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Abstract—DNA repair mechanism is an important 

mechanism employed by the cancerous cell to survive the DNA 

damages induced during uncontrolled proliferation of cell and 

anti-cancer drug treatments. In this context, the Ubiquitin-

Specific Proteases (USP1) in complex with Ubiquitin Associated 

Factor 1(UAF1) plays a key role in the survival of cancerous cell 

by DNA repair mechanism. Thus, this put forth USP1/UAF1 

complex as a striking anti-cancer target for screening of anti-

cancer molecule. The current research is aimed to improve the 

classification accuracy of the existing bioactivity predictive 

chemoinformatics model for screening potential active 

USP1/UAF1 inhibitors from high-throughput screening data. 

The current study employed feature selection method to extract 

key molecular descriptors from the publicly available high-

throughput screening dataset of small molecules that were used 

to screen active USP1/UAF1 complex inhibitors. This study 

proposes an improved predictive machine learning approach 

using the feature selection technique and two class Linear 

Discriminant Technique (LDA) algorithm to accurately predict 

the active novel USP1/UAF1 inhibitor compounds. 
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I. INTRODUCTION 

Deubiquitinases (DUBs) are a specific group of enzymatic 
proteins that aid the process of deubiquitination on targeted 
proteins [1-2]. Recent findings have highlighted the role of 
deubiquitinases as oncogenes, due to their involvement in 
DNA damage repair mechanism leading to the survival of 
actively replicating cancerous cells [3 to 5]. The DUBs are 
broadly categorized into five families and the Ubiquitin-
specific proteases (USPs) family constitutes of the largest 
number of different USPs. Among the many members of 
USPs, the USP1 is the most studied deubiquitinases due to its 
involvement in various type of carcinomas. Cancerous cell 
undergoes DNA damage during targeted anti-cancer drug 
therapy and uncontrolled rapid cell proliferation [6-7]. This 
leads to dependencies of the cancerous cell upon DNA damage 
repair mechanism for their continuous proliferation and 
persistence [8]. The upregulated USP1 in cancerous cell 
promotes the DNA damage repair pathway enabling the 

survival and proliferation of the DNA damaged cancerous cell 
[3-4]. Therefore, inhibition of DNA repair pathway is currently 
a very eminent anti-cancer strategy [9-10]. Past Studies from 
various researchers have shown that DNA repair mechanism of 
USP1 is carried out in the association of a cofactor UAF1 
(USP1 associated factor 1), that controls the enzyme activity of 
deubiquitinases [11-12]. The association of a cofactor UAF1 
induces a conformational change in the active site of USP1 
thereby increasing the deubiquitinases activity naturally by 
stabilizing it [13]. It is be noted that upon treatment of DNA 
targeted drug make the cancerous cell dependent on DNA 
repair mechanism of USP1 for survival, therefore a combined 
therapy of UAF1 inhibitor with DNA-damaging therapeutic 
molecule will enhance the therapeutic efficacy of the therapy 
against cancer. Thus, this makes the USP1/UAF1 complex a 
potential anti-cancer target for the exploration of molecules 
having anti deubiquitinases activity [14]. In this context, the 
University of Delaware and the NIH Chemical Genomics 
Center developed a miniaturized quantitative high-throughput 
screen assay to identify small molecule having anti USP1 
activity from the NIH Molecular Libraries Small Molecule 
Repository (MLSMR) from PubChem [15]. Considering the 
significance of identifying more inhibitors to USP1/UAF1 
complex a chemoinformatic classification model was built 
using the predictive capacities of machine learning approaches 
[16]. The machine learning based predictive computational 
model proposed by Wahi et al. 2015 has a potential to screen 
potentially active inhibitors of USP1. However,  the accuracy 
of base classifier (random forest) selected for building the 
predictive model had a sensitivity of 79.44 %, specificity of 
81.36 % and an accuracy of 81.35 %, which is presumably low 
for an efficient and rigorous chemoinformatic predictive 
model. The objective of the present study was to develop a 
more rigorous chemoinformatic model for predicting 
potentially active USP1 inhibitors with high accuracy, 
sensitivity, and specificity. The proposed method is a hybrid 
technique based on feature selection technique and 
discriminant algorithm for active USP1 inhibitor molecule 
prediction. The proposed classification method seek to increase 
the accuracy of classifying active USP1 inhibitors from high 
throughput screens so that genuine hits are optimized using a 
low-cost large-scale computational virtual screening tool. 
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The later part of the research article is organized as 
Sections II present the description of the AID 743255 dataset 
and an elaborate description of the methodology. In Section III 
the results of the hybrid technique are discussed. Section IV 
report the conclusions of the present research work. 

II. MATERIAL AND METHODS 

A. Bioassay dataset 

In the present study, the high throughput screening data set 
conforming to bioassay identifier AID 743255 was targeted to 
screen inhibitors of the USP1/UAF1 complex [14]. The dataset 
comprised of 389,560 compounds and based on their PubChem 
activity score the compounds were characterized into the active 
and inactive molecule. The chemical compounds with an 
activity score of zero were considered inactive (n=369,898) 
and compounds with a score ranging from 40 to 100 were 
considered active (n=904). Moreover, the remaining 
compounds with a score ranging from 0 to 39 were considered 
unspecific and irrelevant and were not considered for further 
analysis. 

B. Predictive model building 

In order to build a Machine learning based predictive tool, a 
workflow has been built to predict the active USP1 inhibitors 
from AID 743255 dataset by employing Data Mining 
Techniques (DMT) for the analysis of high-throughput screen 
data, and then the result of DMT are extracted to be used as a 
Knowledge Base for our model to carry out the prediction 
process. Fig. 1 shows the proposed workflow consisting of (1) 
Pre-processing of dataset and generation of molecular 
descriptors; (2) Determination of Best fit descriptors and data 
segmentation (3) Implementation of classification algorithm, 
(4) evaluation phase to evaluate the performance and accuracy 
of the built model using a data mining evaluation technique. 

1) Pre-processing of dataset and generation of molecular 

descriptors 
The structural Data format (SDF) files of both the active 

and inactive compound from bioassay AID 743255 dataset 
were downloaded from PubChem. Since it was not possible to 
process the whole SDF file of both active and inactive 
molecule as a single file, therefore, the SDF files of both the 
group of molecules were divided into files of smaller sizes by 
applying the SplitSDFiles present in Mayachem tools [17]. 
Furthermore, PowerMV a publicly accessible software for 
descriptor creation and viewing [18] was applied to create two-
dimensional molecular descriptors for both the inactive and 
active compounds of AID 743255 dataset. A total of 179 
descriptors were created from the input structural files of 
compounds using PowerMV of which 8 descriptors were 
assigned for property descriptor, 24 descriptors were classified 
under weighted burden numbers and 147 descriptors accounts 
for pharmacophore fingerprint. The property class of molecular 
descriptors includes a properties namely Blood-brain barrier 
(BBB), H-bond acceptors and donors, molecular weight, bad 
group indicator, the number of rotatable bonds, partition 
coefficient, and polar surface area. 

A group of continuous molecular descriptor based on the 
burden connectivity matrix namely weighted burden numbers 
were generated by PowerMV. The burden connectivity matrix 

considers three important properties namely partial charge, 
atomic lipophilicity, and electronegativity. Lastly, 
Pharmacophore fingerprints are descriptors which are 
expressed as 0 and 1 (binary form) and the grouping of atoms 
and group are based on biosteric principles such that the atoms 
and groups having similar activity are grouped together in a 
specific group (class). Pharmacophore fingerprint descriptors 
in PowerMV are classified into six major groups that include, 
ring systems containing aromatic and hydrophobic centers, 
hydrogen bond donors and acceptors, and positively and 
negatively charged atoms or groups. 

 
Fig. 1. Proposed workflow for the generation of predictive machine learning  

based chemoinformatic model 

2) Determination of Best fit descriptors and data 

segmentation 
Feature selection (FS) is a technique to pre-process the 

dataset so that repeated descriptors can be removed and include 
descriptors which are of relevance in model building. 
Employing feature selection strategy will not only reduce the 
dimensionality of the dataset but also will enhance the 
computational process of the model by reducing the 
computation time to analyze large data and eliminate the noise 
from the dataset [19]. The feature selection algorithm explores 
all set of combinations of molecular descriptors from the 
dataset and brings forth features which contribute most towards 
the construction of an efficient classification model [20]. 
Feature selection algorithm employs search method in 
combination with a  feature evalautor method [21]. This 
experiment conducted to differentiate the active and inactive 
molecular from the AID 743255 dataset. Feature selection 
method was applied first as a feature reduction to reduce the 
number of the molecules descriptors. Only the number of the 
extracted descriptors using feature selection algorithm is 
considered as significant features. Then, the AID 743255 
dataset was divided into 10 parts as 10-folds cross validation. 
Each part had certain molecules (active and inactive). The 
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experiments were run 10 times with nine parts of these groups 
as training dataset and one part as a testing dataset. 

3) Implementation of classification algorithms 
In chemoinformatics, machine learning approaches have 

been used in the past to build predictive chemoinformatics 
model from sets of known compounds and predict biological 
activities of the unknown molecule [22-25]. In this study, to 
categorize and classify the active USP1 inhibitor molecules 
from the inactive molecules from the AID 743255 dataset, the 
two class Linear Discriminant Algorithm (LDA) was applied 
on the training and testing data. Two class LDA have 
previously been successfully applied to classify cancer based 
on gene expression data and has been reviewed as one of the 
important tools for chemoinformatics classification studies [26-
27]. The basic concept of two class LDA is to calculate a linear 
transformation that helps in binary classification of the data set 
and the classification is executed in the transformed area 
formed based on some distance metrics namely euclidean 
distance as proposed by Fisher, 1936 [28] and shown using the 
following equations: 

Assume that we have a set of “n” number of molecules 

with f dimensional features (attribute) x1, x2, ・  ・  ・ , xn 

(where xi = (xi1, ・・ ・, xif)) classified into two classes, C1 

and C2. Here C1= Active molecule and C2= Inactive molecule. 
Scatter matrices for given two classes (active and inactive 
molecule) is shown below: 
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The scatter matrix for inter-class is calculated as 
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Where  ̅  is the mean for each class and  ̅ is total mean 

vector given by  ̅ = ∑   ̅    
 
    [29]. Rayleigh coefficient, for 

the proposed sample, is defined as the ratio of the determinant 
for the inter and intraclass scatter matrix. For the maximum 
utilization of Rayleigh coefficient fisher recommended the use 
linear transformation ( ): 

 ( )   
|  ∑̂   |

|  ∑̂   |
                                      ( ) 

Equation (3) can be answered as an eigenvalue problem 

provided ∑̂  is non-singular, and subsequently   is calculated 

using the matrix  ∑̂ 
   
∑̂   of eigenvectors. 

After transformation   is calculated, the classification of 
the dataset into specific classes is performed within the 
transformed space based on Euclidean distance and cosine 
measure, respectively. The equations 5 and 6 represents the 
calculation of distance using Euclidean distance and cosine 
measure, respectively: 
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Once instance z is initiated, the instance z is classified to 

          (    ̅ )                                  (7) 
Here  ̅  is the centroid of the k

th
 class. 

The pseudo code for the execution of LDA algorithm for 
processing AID 743255 dataset is illustrated in Figure 2. 

 
Fig. 2. Pseudo code for the execution of LDA algorithm in AID 743255 

dataset 

In all the cross-validation experiment applied on the 
dataset, accuracy result, and area under the curve (AUC) were 
computed. The classifying accuracy calculated using the 
standard classification equation: 

          
(       )

(     )  (     )
    ( ) 

Where, 

True Positive (TP): The active molecules correctly 
categorized as active; False Positive (FP): The inactive 
molecules that were incorrectly classified as active.; True 
Negative (TN): The inactive molecules correctly classified as 
inactive; False Negative (FN): The active molecules 
incorrectly classified as inactive molecules. 

SPSS Clementine tool was used to perform the 
experimentation and the analysis of results. SPSS Clementine 
tool is an SPSS enterprise-strength data mining workbench. 
The Clementine tool is used by business organizations to 
enhance the client and people relations by performing a 
thorough consideration and analysis of data [30]. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Model construction and evaluation  

A total of inactive (n=369,838) and active (n= 904) 
molecules from AID 743255 bioassay data was downloaded 
and using PowerMV 179 2D descriptors were created. Upon, 
post data processing using the feature selection method the 
total descriptors contributing to the generation of the predictive 
model came down to 45. The dataset was divided into two sets: 
(1) 90 % of the data as a training set, and (2) 10 % of the data 
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as an independent test set. After the implementation of the 
LDA algorithm to the preprocessed data set a predictive model 
was built and the statistical performance parameters of LDA 
algorithm are tabulated in Table I. An average accuracy of 
96.76 % and 96.40 % was obtained for training and test data, 
respectively to screen active anti USP1 inhibitor was obtained 
upon 10 fold cross validation of AID 743255 dataset. Since 
accuracy alone is not sufficient to evaluate the efficiency of the 
model, therefore, another statistical parameter namely the AUC 
value was calculated from the ROC plot for both training and 
test set of data as shown in Fig. 2 and 3. 

 
Fig. 3. Average prediction accuracy of LDA algorithm for 90 % training 

data set

 

Fig. 4. Average prediction accuracy of LDA algorithm for 10 % testing data 

The average value of AUC upon implementation of LDA 
algorithm to the training and independent test set of data was 
found to be 0.97 as shown in Table I. 

TABLE. I. RESULTS ON THE AID 743255 DATASET USING LINEAR 

DISCRIMINANT ALGORITHM (LDA)  ALGORITHM 

Dataset 

Part 

Accuracy Error 
Area under the 

curve 

Training  

 
Test Training 

Test 

 
Training 

Test 

 

1 100 93.4  0 6.6 1 0.96 

2 100 100.0 0 0 1 1.0 

3 94.1 96.22 5.9 3.78 0.97 0.97 

4 93.7 94.08 6.3 5.92 0.94 0.97 

5 99.2 98.68 0.8 1.32 0.99 0.99 

6 98.9 100.0 1.1 0 0.99 1.0 

7 97.9 95.09 2.1 4.91 0.99 0.96 

8 94.7 92.40 5.3 7.6 0.97 0.94 

9 95.9 95.17 4.1 4.83 0.90 0.92 

10 93.2 99.04 6.8 0.96 0.97 0.99 

Average 96.76 96.40 3.24 3.6 0.972 0.97 

As the AUC value of the predictive model is close to 1, 
therefore, we can propose that the chemoinformatics model 
generated using LDA classification algorithm will classify 
active anti USP1 inhibitor from any given dataset with high 
accuracy and specificity. All these statistics values were 
obtained by execution of the classification algorithm on the 
independent test set. The current predictive based on LDA 
classifier is more robust, efficient and accurate in predicting 
USP1 inhibitor molecule from AID 743255 dataset than the 
predictive model proposed by Wahi et.al [16]. 

The accuracy and AUC value of all the base classifier used 
by Wahi et al 2015, are lower than the present model which has 
a higher accuracy and AUC value as shown in Table II 
Therefore we say the present model is more robust and 
accurate in predicting active anti-cancer molecule having anti 
USP1 activity from a given dataset. 

TABLE. II. COMPARATIVE PERFORMANCE EVALUATION OF 

CHEMOINFORMATICS MODELS 

Algorithm 

Model performance evaluation parameters 

Accuracy Error 
Area under the 

curve 

Random Forest  81.35 18.65 0.872 

Naive Bayes 80.01 19.99 72.8 

J48 80.1 19.9 78.3 

SMO 80.21 19.79 78.7 

Linear 

Discriminant 
Analysis (LDA) 

96.76 3.24 0.97 

IV. CONCLUSION 

Targeting cancer by inhibiting USP1 is evolving as a 
promiscuous cancer therapy due to its specificity and efficacy 
when compared to the present-day anti-tumor remedies. The 
present drug discovery program involving experimental 
identification of a potent inhibitor of a target protein from huge 
chemical repositories is both a time taking and costly process. 
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The use of machine learning tools to analyze the huge data 
generated from high throughput screening (HTS) has paved the 
way to build a predictive chemoinformatics model for the 
screening of more anti-cancer molecule. In this regard, we have 
generated a computational predictive tool based on the 
properties and structure of known USP1 inhibitors from the 
high throughput screening experimental data. The present in 
silico predictive model can predict unknown inhibitors of the 
USP1/UAF1 complex with higher accuracy and reliability. The 
present chemoinformatics model generated using LDA 
algorithm has better accuracy to predict the anti USP1 activity 
of unknown compound when compared to random forest 
model proposed by Wahi et al in 2015. Our descriptor-based 
virtual screening computational predictive model will be of 
immense importance in prioritizing lead molecule against 
USP1/UAF1 complex and therefore fast-tracking the anti-
USP1 drug discovery process. Moreover, the present chemical 
descriptor based predictive method can reduce the requisite for 
cost-intensive biological screening and encourage low-cost 
virtual screening on a larger scale to enhance the anti-cancer 
drug discovery process. 
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