12 25

9:00 12:00
Dec 25

Z D D H H

7 0212 0316 0900 1800

Sunday

02 12 03 16

9:00 18:00

Feb 12 Mar 16

- D

- 1225

Closed

12 25

Dec 25

- D D

- 0101 0103

Closed

01 01 01 03

Jan 1 Jan 3

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

100 | P a g e

 www.ijacsa.thesai.org

Special cases are:

 Opened 24/7

We must use seven ZHH records to specify the opening
interval as 00:00 – 23:59 for each day of week: 100002359,
200002359, …, 700002359. Please note that specifying interval
00:00 – 00:00 is like saying that it is open only at 00:00
(exactly one minute, until 00:01).

 Monday – Friday from 18:00 to 02:00

In this case, the opening interval is past midnight, so it
means we must split them in ZHH records to mark as open the
first two hours of next day: (118002359, 200000200),
(218002359, 300000200), …, (518002359, 600000200).

If Saturday or Sunday is closed, we must not specify a -D
record for it.

F. Evaluation order algorithm

So far, we defined representation types and we know how
to represent opening hours using our types. However, to know
for a specified date and hour if it is opened or not, we consider
that each opening hours contains a list of encoded
representations in different types. We also set the evaluation
order from the most specific to most general type and compare
our date and hour to specified representation. For our
representation types, the priorities are (from most important to
less important): -D, -DD, DHH, ZDDHH, ZHH. We define
further the related algorithm for determining opening state:

Let X = searched date (month and day)

Let Y = searched time (hour and

minute)

Step 0

Let Q = day of week for X

Step 1

Get next -D, if no -D goto Step 2. If X equals D
return CLOSED else repeat Step 1.

Step 2

Get next -DD, if no -DD goto Step 3. If X between
DD return CLOSED else repeat Step 2.

Step 3

Get next DHH, if no DHH goto Step 4. If X equals D

and between HH return OPEN else repeat Step 3.

Step 4

Get next ZDDHH, if no ZDDHH goto Step 5. If Q equals
Z and X between DD and Y between HH return OPEN
else repeat Step 4.

Step 5

Get next ZHH, if no ZHH goto Step 6. If Q equals Z and
Y between HH return OPEN else repeat Step 5.

Step 6

Return CLOSED.

III. SORTING AND SEARCHING ALGORITHM

In this section, we describe in pseudocode the logic for
algorithm. We are not making any assumptions for the
original format of opening hours because there is not a
standard to represent them, so there could be many
implementations. We just consider that there exists a list of
records encoded using our representation types.

A. Sorting the list of records

Each type has different length (except closing ones, which
will be put first) so we will use that to sort the records.

set Z to 1

set H to 4

set D to 4

set _D to D + 1

set _DD to _D to D

set DHH to D + H + H

set ZDDHH to Z + D + D + H + H

set ZHH to Z + H + H

set list[0] to empty array

set list[1] to empty array

set list[2] to empty array

set list[3] to empty array

loop

 read record

 set len as record length

 if first char of record is '-' then

 if len is _D or _DD then

 index is 0

 else

 if len is DHH then index is 1

 if len is ZDDHH then index is 2

 if len is ZHH then index is 3

 push into list[len] the record

 concatenate list into one array:

 final list is list[0] concatenated with list[1]

concatenated with list[2] concatenated with list[3]

B. Searching through records

We consider that we have a sorted array of records. In the
code below, we return if the records contains open day based on
a specific date, hour and year.

set Z to 1

set H to 4

set D to 4

set _D to D + 1

set _DD to _D to D

set DHH to D + H + H

set ZDDHH to Z + D + D + H + H

set ZHH to Z + H + H

set delimiter to ';'

set close to false

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

101 | P a g e

 www.ijacsa.thesai.org

set firstDigit to 0 // used for the day of the week

set length to 0 // used for type

set interval to 0

set cType to 0

read list that is a sorted records delimited by

semicolon

read date, hour, year

set currentD as week number for the corresponding

read data

loop through list as record

 if record is '-' then

 set close to true and continue

 if record is a number then

 if firstDigit is 0 then set to record

 set interval with interval * 10 + record

 else if record is delimiter then

 if close then

 if date is the interval or is between

interval then

 return false

 set close to false and continue

 if cType is more than 0 and not the

same as previous type then

 return false

 if length is DHH then

 if date, hour and year is between the

interval then

 return true

 set cType to DHH

 if length is ZDDHH then

 if firstDigit is currentD and date,

hour and year is between the interval then

 return true

 set cType to ZDDHH

 if length is ZHH then

 if firstDigit is currentD and date,

hour and year is between the interval then

 return true

 set cType to ZHH

 set inverval,fistDigit and length to

0

return false

IV. BENCHMARKS

When comparing the performance of two search algorithms
or two sorting algorithms, we consider two types of operations:
data movements, or swaps and comparisons [3].

Because the test results depend on the computer on which
these tests are carried out, it is important to note that all the
results presented below in Table 6, were obtained from
studies conducted on a computer with the following
characteristics: processor Intel Core i7, 4 GB RAM memory
and 320 GB SSD.

TABLE. VI. THE RESULTS OF TESTS

The results are based on the code written in the Java
language by the authors [8].

In Java* implementation we can improve the speed of
isOpen() function by removing the code that generates the
currentDay integer (by creating a new Calendar instance), and
pass it as an argument.

From results tests presented in Table 6 we can say that the
resulted times are excellent: we can search through 1.000.000
database records/documents in less than one second and with
optimization in less than half a second.

For Apache Solr the search through 100.000 documents
took 100 milliseconds, which is great. In a real life case there
will often be some enforced search criteria such as a limit or a
category, city and so on; because it does not make sense to
return 100.000 documents to end-user. In other words, the
algorithm can handle very well millions of records if other
search criteria are used.

Without taking into account the database management
system where this algorithm is implemented, for the best results
one must consider to:

 use a separate field for the encoded opening hours. Even
if you can reverse the encoding, it is not a good idea
because the format is intended for search only, so use
your original format of opening hours if you want to
show it to your users

 do the sorting once (when you insert or update), doing
it on every search request will slow-down the process

 do not return the value of encoded field (to save
bandwidth and speed-up the search)

 make sure that the check is done only when necessary.
Remember that if you have A && B, B is not evaluated
if A evaluates to false

 remove redundant records from opening hours (for
example having a -D between a -DD is useless

V. CONCLUSIONS

To sum-up, the advantages of the algorithm are:

 O(n) complexity for search (in the worst case)

 covers all cases for opening hours, including special
hours or season hours

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

102 | P a g e

 www.ijacsa.thesai.org

 easy to extend (for example adding time zone support)
and implement since it operates on a byte sequence

The only downside of algorithm is the size of needed byte
sequence. However, when it comes to search, we will not have
to worry about disk or ram space because speed comes first.
However, there are some possible workarounds:

 add another types, such as ZZHH (which extends ZHH,
using ZZ as interval) and a special one to represent
always open

 use a fast method to pack and unpack the sequence (you
can reduce the size to half by using something similar to
BCD – binary coded decimal)

In the end we can say that our method is a good proof of
concept for encoding opening hours in order to determine if is
open or closed at certain date and time considering the low
complexity and high speed of search.

REFERENCES

[1] Jadhav Bhushan G, Warke Pushkar U, Kuchekar Shivaji P, Kadam
Nikhil, “Searching Research Papers Using Clustering and Text
Mining”, International Journal of Emerging Technology and Advanced
Engineering, Volume 4, Issue 4, April 2014, Available:
http://ijetae.com/files/Volume4Issue4/IJETAE_0414_135.pdf, accessed

jan 2016.

[2] E.A. Calvillo, A. Padilla, J. Munoz, J.T. Fernandez, ”Searching
research papers using clustering and text mining”, International
Conference on Electronics, Communications and Computing
(CONIELECOMP), 11-13 March 2013, pp. 78 – 81, ISBN 978-
1-4673-6156-9, Available:

https://www.researchgate.net/publication/261036444_Searching_researc
h_papers_using_clustering_and_text_mining, accessed jan 2016.

[3] Amy Csizmar Dalal, “Searching and Sorting
Algorithms”, Supplementary Lecture Notes, 2004,
 Available:
http://www.cs.carleton.edu/faculty/adalal/teaching/f04/117/notes/search
Sort.pdf, accessed jan 2016.

[4] S. Wild and M. E. Nebel, “Analysis of Yaroslavskiy's dual-pivot
quicksort used in Java 7”. In Proceedings of the 20th European
Symposium on Algorithms, 2012.

[5] Java programming language, https://docs.oracle.com/en/java/

[6] Apache Solr, Available: http://lucene.apache.org/solr/

[7] Cornelia Győrödi, Robert Győrödi, George Pecherle, Andrada Olah, “A
comparative study: MongoDB vs. MySQL”, IEEE - 13th International
Conference on Engineering of Modern Electric Systems (EMES), 2015,
Oradea, Romania, 11-12 June 2015, ISBN 978-1-4799-7649-2, pag. 1-
6.

[8] Solr Opening Hours solutions, Available:
https://github.com/husart/SolrOpeningHours

http://lucene.apache.org/solr/

