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Abstract—Discovering drug-drug interactions (DDIs) is a 

crucial issue for both patient safety and health care cost control. 

Developing text mining techniques for identifying DDIs has 

attracted a great deal of attention in the last few years. 

Unfortunately, state-of-the-art results didn't exceed the threshold 

of 0.7 F1 score, which calls for more efforts. In this work, we 

propose a new feature-based kernel method to extract and 

classify DDIs. Our approach consists of two steps: identifying 

DDIs and assigning one of four different DDI types to the 

predicted drug pairs. We demonstrate that by using new groups 

of features non-linear kernels can achieve the best performance. 

When evaluated on the DDIExtraction 2013 challenge corpus, 

our system achieved an F1-score of 71.79%, as compared to 

69.75% and 68.4% reported by the top two state-of-the-art 

systems. 
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I. INTRODUCTION 

"A drug-drug interaction is a modification of the effect of a 
drug when administered with another drug" [1]. Unexpected 
side effects of DDIs are generally dangerous and can lead to 
deaths. Understanding these DDIs and their side effects is of 
great importance, leading to reduced healthcare costs and 
reduced number of drug-safety incidents. New DDIs are 
always reported in new scientific publications and technical 
reports, but extracting those DDIs by hand is expensive and 
time consuming. Therefore, automatic DDI extraction, which 
detects DDIs in unstructured text and classifies them into 
predefined categories, has become an urgent need in medical 
text mining. 

DDI extraction has attracted a special attention in the last 
few years. With the organization of DDIExtraction challenges 
in 2011 and 2013 [2,3] and the creation of the DDIExtraction 
2013 challenge corpus [4] several approaches to manage this 
task have been proposed. Zheng et al [5] used context vectors 
with a graph kernel to build the second best system. There 
system achieved an F1-score of 68.4%. Convolutional Neural 
Networks (CNN) have been used by [6] to build the top 

performing system. Word embeddings and position 
embeddings are used to represent DDI instances. This system 
gets 69.75% in F1-score and outperforms the graph kernel 
system by 1.35%. Feature-based linear kernel has been used by 
[7] to build a simple system that uses few types of features. 
The results was encouraging and the system achieved 67% F1-
score. We think that the DDI extracting task can‟t be solved 
only by a linear kernel because of the high complexity of the 
task. Non-linear Feature-based kernel can be more powerful to 
perform this task especially if combined with intelligently 
chosen features. 

With the goal to build an intelligent and powerful system, 
we develop a DDI extraction system based on a non-linear 
SVM classifier. Interacting drugs are identified first, and then 
classified into specific DDI types. We define five types of 
features to represent the complexity of data: “word features” 
with position information, “one-drug features” to represent 
features related to each drug, “pair features” to represent 
features related to the drug pair, “main-verb features” to 
represent features related to the main verb of the sentence, and 
finally the negation features. This system separates candidate 
drug pairs into five groups based on their syntactic structures 
then features are optimized for each group. 

When evaluated on the standard corpus [4], our system 
achieved an overall F1-score of 71.79%, which outperforms 
the current best system by 2%.  We believe that the strength of 
our method comes from combining intelligent features with 
non-linear kernel. In addition, the cascade strategy [8], used to 
perform the classification, contributes to the higher 
performance. 

In this section, we describe our method for extracting drug–
drug interactions from biomedical texts. Fig 1 illustrates the 
general architecture of our system. Candidate drug pairs are 
separated into five groups based on their syntactic structures. 
For each group a binary classifier is trained to extract 
interacting drug pairs. Extracted drug pairs are then grouped 
before being classified into predefined relation categories by a 
DDI type classifier. 
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Fig. 1. The general architecture of our system 

II. METHODS 

A. DDIs Extraction 

1) Text preprocessing 
Several preprocessing steps are completed on both training 

and test data. To ensure generalization of the input sentences, 
drugs are blinded in the following way: the two drugs of 
interest are replaced by “ARG” while all the other drugs are 
replaced by “DRUGi” where i is the drug index. Sentences that 
have no trigger word or contain only one drug are filtered out. 
We use the same list of trigger words created by [8]. After drug 
blinding, we use LingPipe NLP toolkit [9] to tokenize and tag 
sentences with POS tags, OpenNLP shallow parser [10] is then 
used to produce chunks. Dependency graphs and constituent 
parse trees are also generated for all sentences using Stanford 
parser [11, 12]. 

2) Candidate drug pairs partitioning 
In a previous study, [13] demonstrated that partitioning 

candidate DDI pairs based on their syntactic properties then 
using specific group of features for each partition improves the 
performance of the DDI extraction system. Following this 
strategy, we classify candidate pairs into different groups based 
on their positions into the sentence. Every sentence will be 
divided into clauses. Each clause consists of a subject phrase, a 
verb chunk and an object phrase as shown in Fig 2. 

Candidate DDI pairs will be classified into one of the 
following groups based on their syntactic containers: 

Subject: If the candidate DDI pair belongs to the same 
subject phrase. 

Object: If the candidate DDI pair belongs to the same 
object phrase. 

Clause: If the candidate DDI pair belongs to the same 
clause. 

Clause_2: If the candidate DDI pair is separated by two 
verb-chunks. 

NP: If the sentence contains only one phrase. 

We filtered out all candidate DDI pairs that are separated 
by more than two verb-chunks. We build a classifier for each 
group. Different combination of features are used for each 
classifier. 

3) Features 
In this section we describe all features used by our DDI 

extraction system. Table I shows the optimal combination of 
features used by all classifiers built for the 5 groups. For each 
classifier, the selection of features is based on a 10-fold cross-
validation over training data. Fig 4 shows an example of 
features generated for a DDI pair. 

 

Fig. 2. Example of a sentence containing one clause

a) Word-features 

In previous studies [14, 15, 16, 7] individual words and 
sequences of words in a sentence have been used successfully 
in extracting relational knowledge like protein–protein 
interactions or drug-drug interactions. Hence, in our system, 

we use unigrams and bigrams of lemmatized tokens as 
features. Many studies [14] [7] have shown the importance of 
appending position information to word features. In our system 
the position information can takes 3 values: 
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BF (before): If the concerned word is before the 
investigated drug pair. 

BE (between): If the concerned word is between the 
investigated drug pair. 

AF (after):  If the concerned word is after the investigated 
drug pair. 

We use four form of windows to select words for the 
generation of word-features: 

W1: All words of the sentence containing the candidate pair 
are selected. 

W2: All words of the clause containing the candidate pair 
are selected. 

W3: Words between the beginning of the clause containing 
the candidate pair and the end of the sentence are selected. 

W4: words between the beginning of the chunk containing 
the first drug and the end of the chunk containing the second 
drug are selected. 

For each classifier the best window is selected using a 10 
fold cross validation, results are shown in Table I. 

b) One-drug features 

Are designed to capture relations between each drug of the 
candidate DDI pair and the phrase to which it belongs. One-
drug features comprises three groups of features: 

Surrounding words: Words before and after each drug are 
added as features. 

Surrounding triggers: Trigger words that belong to the 
same phrase of the concerned drug are added as features. We 
append position information (before or after) and all 
prepositions between the trigger words and the concerned drug. 
If no trigger word exist in the phrase containing the drug, then 
“no_rel_word” is add as feature. 

Succeeding drugs: Relations between the concerned drug 
and the succeeding drugs in the same phrase are added as 
features. Punctuation, coordination and prepositions are also 
captured by this group of features. If no drug exist then the 
"no_other_drug" is added as feature. 

c) Pair features 

Pair features consist of three groups of features: 

Same_chunk features: Detect if the two investigated drugs 
are within the same chunk. 

Between_drugs features: Detect trigger words, connectors 
(because, since, until ….), prepositions and negations between 
the two investigated drugs. 

Trigger_DRUG_Position features: Like Bui et al [13] we 
determine the relative position of each trigger word within the 
phrase by checking the following cases: 

 Trigger [prep] DRUG1 [prep] DRUG2 

 DRUG1 [prep] trigger [prep] DRUG2 

 DRUG1 [prep] DRUG2 [prep] trigger 

Where DRUG1 and DRUG2 are drugs of the candidate 
DDI pair and “prep” are prepositions connecting chunks that 
contain the trigger word and the drug. 

Depending on the obtained case, features are generated to 
represent: 

The position of the trigger relative to the candidate pair 
(before, between, after). 

Prepositions that connect the trigger with the candidate 
pair. 

Prepositions that connect chunks between drugs of the 
candidate pair. 

d) Main-verb features 

Are designed to indicate how DRUG1 in the subject phrase 
and DRUG2 in the object phrase are related. To perform this 
task unigrams, bigrams, negations and trigger-words are 
extracted from the verb chunk to be used as features. 
Connectors before the verb chunk and adverb phrase after the 
verb chunk are also used as features. 

e) Negative-sentence feature 

In some cases, the sentence deny the existence of a relation 
between two drugs, and it is important to detect those cases to 
avoid any miss-classification. For example, adding “Negative-
sentence” as feature to the sentence in Fig 2 can be very helpful 
to avoid the classification of DRUG1 and DRUG2 as 
interacting drug pair. 

To perform this task we generate first the dependency 
graph of the sentence by the Stanford parser [11, 12]. This 
graph uses nodes to represent words and edges to describe 
governor-dependent relations between them. One of the 
important governor-dependent relations is the negative 
dependency relation which describe the relation between a 
negation word and the word it modifies. 

 
Fig. 3. An example of a dependency graph 

For example in the sentence on Fig. 3 the Stanford parser 
will generate a negative dependency relation between “not” 
and “interact” [neg(interact-4, not-3)] where “not” is the 
governor and “interact” is the dependent word. 
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To exploit the negative dependency relation we have 
developed a list of trigger words. If the dependent word of any 
negative dependency relation belongs to this list, the 
“NEGATIVE_SENTENCE” feature will be added to the 
vector of features. For example, “NEGATIVE_SENTENCE” 
feature will be generated for the sentence on Fig 3 because its 
list of dependences contains a negative dependency and the 
dependent word ("interact") belongs to the trigger words list. 

4) Machine learning 
For DDI detection, we use LIBSVM, the popular SVM 

library [17], with a default radial basis function (RBF) kernel. 
For each candidate pair, individual features generated are 
normalized and added to a single vector as proposed by [18].

 
Fig. 4. An example of of feature extraction 

TABLE I.  THE OPTIMAL COMBINATION OF FEATURES FOR EACH GROUP BASED ON 10-FOLD CROSS-VALIDATION RESULTS OVER TRAINING DATA. 

Features Subject Object Clause Clause2 NP 

Word 

features 

Unigrams W1  X X  X 

W2    X  

W3 X     

Bigrams W1     

--- 

X 

W3 X  X  

W4  X   

One-drug 

features 

Surrounding triggers X  X X  

Succeeding drugs X  X X  

Surrounding words X X X X X 

Pair features Same_Chunk X X X X X 

Between_Drugs X X X X X 

Trigger_DRUG_Position X X X  X 

Main-verb features X X X X X 

Negative-sentence features X X X X  

B. DDIs Classification 

The objective of the classification task is to assign one of 
four DDI types (Mechanism, Effect, Advice and Int) to 
interacting pairs extracted in the detection step. Kim et al 
(2015) [7] have shown that the one against one strategy gives 
better performance in DDIs classification comparing to the one 

against all strategy. Raihani et al (2016) [8] have built a new 
DDIs classifier that exploits the lexical field particularity of 
each DDI type. When compared to a one-against-one strategy 
classifier, the new classifier gets better results. Thus we will 
use the same classification system developed by [8]. 
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III. RESULTS AND DISCUSSION 

A. Dataset 

To evaluate our system we use the corpus from the 
DDIExtraction 2013 challenge [3,4]. This corpus includes 905 
manually annotated documents from MEDLINE abstracts and 
DrugBank database, which are split into 714 and 191 
documents for training and test sets, respectively. The corpus 
provides examples by sentences, for each sentence all drug 
pairs are annotated. 

Four types of DDI relationships is used to annotate 
interacting drug pairs in the set: Mechanism, Effect, Advice, 
and Int. Mechanism is used if the interaction is described by 
the pharmacokinetic mechanism. Effect is used when the effect 
of the interaction is described. Advice is used if an advice or 
recommendation concerning the DDI is given. Int is used when 
the sentence doesn't provide any information about the type of 
the DDI. 

Table II shows statistics of training data and test data 
before and after preprocessing. The removed negative pairs 
constitute 18.5% of the negative set while the removed positive 
pairs constitute only 2.3% of the positive set. This portion is 
negligible compared to the advantage of not showing 18.5% of 
negative pairs to SVM classifiers. 

B. Performance Comparison 

Compared with state-of-the-art systems, including the best 
existing system our feature-based kernel system shows much 
better performance. It outperforms the current best system [6] 
by 2%, mainly due to much higher recall. 

Table III compares our system with top three performing 
systems based on F1 scores. Our system achieves 71.79% F1-
score for detection and classification performance (“CLA”), 
whereas [6], [5] and [7] produced 69.75%, 68.4% and 67% F1-
score respectively. For DDIs detection performance ('DEC') the 
current best system [5] achieved 81.8% F1-score while our 
system gets better results by achieving 82,4% F1-score. 

Shengyu Liu et al [6] define a range criteria for filtering out 
some negative instances, then they use Convolutional Neural 

Networks with word embeddings and position embeddings, 
which capture the semantic information of words and relative 
distances between words and the two drugs of interest, to 
perform the detection and the classification tasks. Zheng et al 
[5] apply context vectors to a graph kernel to detect and 
classify DDIs from biomedical texts. There method focuses on 
the effective use of types of contexts and relations among 
words with different distances. In addition, they use the one-
against-all strategy to perform the classification task. Kim et al 
[7] use linear kernel with a simple binary SVM classifier for 
identifying DDIs and use the one-against-one strategy for 
assigning DDI types to the extracted pairs. They use the one-
against-one strategy to handle the bad effect of unbalanced 
classes. 

On the other side, our method exploits new groups of 
features and uses a binary SVM classifier with RBF kernel to 
identify DDIs. In addition we use a system of 4 binary SVM 
classifiers, work in cascade, to perform the classification task. 
Previous study [8] has shown that this method gives the best 
performance in DDIs classification. 

In Table III, our system performs best for advice, 
mechanism and effect types. In contrast, the same system does 
not perform well for Int. Int type is defined as DDIs which 
cannot be assigned to other types. We think that the general 
description of Int or the small number of training and test sets 
(188 and 96 instances for training and test data respectively) 
may be the cause of the poor results for this type. 

Table IV shows the separate performance of our system on 

DrugBank and MEDLINE test documents. The DDI detection 
and classification performance on the DrugBank set shows 

74.7% F1, while the performance on the MEDLINE set is 
substantially lower (44,5% F1). This difference is consistent 
with the results reported by state-of-the-art systems [5, 6, 7] 
and the results from the DDIExtraction 2013 challenge [4]. 

One reason may be the small number of training examples 
provided for MEDLINE. MEDLINE training set is 
significantly smaller than DrugBank training set and constitute

TABLE II.  STATISTICS OF TRAINING AND TEST DATA BEFORE AND AFTER PREPROCESSING AND FILTERING.: 

 Original set   Preprocessed set  

 Positive Negative  Positive Negative 

training 4020 23772  3922 19194 

test 979 4737  960 4016 

all 4999 28509  4882 23210 

TABLE III.  PERFORMANCE COMPARISON BETWEEN OUR SYSTEM AND THE TOP-RANKING SYSTEMS ON THE DDI2013 TEST DATA. „CLA‟ REFERS TO 

DETECTION AND CLASSIFICATION PERFORMANCE. „DEC‟ REFERS TO DETECTION PERFORMANCE. THE PERFORMANCE IS MEASURED BASED ON F1 SCORES. 

Method CLA DEC Mechanism Effect Advice Int 
Our method 71.79 82.46 74.26 69.81 78.68 51.74 

Shengyu Liu et al [6] 69.75 - 70.24 69.33 77.75 46.38 
Zheng et al [5] 68.4 81.8 66.9 71.3 71.4 51.6 
Kim et al [7] 67 77.5 69.3 66.2 72.5 48.3 

only 7% of the overall training data. Another reason can be 
the scientific language used in MEDLINE abstracts, which use 
long and complex sentences to describe relations. In contrast, 
sentences used in DrugBank are usually short and concise. 

C. Feature Analysis 

Using lexical features without position information as a 
baseline, position information, one-drug features, main-verb 
features, pair features, and negative-sentence features are 
added respectively to the system and evaluated one the test 
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dataset. Table V shows the contribution of each group of 
features. 

Adding the position information to the word-features 
improves the F1 performance by 4.5%. This significant 
improvement is understandable because relative position help 
the system to understand if an individual word is used in 
describing an interaction between two drugs or not.  These 
results confirms the conclusion of [7] about the importance of 
attaching position information to the words. 

One-drug features, main-verb features, pair features, and 
negative-sentence features contribute on performance by 

increasing F1-score by 0.56%, 0.44%, 0.58% and 0.44% 
respectively. One-drug features, pair features and negative-
sentence features help get higher recall while main-verb 
features help to improve the precision. While one-drug features 
cover neighbouring words, pair features and main-verb features 
seem to help with the overall picture of a relation between two 
drugs into the sentence. It is remarkable that using words with 
position information alone achieves such high performance for 
detecting DDIs. Integrating position information into word 
features helps differentiate the context of interacting pairs from 
that of non-interacting ones in sentences that involve multiple 
drug mentions. 

TABLE IV.  COMPARISON BETWEEN PERFORMANCE RECORDED ON DRUGBANK AND MEDLINE TEST SETS. „CLA‟ REFERS TO DETECTION AND 

CLASSIFICATION PERFORMANCE. „DEC‟ REFERS TO DETECTION PERFORMANCE. THE PERFORMANCE IS MEASURED BASED ON F1 SCORES. 

Dataset CLA DEC Mechanism Effect Advice Int 
DrugBank 74.73 84.88 77.78 73.44 79.33 55.07 
MEDLINE 44.57 58.7 40 46.15 61.54 22.22 

TABLE V.  IMPROVEMENT OF DDIS DETECTION AND CLASSIFICATION PERFORMANCE WHEN ADDING FEATURES ONE BY ONE TO THE BASELINE SYSTEM. 
„IMPROVEMENT‟ COLUMN SHOWS THE F1-SCORE DIFFERENCE BETWEEN EACH ROW AND ITS PREVIOUS ROW. THE LAST ROW SHOWS THE TOTAL IMPROVEMENT. 

Features Precision Recall F1 Improvement 
Baseline (w/o pos) 0.6491 0.6557 0.6524 - 

Baseline 0.7358 0.6629 0.6974 +4.50% 
+ One-drug features 0.7108 0.6956 0.7031 +0.56% 

 + Main-verb features 0.7482 0.6710 0.7075 +0.44% 
   + Pair feature 0.7439 0.6853 0.7134 +0.58% 

     + negative sentence features 0.7360 0.7007 0.7179 +0.44% 
All features 0.7360 0.7007 0.7179 +6.55% 

IV. CONCLUSION 

We present a two-step classification approach to extract 
DDIs from biomedical literature. Interacting drug pairs are first 
identified by a single SVM classifier then the cascade strategy 
[8] is used to assigning DDI types to drug pairs. The main 
factors of our approach are the partition of the datasets and the 
combination of novel feature sets. Based on many syntactic 
properties, the original dataset is partitioned into 5 subsets to 
obtain more consistent sub datasets, then feature sets are 
optimized for each sub dataset. When evaluated on the 
DDIExtraction 2013 challenge corpus, our system achieved an 
overall F1-score of 71.79%, which outperforms the current 
state-of-the-art system by 2%. As future work, we plan to 
complete this system by a named entity recognition module. 
The system is initially built to extract DDIs, but it can 
effortlessly be adapted to other relation extraction tasks such as 
gene-disease relations and protein-protein interactions. 
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