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Abstract—The simplex method has been successfully used in 

solving linear programming (LP) problems for many years. 

Parallel approaches have also extensively been studied due to the 

intensive computations required, especially for the solution of 

large LP problems. Furthermore, the rapid proliferation of 

multicore CPU architectures as well as the computational power 

provided by the massive parallelism of modern GPUs have 

turned CPU / GPU collaboration models increasingly into focus 

over the last years for better performance. In this paper, a highly 

scalable implementation framework of the standard full tableau 

simplex method is first presented, over a hybrid parallel platform 

which consists of multiple multicore nodes interconnected via a 

high-speed communication network. The proposed approach is 

based on the combined use of MPI and OpenMP, adopting a 

suitable column-based distribution scheme for the simplex 

tableau. The parallelization framework is then extended in such a 

way that it can exploit concurrently the full power of the 

provided resources on a multicore single-node environment with 

a CUDA-enabled GPU (i.e. using the CPU cores and the GPU 

concurrently), based on a suitable hybrid multithreading/GPU 

offloading scheme with OpenMP and CUDA. The corresponding 

experimental results show that the hybrid MPI+OpenMP based 

parallelization scheme leads to particularly high speed-up and 

efficiency values, considerably better than in other competitive 

approaches, and scaling well even for very large / huge linear 

problems. Furthermore, the performance of the hybrid 

multithreading/GPU offloading scheme is clearly superior to 

both the OpenMP-only and the GPU-only based implementations 

in almost all cases, which validates the worth of using both 

resources concurrently. The most important, when it is used in 

combination with MPI in a multi-node (fully hybrid) 

environment, it leads to substantial improvements in the speedup 

achieved for large and very large LP problems. 
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I. INTRODUCTION 

Linear programming is the most important and well studied 
optimization problem. The simplex method, which can be 
found in many textbooks, has been successfully used for 
solving linear programming problems for many years. Parallel 
approaches have also extensively been studied due to the very 
intensive computations required and the substantial need for 
faster implementations that make effective use of modern 
computer architectures. 

Most research (with regard to sequential simplex method) 
has been focused on the revised simplex method since it takes 

advantage of the sparsity that is inherent in most linear 
programming applications. The revised method is also 
advantageous for problems with a high aspect ratio; that is, for 
problems with many more columns than rows. However, there 
have not been seen many parallel/distributed implementations 
of the revised method that scale well [1]. On the other hand, the 
standard method is more efficient for dense linear problems 
and it can be easily converted to a distributed/parallel version 
with satisfactory speedup values and good scalability [1-4]. A 
detailed overview is given in Section II. Also, lately, some 
alternative very promising efforts have been made, based on 
the block angular structure (or decomposition) of the initially 
transformed problems [5-6], and they have led to very good 
results for large scale problems over distributed memory 
multicore environments. 

Furthermore, with regard to parallelism, until recently, the 
relevant models, languages, and libraries for shared-memory 
and distributed-memory architectures have evolved separately, 
with MPI [7] becoming the dominant approach for the 
distributed-memory (message-passing) model, and OpenMP 
[8] emerging as the dominant high-level approach for shared 
memory with threads. Recently, the hybrid model has begun to 
attract more attention, for at least two reasons. The first is that 
it is relatively easy to pick a language/library instantiation of 
the hybrid model (OpenMP, MPI, MPI 3.0 Shared Memory 
etc.). The second reason is that scalable parallel computers now 
appear to encourage this model. The fastest machines now 
virtually all consist of multi-core nodes connected by a high 
speed network. The idea of using OpenMP threads to exploit 
the multiple cores per node (with one multithreaded process 
per node) while using MPI to communicate among the nodes is 
the most known. The last 3-4 years however, another strong 
alternative has evolved; the MPI 3.0 Shared Memory support 
mechanism, which improves significantly the previous existed 
Remote Memory Access utilities of MPI, towards the direction 
of optimized operation inside a multicore node. As analyzed in 
[9-11] both the above referred hybrid models (MPI+OpenMP, 
MPI+MPI 3.0 Shared Memory) have their pros and cons, and 
it’s not straightforward that they outperform pure MPI 
implementations in all cases. Among all the alternatives the 
MPI+OpenMP hybrid approach is still regarded as the most 
efficient one, however the MPI+MPI 3.0 Shared Memory 
approach is highly competitive. 

Moreover, nowadays the computational power provided by 
the massive parallelism of modern graphics processing units 
(GPUs), has brought increasingly into focus several kinds of 
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GPU-accelerated solutions. Although in simplex parallelization 
there have not been noticed as many relevant attempts as one 
would expect and no parallel GPU-based implementation of 
the simplex algorithm has yet offered significantly better 
performance relative to an efficient sequential simplex solver 
(at least not in all types of problems), quite significant progress 
has been achieved at least for dense LP problems [12]. There 
also exist various approaches in the field of parallel scientific 
computing that adopt extended CPU/GPU collaboration [13-
17]. However, the efficient CPU/GPU collaboration through 
the combined use of relevant programming models (such as 
OpenMP and CUDA) still remains a major research challenge. 
Also, to the best of our knowledge there is no relevant 
approach in the literature adopting extended CPU/GPU 
collaboration for parallelizing the simplex method. 

In this work we focus on the parallelization of the standard 
full tableau simplex method and we firstly present and evaluate 
a relevant highly scalable implementation (on the basis of a 
carefully designed column-based distribution scheme) for the 
most efficient of the hybrid parallelization alternatives referred 
above (MPI+OpenMP) assuming there are not GPU-
accelerators in our hybrid hardware platform. We then 
demostrate the high efficiency and scalability of the proposed 
hybrid MPI+OpenMP parallelization scheme, over a suitable 
subset of the well known and widely used NETLIB test LP 
problems. The corresponding experiments have been 
perfromed over a hybrid, newly developed, parallel platform 
which consists of up to 8 quad-core processors (making a total 
of 32 cores) connected via Gigabit ethernet interface. In all 
cases the hybrid MPI+OpenMP based parallelization scheme 
leads to considerably high speedup and efficiency values and 
performs better than other alternatives [18]. Note also that it 
has been shown (over the less powerful platform of [18]) to 
perform quite better than the relevant, higly competitive, 
approach presented in the work of [4]. 

Secondly, we extend the proposed hybrid parallelization 
scheme (MPI+OpenMP) over multicore platforms with 
CUDA-enabled GPUs, and we present a highly efficient 
framework which can exploit the full power of both the 
provided multiple CPU-cores and the GPU, concurrently. In 
the above context, we've designed and implemented a hybrid 
multithreading/GPU offloading scheme (based on the 
combined use of OpenMP and CUDA) that efficiently adopts 
full CPU/GPU collaboration, as well as two complementary 
schemes for comparison purposes, i.e. a (multithreading) 
OpenMP-based only scheme, and a GPU-based only (CUDA). 
The corresponding experimental results show that the 
performance of our GPU-based only implementation is 
comparable to other relevant approaches in the literature [18], 
and superior to our OpenMP-based only implementation 
(leading to speedup values up to 14.06 for a GTX 760 GPU 
and up to 23.22 for a GTX TitanX GPU - compared to the 
sequential implementation). Moreover, the performance of our 
hybrid multithreading/GPU offloading scheme is clearly 
superior to the GPU-based only implementation in almost all 
cases (leading to an additional speedup of up to 1.28 for the 
GTX 760 GPU and up to 1.23 for the GTX TitanX GPU), 
which validates the worth of using both resources concurrently. 
The most important, when the proposed CPU/GPU 

collaboration scheme is used in combination with MPI in a 
multi-node (fully hybrid) environment, it leads to substantial 
performance gains that rise up to 15,9%. 

A very early version of this work (in a much less powerful 
platform, without adopting full CPU/GPU collaboration, and 
without addressing the fully hybrid platform integration) has 
been presented in [18,20]. The rest of the paper is organized as 
follows. In Section II the related work is summarized. In 
Section III the necessary background is stated with regard to 
simplex method. In Section IV the detailed description of our 
basic hybrid parallelization scheme (using MPI and OpenMP) 
is given. In Section V the relevant extension with CPU/GPU 
collaboration is presented. In Section VI the experimental 
results of our basic schemes (MPI+OpenMP and OpenMP+ 
CUDA) are given, whereas in Section VII we present the 
performane gains of our fully hybrid parallel approach 
(MPI+OpenMP+CUDA). Section VIII concludes the paper. 

II. RELATED WORK 

Earlier work on simplex parallelization focused mainly on 
tightly coupled or shared memory hardware structures as well 
as on clusters and networks of workstations. Hall & McKinnon 
[21] and Shu & Wu [22] worked on the parallel revised method 
over powerful shared memory and hypercube platforms 
respectively. Thomadakis & Liu [23] worked on the standard 
method utilizing the MP-1 and MP-2 MasPar. Eckstein et al. 
[24] showed in the context of the parallel connection machine 
CM-2 that the iteration time for parallel revised method tended 
to be higher than for parallel full tableau method even when the 
revised method is implemented very carefully. Stunkel [25] 
found a way to parallelize both the revised and standard 
methods so that both obtained a similar advantage in the 
context of the parallel Intel iPSC hypercube. Two other 
valuable attempts are presented in [26-27] following the 
primal-dual simplex method and the sparse simplex method, 
and they've led to satisfactory results for large scale problems. 
Till recently, no other valuable attempts have been made to 
parallelize the classical revised simplex method, thus making 
the one presented by Huangfu and Hall [28-29] a distinguished 
one. The authors in [28-29] have designed and implemented a 
very efficient parallelization scheme of the dual revised method 
with use of the suboptimization technique, and they have 
obtained speedup values comparable to those of the best 
commercial simplex solvers. A relevant survey which covers 
adequately all the recent advances in simplex parallelization 
can be found in [12]. 

As already mentioned, the standard method can be easily 
and effectively extended to a coarse-grained, distributed 
algorithm [4]. It should also be noted that although dense 
problems (which suit better the standard method) are 
uncommon in general, they do occur frequently in some 
important applications within linear programming [24]. 
Furthermore, existing distributed memory implementations of 
the standard simplex method naturally vary in the way that the 
simplex tableau is distributed among the processors [1,30]. 
Either a column distribution scheme or a row distribution 
scheme may be applied, depending on several parameters 
(relative number of rows and columns, total size of the 
problem, target hardware environment details etc.). The most 
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recent works following the column distribution scheme (mostly 
used for practical problems) were by Yarmish et al. [4] as well 
as (an older one) by Qin et al [3]. On the other hand, the work 
of Badr et al. [2] referred above followed the row distribution 
scheme and presented a quite efficient implementa-tion for 
loosely coupled processors. A comprehensive study and 
comparison of the above distribution schemes as well as 
corresponding implementations achieving particularly high 
speedup values are given in the recent works of Mamalis et al. 
[18,30]. As shown in [30], the column distribution scheme is 
the most efficient one for the most types of LP problems. 

A number of valuable simplex parallelization attempts have 
also been seen in the literature with use of GPU accelerators. 
Spampinato et al [31] have proposed a parallel implementation 
of the revised simplex method based on NVIDIA CUBLAS 
and LAPACK libraries, with a maximum speedup of 2.5, using 
a GTX 280 GPU vs. the sequential implementation on CPU 
with Intel Core2 Quad 2.83 GHz for randomly generated LP 
problems of size 2000x2000. In [32] another implementation of 
the revised simplex method on GPU was proposed, which 
permits one to speed up solution with a maximum factor of 18 
in single precision on a GeForce 9600 GT GPU card as 
compared with GLPK solver run on Intel Core 2 Duo 3GHz 
CPU. Lalami et al. [19] have presented a GPU mainly based 
parallel implementation via CUDA of the standard simplex 
algorithm for dense LP problems. Experiments carried out on 
an Intel Xeon 3GHz and a GTX 260 GPU have shown 
substantial speedup of 12.5 in double precision, for randomly 
generated LP problems of size up to 8000x8000. The authors 
have also extended their work on a multi-GPU implementation 
[33] and their computational results showed a maximum 
speedup of 24.5, using two Tesla C2050 boards. Meyer et al. 
[34] proposed a mono- and a multi-GPU implementation of the 
tableau simplex algorithm, and they compared its performance 
to the serial Clp solver, using a Tesla S1070 board with T10 
GPUs. Their implementation outperformed Clp solver on large 
sparse LP problems. Finally, Ploskas and Samaras [35] 
proposed two efficient GPU-based implementations of the 
revised simplex and a primal–dual exterior point simplex 
algorithm, using Matlab. The experimental results showed 
great speedups for the exterior point algorithm and quite worse 
for the revised simplex method. Other valuable attempts can 
also be found in [36-38] achieving very satisfactory speedups 
with C1060, S1070 and GTX 670 boards. 

Considering also the general field of parallel scientific 
computing, several attempts have been made adopting 
extended CPU/GPU collaboration. Harmony [15] is an 
integrated programming model which allows the coding and 
executing of programs for CPU/GPU systems. It also includes 
an automated distribution of the computational load on the 
CPU and the GPU, and achieves very good performance 
mainly in audio-processing systems. In [14,16-17] more recent, 
relevant approaches are presented in the field of linear algebra 
and systems. In [17] an additional speedup of up to 1.25 is 
achieved (compared to the GPU-only implementation) for the 
parallel execution of the conjugate gradient method, whereas in 
[14,16] the CPU/GPU collaboration schemes in the field of 
linear algebra achieved a speedup ranging from 1.15 up to 1.35 
for different sizes and types of problems. The works of [14,17] 

have the major advantage of supporting dynamic distribution 
of the workload between CPU and GPU. Finally in [39] the 
authors present a novel generic framework that transparently 
orchestrates collaborative execution of a single data-parallel 
kernel across multiple asymmetric CPUs and GPUs. To our 
knowledge there is no relevant approach in the literature 
adopting extended CPU/GPU collaboration (i.e. not only for 
the reduction operations as in [19] or semi-hybrid as in [20]) 
for parallelizing the simplex method. 

III. THE SIMPLEX METHOD 

In linear programming problems [34], the goal is to 
minimize (or maximize) a linear function of real variables over 
a region defined by linear constraints. In standard form, it can 
be expressed as shown in Table I (full tableau representation), 
where A is an mxn matrix, x is an n-dimensional design 
variable vector, c is the PRICE vector, b is the right-hand side 
vector of the constraints (m-dimensional), and T denotes 
transposition. We assume that the set of basis vector (columns 
of A) is linearly independent. The simplex algorithm consists 
of two steps; first, a way of finding out whether a current basic 
feasible solution is an optimal solution, and second, a 
procedure of obtaining an adjacent basic feasible solution with 
the same or better value for the objective function. We focus 
here on the standard full tableau format of the simplex method, 
which is more efficient for full dense linear problems and it can 
be easily converted to a distributed version for cluster 
platforms or hybrid environments. 

TABLE I. SIMPLEX FULL TABLEAU REPRESENTATION 

 x1  x2  ... xn  xn+1  ... xn+m  z   
-c1  -c2  ... -cn  0 ... 0 1 0 

xn+1  a11  a12  ... a1n  1 ... 0 0 b1  
xn+2  a21  a22  ... a2n  0 ... 0 0 b2  

... ... ... ... ... ... ... ... ... ... 
xn+m  am1  am2  ... amn  0 ... 1 0 bm  

Based on the full tableau representation, the basic steps of 
the standard simplex method can be summarized (without loss 
of generality) as follows: 

Initialization Step: Start with a feasible basic solution and 
construct the corresponding tableau. 

Step 1: Choice of entering variable: find the winning 
column (the one having the larger negative coefficient of the 
objective function – entering variable). 

Step 2: Choice of leaving variable: find the winning row 
(apply the min ratio test to the elements of the winning column 
and choose the row number with the min ratio – leaving 
variable). 

Step 3: Pivoting (this step involves the most calculations): 
construct the next simplex tableau by performing pivoting in 
the previous tableau rows based on the new pivot row found in 
the previous step. 

Iterate/Finalization Step:  Repeat the above steps until the 
best solution is found or the problem gets unbounded. 
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IV. BASIC PARALLELIZATON 

In the following paragraphs we present in details the 
algorithmic approach we followed in our basic hybrid parallel 
implementation. Our approach is based on the most popular 
and widely used column-based distribution scheme [4] (as 
opposed to the other relevant alternative of row-based 
distribution). This is a relatively straightforward parallelization 
scheme within the standard simplex method which involves 
dividing up the columns of the simplex table among all the 
processors and it is (both theoretically and experimentally) 
regarded as the most effective one in the general case. 

Following this scheme all the computation parts except step 
2 of the basic (sequential) algorithm are fully parallelized. 
Additionally, this form of parallelization looks as the most 
natural choice since in most practical problems the number of 
columns is larger than the number of rows. It has also been 
proved to be the most efficient one (as shown in the literature 
[4,30]). The basic steps of the algorithm are given below: 

Initialization Step: The simplex table is shared among the 
processors by columns. Also, the right-hand constraints vector 
is broadcasted to all processors. 

Step 1: Each processor searches in its local part and 
chooses the locally best candidate column – the one with the 
larger negative coefficient in the objective function part (local 
contribution for the global determination of the entering 
variable). 

Step 2: The local results are gathered in parallel and the 
winning processor (the one with the larger negative coefficient 
among all) is found and globally known. At the end of this step 
each processor will know which processor is the winner and 
has the global column choice. 

Step 3: The processor with the winning column (entering 
variable) computes the leaving variable (winning row) using 
the minimum ratio test over all the winning column’s elements. 

Step 4: The same (winning) processor then broadcasts the 
winning column as well as the winning row’s id to all 
processors. 

Step 5: Each processor performs (in parallel) on its own 
part (columns) of the simplex tableau all the calculations 
required for the global rows pivoting, based on the pivot data 
received during step 4. 

Iterate/Finalization Step: The above steps are repeated 
until the best solution is found or the problem gets unbounded. 

Based on the above step by step decomposition we've 
designed and implemented our basic hybrid parallelization 
scheme, assuming a hybrid parallel platform which consists of 
multiple multicore nodes interconnected via a high-speed 
communication network. MPI was used for the communication 
among the network connected nodes, whereas OpenMP was 
used for the communication among the multiple cores in each 
node. More concretely, the available constructs, functions and 
special mechanisms of both the above parallelization 
frameworks were suitably used as follows: 

 Appropriately built OpenMP parallel for constructs 
were used for the efficient thread-based parallelization 
of the loops implied by steps 1, 3 and 5. 

 Especially with regard to the parallelization of steps 1 
(in cooperation with step 2) and 3, in order to optimize 
the parallel implementation of the corresponding 
procedures (which both involve a reduction operation), 
we used the min/max reduction operators of OpenMP 
API. 

 Also, with regard to the parallelization of step 5, in 
order to achieve even distribution of computations to 
the working threads (given that the computational costs 
of the main loop iterations cannot be regarded a-priori 
equivalent) we used collapse-based nested parallelism 
in combination with dynamic scheduling policy. 

 Beyond the OpenMP-based parallelization inside each 
node, the well-known MPI collective communication 
functions (MPI_Scatter, MPI_Bcast, MPI_Reduce etc.) 
were also used for the communication between the 
network connected nodes as in pure MPI 
implementation. 

V. CPU / GPU COLLABORATION 

Furthermore, considering within each multicore node the 
case of existence of a CUDA-enabled GPU, we've extended 
our basic parallel approach in such a way that it can exploit 
concurrently the full power of the provided resources (i.e. 
using the CPU cores and the GPU concurrently), and thus lead 
to even better performance. The relevant extension is based on 
a suitable hybrid multi-threading/GPU offloading scheme, 
implemented with the combined use of OpenMP and CUDA. 
In the following paragraphs we briefly present the extended 
algorithm separately (as an autonomous hybrid approach 
operating on a single-node multicore environment with a 
CUDA-enabled GPU), for better understanding. Apparently, it 
can fit in a straightforward manner to our fully hybrid approach 
described in the previous section, in the case of multi-node 
environments (see also section VII). Specifically, we first 
suppose (upper-level parallel approach) that a global column-
based distribution scheme is followed with regard to the 
distribution of the full simplex tableau among the provided 
resources (CPU-cores and GPU). 

Next, with regard to the required CPU/GPU collaboration 
we apply a suitable extension of the GPU-oriented parallel 
approach presented in [19]

1
, by assigning a portion (a number 

of columns) of the full simplex tableau to be processed by the 
GPU and leaving the remaining portion to be processed by the 
CPU. However, with respect to the internal processing within 
the GPU-cores, the distribution scheme of the corresponding 
tableau portion is turned to a block-oriented one, which fits 
better to the internal architecture and the processing 
capabilities of an NVIDIA GPU [19]. 

Based on the above considerations, and assuming that we 
have a single node with n CPU-cores and one CUDA-enabled 

                                                           
1 The work of [19] is mostly a GPU-only approach, with the CPU being used 

only for the reduction operations. 
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GPU, we've implemented a hybrid CPU+GPU implementation 
(OpenMP+CUDA) as follows: 

Setup: A process with t (n ≥ t ≥ 2) threads is scheduled, 
with one of them mainly used for GPU handling (offloading / 
kernel launching) and the remaining t-1 threads kept for CPU 
assigned computations. 

Initialization Step: A portion θ of the simplex tableau is 
offloaded to the GPU. The remaining portion (1-θ) remains for 
shared-memory computations among the t-1 CPU threads. The 
right-hand constraints vector is both offloaded to the GPU and 
kept in the CPU shared memory too. 

Step 1: The t-1 CPU threads and the GPU compute (in 
parallel) the maximum negative coefficient over their own 
protion of the first line of the simplex tableau, yielding to two 
local maximum index values, say k1 and k2 respectively. The 
GPU local maximum k2 is transferred to the CPU memory, it 
is then compared to k1, and the global maximum index of the 
winning column is determined (entering variable). 

Step 2: If the entering variable belongs to the portion θ of 
the GPU-assigned simplex tableau, the index k is transferred to 
the GPU memory. The ratio computation is applied to all the 
elements of the winning column in the GPU. The minimum 
ratio is also computed in parallel by the GPU cores and the 
index r of the winning row is determined (leaving variable). 
The index r of the winning row as well as the elements of the 
winning column are transferred to the CPU memory. 

Step 3: If the entering variable belongs to the portion 1-θ of 
the CPU-assigned simplex tableau, the t CPU threads apply in 
parallel the ratio computation to all the elements of the winning 
column in the CPU memory. Consequently, they also compute 
in parallel the minimum ratio, and the index r of the winning 
row is determined (leaving variable). The index r of the 
winning row as well as the elements of the winning column are 
transferred to the GPU memory. 

Step 4: The t-1 CPU threads and the GPU perform (in 
parallel) on their own portion of the simplex tableau all the 
calculations required for the global rows pivoting, based on the 
pivot data received during the previous step. 

Iterate/Finalization Step: The above steps are repeated 
until the best solution is found or the problem gets unbounded. 
A suitable synchronization is required in this step between 
CPU and GPU per iteration. 

The tasks implied by steps 1 and 2 of the sequential 
algorithm (determining the entering and the leaving variables) 
require finding a max/min within a set of values. In our hybrid 
approach, part of the corresponding operations are being 
performed in the GPU, using appropriate reduction techniques. 
Our experiments showed (as opposed to [19] and [20]) that the 
performance obtained by sharing these reduction steps in both 
the CPU and GPU, was at least equivalent (and in any case 
note worse) to the alternative followed there (of performing the 
reduction operations totally in the CPU). The relatively large 
size of the tested problems, the double precision operations, 
and the limitations of the NVIDIA architecture itself, lead to 

limited efficiency when the GPU participates in the reduction 
computations. However, in the more recent NVIDIA GPUs the 
efficiency of these computations has been improved, thus 
allowing their proper use in corresponding tasks. 

VI. EXPERIMENTAL RESULTS 

Our basic parallelization scheme presented in section IV 
has been implemented with the use of MPI 3.0 message 
passing library and OpenMP 4.0/4.5 API, and it has been 
extensively tested (in terms of speed-up and efficiency 
measures) over a powerful hybrid parallel environment 
(distributed memory, multi-core nodes)2. The speed-up for p 
processors (Sp) is computed as the time required for the 
execution in one processor divided by the time required for the 
execution in p processors, whereas the efficiency for p 
processors (Ep) is computed as the speed-up achieved in p 
processors divided by p. The efficiency measure actually 
represents the fraction of the maximum theoretical speed-up 
that has been achieved. The corresponding results are presented 
and discussed in the next paragraph, whereas in the rest of the 
section we give the results of the extensions presented in 
section V. Our test environment for this set of experiments 
consists of up to 8 Intel Core 3.0GHz quad-core processors 
(making a total of 32 cores) with 4GB RAM each, connected 
via gigabit ethernet (1Gbps) network interface. The relevant 
computing components were mainly available and accessed 
through the Okeanos Cyclades cloud computing services [40] 
and local infrastructure in T.E.I. of Athens and Democritus 
University of Thrace. 

A. Performance of the MPI+OpenMP hybrid scheme 

In order to examine and validate the high efficiency and 
scalability of our basic hybrid MPI+OpenMP parallelization 
scheme, we've run on our platform a suitable subset of the well 
known and widely used NETLIB test linear problems of 
varying (large and very large) sizes that reflect close to the real 
word practical cases. The corresponding measurements, over 
all the non-trivial power-of-two numbers of processors/cores 
(from 4 up to 32), are presented in Table II. 

As it can be seen in Table II the achieved speed-up and 
efficiency values of the hybrid MPI+OpenMP approach are 
particularly high in all cases, even for large number of cores 
and very large NETLIB problems. One can also easily observe 
that the efficiency values decrease with the increase of the 
number of processors. However, this decrease is quite slow, 
and the efficiency values remain high even for 16 and 32 
processors/cores (no less than 81% and 70% respectively), in 
all cases. Moreover, particularly high efficiency values (almost 
linear speedup) are achieved for all the high aspect ratio 
NETLIB problems (e.g. see the values for problems FIT2P, 
80BAU3B and QAP15 where the efficiency even for 16 and 32 
processors/cores is over 90% and 85% respectively). This 
happens because in the case of 16 or 32 processors/cores (4 and 
8 nodes respectively), although the required communications 
progressively increase, as it is shown in [30]: the higher the 
aspect ratio of the linear problem the better the performance of 
the column distribution scheme we follow here, with regard to 
the total communication overhead. 

                                                           
2 Much more powerful than the one used in [18]. 
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TABLE II. SCALABILITY OF MPI+OPENMP FOR VERY LARGE PROBLEMS 

Note also that the proposed hybrid scheme has been shown 
[18] to perform better than the alternative of MPI+MPI3.0 
Shared Memory approach, as well as than the coresponding 
implementation of [4] which is one of the most competing 
relevant approaches in the literature. Furthermore, consider that 
the implementation of [4] has also been compared to MINOS, a 
well-known implementation of the revised simplex method, 
and it has been shown to be highly competitive, even for very 
low density problems. 

B. Performance of the CPU/GPU collaboration scheme 

The complementary single-node hybrid parallellization 
scheme presented in section V (that assumes the existence of a 
CUDA-enabled GPU as well) has also been implemented with 
the use of OpenMP 4.5 API and CUDA 7.0 Toolkit, and it has 
been extensively tested over a real hybrid hardware platform 
(much more powerful than the one in [20]). More concretely, 
for this set of experiments we've used an Intel Dual Quad Core 
3.0GHz Xeon system (8 cores in total), as well as one GTX 
760 and one GTX TitanX NVIDIA GPUs, which are of 
different technologies (Kepler and Maxwell respectively). 
These desktop-level GPUs have relatively low double precision 
(DP) performance (the GTX 760 gives ~95 GFLOPS with 
1152 cores, whereas the GTX TitanX gives ~192 GFLOPS 
with 3072 cores), however as it can be seen they can lead to 
quite significant improvements. This emphasizes the capability 
of using GPUs for scientific computing on desktop 
environments too. Note also that we've chosen to use the above 
referred 8-core Xeon system instead of one of the quad-core 
machines used in our first set of experiments in order to have 
more available cores in a single machine, and conclude to more 
representative, conveincing and sufficiently reliable results. 
However, it should be noticed that the per core performance of 
the two different test platforms is approximately the same. 

1) Performance of the GPU offloading only scheme 
First, we briefly present our initial experiments, in which 

our CPU-only and GPU-only schemes are compared to each 
other for varying number of CPU-cores. The performance 
gains achieved by our GPU-only approach are shown in Tables 
III,IV as well as in Fig. 1. Later on we present the additional 
performance gains achieved by our CPU/GPU collaboration 

(OpenMP+CUDA) scheme over the GPU-only approach, thus 
demonstaring the really high level of improvements that can be 
offered by the use of a combined CPU/GPU computing 
approach in hybrid (multi-node, multi-core) environments that 
involve CUDA-enabled GPUs too. The measurements 
presented in Tables III and IV have been taken over a dense 
randomly generated LP problem of size equal to 10000x10000 
and similar properties as in [19,33]. 

The specific problem size is the larger one in our 
experiments and leads to the best speedup values for all the 
tested cases. It's also near the maximum LP problem size that 
can fit and be processed conveniently within the available 
memory of the GTX 760 card (2GB), which is the main card 
used in the experiments made over our fully hybrid platform 
(presented in section VII). Further experiments involving quite 
larger LP problems over the GTX Titan X card (which offers a 
substantially larger amount of memory, i.e. 12GB) are of high 
priority in our future work. 

In Table III, in the first columns the performance 
measurements for our OpenMP (CPU-only) implementation 
are shown. Specifically, the execution time per iteration is 
given for varying number of cores (from 1 up to 8) as well as 
the corresponding speedup (Sp) values achieved in each case. 
On the other hand, in the last two columns we give the 
execution time per iteration achieved by the GPU-only 
implementation with the GTX 760 GPU, as well as the 
corresponding speedup achieved over the CPU-only 
implementation for each different number of cores. In Table IV 
the relevant measurements are presented for the GTX TitanX 
GPU, in an equivalent manner. 

As it can be seen the speedup achieved with the GTX 760 
GPU ranges from 1.94 (compared to the 8-core CPU-only 
implementation) to 14.06 (compared to the 1-core/sequential 
implementation), whereas the speedup achieved with the GTX 
TitanX GPU ranges from 3.20 to 23.22 respectively. These 
speedup values are quite satisfactory and they validate the 
worth of using desktop-level GPUs for this kind of scientific 
computations, although their DP performance is relatively low. 
They are also comparable to other relevant approaches in the 
literature, and quite better than the ones of [20]. For example in 

Linear  

Problems 

Speed-up & Efficiency / MPI+OpenMP 

2x2=4 cores 2x4=8 cores 4x4=16 cores 8x4=32 cores 

 Sp Ep Sp Ep Sp Ep Sp Ep 

FIT2P (3000x13525) 3.94 98.50% 7.80 97.50% 15.25 95.30% 29.50 92.20% 

80BAU3B (2263x9799) 3.91 97.80% 7.72 96.50% 14.93 93.30% 28.64 89.50% 

QAP15 (6330x22275) 3.89 97.30% 7.62 95.30% 14.48 90.50% 27.10 85.20% 

MAROS-R7 (3136x9408) 3.87 96.80% 7.54 94.30% 14.13 88.30% 26.27 82.10% 

QAP12 (3192x8856) 3.86 96.50% 7.50 93.80% 13.97 87.30% 25.70 80.30% 

DFL001 (6071x12230) 3.85 96.30% 7.50 93.80% 14.05 87.80% 25.95 81.10% 

GREENBEA (2392x5405) 3.84 96.00% 7.40 92.50% 13.58 84.90% 24.38 76.20% 

STOCFOR3 (16675x15695) 3.79 94.80% 7.23 90.40% 12.96 81.00% 22.50 70.30% 
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[19] a speedup of 12.5 is achieved over the sequential 
execution, with a GTX 260 GPU (which has a DP performance 
of ~90 GFLOPS). Note also that our CPU-only implementation 
is a highly efficient/scalable one, since the efficiency values 
(obtained if we divide Sp by the corresponding number of 
processors in each case) are over 90% in all cases and the 
speedup remains particularly high (7.26) even for 8 cores. 

TABLE III. SPEEDUP FOR GTX 760 GPU IMPLEMENTATION 

P CPU (multi-threaded) GPU (760) 

#cores Time/iter Sp Time/iter Sp 

1 2.8915 1.00 0.2056 14.06 

2 1.5139 1.91 0.2056 7.37 

3 1.0135 2.85 0.2056 4.93 

4 0.7674 3.77 0.2056 3.73 

5 0.6245 4.63 0.2056 3.04 

6 0.5250 5.51 0.2056 2.56 

7 0.4519 6.40 0.2056 2.20 

8 0.3985 7.26 0.2056 1.94 

TABLE IV. SPEEDUP FOR GTX TITANX GPU IMPLEMENTATION 

P CPU (multi-threaded) GPU (TitanX) 

#cores Time/iter Sp Time/iter Sp 

1 2.8915 1.00 0.1245 23.22 

2 1.5139 1.91 0.1245 12.16 

3 1.0135 2.85 0.1245 8.14 

4 0.7674 3.77 0.1245 6.17 

5 0.6245 4.63 0.1245 5.02 

6 0.5250 5.51 0.1245 4.21 

7 0.4519 6.40 0.1245 3.62 

8 0.3985 7.26 0.1245 3.20 

TABLE V. EXECUTION TIMES FOR CPU+GPU IMPLEMENTATION 

portion CPU+GPU(760) CPU+GPU(TitanX) 

(θ) 4 cores 8 cores 4 cores 8 cores 

0.0 0.7674 0.3985 0.7674 0.3985 

0.1 0.6817 0.3591 0.6753 0.3526 

0.2 0.6070 0.3177 0.5953 0.3136 

0.3 0.5288 0.2793 0.5167 0.2703 

0.4 0.4572 0.2370 0.4493 0.2326 

0.5 0.3909 0.1984 0.3824 0.2015 

0.6 0.3337 0.1602 0.3250 0.1707 

0.7 0.2598 0.1765 0.2482 0.1339 

0.8 0.1853 0.1883 0.1788 0.1015 

0.9 0.2022 0.2027 0.1142 0.1176 

1.0 0.2056 0.2056 0.1245 0.1245 

 

Fig. 1. Speed-up curves for different LP sizes 

Additionally, in Fig.1 the behavior of our GPU-only 
approach over different sizes of LP problems is shown, in 
terms of the corresponding speedup curves). The experiments 
have been performed over randomly generated dense LP 
problems ranging in size from 640x640 to 10000x10000, of 
similar properties as in [19,33], and with double precision 
arithmetic. Note also that the speedup values have been 
computed (without loss of generality) comparing to the 1-
core/sequential implementation. As it was expected the 
speedup increases with the increase of the problem size. 
Moreover, the speedup reaches a sufficiently high value (near 
the maximum) for LP problems greater or equal to 2500x2500, 
whereas it decreases sharply for smaller LP problems. This 
happens because as the problem size decreases the shared 
computational load also decreases a lot, and the total CPU-
GPU communication overhead (and/or the corresponding 
reduction overhead) naturally becomes the dominant factor 
with regard to the total processing time. 

2) Performance of the Hybrid OpenMP+CUDA Scheme 
In our second set of experiments we measure the 

performance of our hybrid CPU/GPU implementation and we 
show its superiority over the GPU-only implementation, which 
was the faster among the other two. The measurements were 
taken by varying the load distribution factor (portion θ) of the 
simplex tableau, from 0 (equivalent to the CPU-only approach) 
to 1 (equivalent to the GPU-only approach) by steps of 0.1. 

In Table V, the corresponding execution times are given for 
both the tested GPUs, supposing they share the computational 
load (according to the varying value of θ) with 4 and 8 CPU 
cores, over the randomly generated 10000x10000 LP problem; 
which gives the better performance. As it can be seen, in all 
cases there is at least one value of θ that leads to better 
execution time than the GPU-only implementation. This 
clearly validates the worth of using both resources (CPU and 
GPU) concurrently, instead of the GPU alone. Moreover, the 
maximum improvement is achieved for 8 CPU-cores, where 
we have an improvement of 22.1% (from 0.2056 to 0.1602) for 
the GTX 760 GPU and 18.5% (from 0.1245 to 0.1015) for the 
GTX TitanX GPU. In terms of speedup values the above 
improvements imply an additional speedup improvement of 
1.28 and 1.23 for our two different test cards respectively. 
These achievements are comparable to the ones presented in 
other recent works in the literature [14,16-17]. 

 

Fig. 2. Speedup curves for CPU/GPU collaboration 
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Furthermore, the value θ that leads to the larger 
improvement for 4 CPU-cores is 0.8 for the GTX 760 and 0.9 
for the GTX TitanX GPU, whereas the corresponding values 
for 8 CPU-cores become 0.6 and 0.8 respectively. The fact that 
are all greater than 0.5 is not surprising since the GPU-only 
implementation leads to significant speedup over the CPU-only 
implementation, itself; near or greater than 2 in any case (even 
for 8 cores). Thus, it's naturally expected that in order to gain 
some additional improvement from CPU/GPU collaboration, 
the larger portion of the simplex tableau should be offloaded to 
the GPU. Intuitively, we can say that if the GPU-only 
implementation leads to a speedup of 's' compared to the 
corresponding CPU-only implementation, in order to improve 
the execution time by applying CPU/GPU collaboration, we 
should assign to the CPU certainly less than the '1/s' portion 
(practically much less) of the total computational load. Also, as 
the number of the CPU-cores increase the maximum 
improvement that can be achieved naturally increases too, 
since a greater portion of computational load can be assigned 
to the CPU with equivalent performance as it was in GPU. 

Also, in Fig. 2, the behavior of the hybrid CPU/GPU 
approach for different sizes of LP problems is shown. 
Specifically, the execution times and the speedup values (over 
the 1-core/sequential implementation) have been measured for 
the randomly generated LP problems ranging in size from 
640x640 to 10000x10000, and the corresponding speedup 
curves have been drawn along with the speedup curves of Fig. 
1. All the measurements have been taken for 8 participating 
CPU cores and for the value θ that maximizes the performance 
in each case. As it can be seen the maximum achieved speedup 
decreases with the decrease of the problem size, for both the 
tested GPUs. This is naturally explained again by the fact that 
as the problem size decreases the shared computational load 
decreases analogously, and the CPU-GPU communication 
overhead becomes more crucial for the total processing time. 
Note that in the CPU/GPU collaboration scheme there is 
additional CPU-GPU communication (i.e. per iteration) beyond 
the initial offloading overhead. 

VII. FULLY HYBRID PARALLELIZATION 

Finally (standing as the most important contribution of our 
work), we've appropriately integrated our basic hybrid schemes 
into one fylly hybrid design, and we've performed a number of 
compementary experiments in order to demonstrate the worth 
of use of our parallel approaches in a fully hybrid parallel 
platform, i.e. a multi-node environment with multicore nodes 
and also equipped with one CUDA enabled GPU. As it has 

already been mentioned in Section V, our CPU/GPU 
collaboration approach can fit in a straightforward manner to 
our MPI+OpenMP approach, in the case of multi-node 
environments. More concretely, we first have to share the 
whole simplex tableau and broadcast the right-hand constraints 
vector to all the processors, according to the algorithmic 
approach presented in Section IV. Then each processor can 
execute the CPU/GPU collaboration algorithm presented in 
Section V on the local part of the simplex tableau that it has 
received. Furthermore, additional (MPI-based) communication 
steps between all processors have been introduced in each 
iteration.

3
 Our test equipment for this set of experiments is the 

same as for our first set of experiments (up to 8 Intel 3.0GHz 
quad-core processors with 4GB RAM and gigabit ethernet 
network connection), with each node also equipped with a 
GTX 760 NVIDIA GPU. Based on the above platform, we've 
run experiments over the set of very large NETLIB problems 
used for the experiments in paragraph VI-A; where the 
MPI+OpenMP scheme is used on the same platform, however 
without the GTX 760 GPUs. The corresponding results are 
presented in Table VI, for the cases of 16 (4 nodes/processors) 
and 32 (8 nodes/processors) cores in total, together with the 
corresponding results of Table II for comparative reasons. 

As it can be seen in Table VI, the combined use of the GTX 
760 GPUs in each node introduces a substantial improvement 
on the speedup and efficiency values for both the cases of 4 
and 8 nodes/processors

4
. This improvement increases as the 

size of the problem gets larger, and it rises up to 15,9% (the 
efficiency increases from 70.3% to 81.5%) for STOCFOR3 
(which is the larger LP problem in our experiments) over 8 
nodes/32 cores. This is naturally explained by the fact that in 
larger problems the computational load is much larger within 
each node/processor, so a substantial improvement on their 
execution time can influence significantly the total 
performance, especially in the case of prior downgrade due to 
increased communication overhead. For smaller problems (e.g. 
FIT2P and 80BAU3B) the improvement is quite smaller 
(however clear in all cases) since the speedup and efficiency 
values for these problems is quite high even without the use of 
the GPUs. Also the corresponding improvement decreases a 
little as the number of nodes decreases, e.g. for STOCFOR3 it 
becomes equal to 11.7% over 4 nodes/16 cores (the efficiency 
increases from 81% to 90.5%). This happens for similar 
reasons as above, i.e. because for less number of nodes the 
communication overhead is quite smaller, so the total speedup 
and efficiency values are quite higher and the substantial 
improvement in the execution times of the computational tasks 
cannot influence the total performance in the same degree. 

                                                           
3 In order the globally max negative coefficient be computed and the winning 

column/row be broadcasted.   

4 Note that as it comes out from Table III (comparing to the use of 4 CPU 

cores), we can have a speedup of 3.73 (0.2056 vs. 0.7674) by using a GTX 

760 GPU, whereas we can have an additional 10% (0.1853 vs. 0.2056, see 

Table 5) by using the 4 CPU cores and the GTX 760 GPU in collaboration.  
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TABLE VI. PERFORMANCE OF THE FULL HYBRID SCHEME WITH GTX 760 GPUS

Linear  

Problems 

MPI+OpenMP MPI+OpenMP+Cuda (GTX 760) 

4x4=16 cores 8x4=32 cores 4x4=16 cores 8x4=32 cores 

 Sp Ep Sp Ep Sp Ep Sp Ep 

FIT2P (3000x13525) 15.25 95.30% 29.50 92.20% 15.66 97.90% 30.43 95.10% 

80BAU3B (2263x9799) 14.93 93.30% 28.64 89.50% 15.47 96.70% 30.18 94.30% 

QAP15 (6330x22275) 14.48 90.50% 27.10 85.20% 15.25 95.30% 29.50 92.20% 

MAROS-R7 (3136x9408) 14.13 88.30% 26.27 82.10% 15.18 94.90% 28.86 90.20% 

QAP12 (3192x8856) 13.97 87.30% 25.70 80.30% 15.06 94.10% 28.54 89.20% 

DFL001 (6071x12230) 14.05 87.80% 25.95 81.10% 15.06 94.10% 28.61 89.40% 

GREENBEA (2392x5405) 13.58 84.90% 24.38 76.20% 14.85 92.80% 27.58 86.20% 

STOCFOR3 (16675x15695) 12.96 81.00% 22.50 70.30% 14.48 90.50% 26.08 81.50% 
 

VIII. CONCLUSION 

A highly scalable parallel implementation framework of the 
standard full tableau simplex method on a hybrid experimental 
platform has been presented and evaluated throughout the 
paper, in terms of typical performance measures. Specifically, 
we have designed, implemented and evaluated a highly 
efficient hybrid parallelization scheme over a real hybrid 
parallel (distributed memory, multicore) platform, with use of 
the standard Netlib test linear problems. The proposed hybrid 
scheme involves the use of OpenMP for the parallelization 
over the cores of each node and MPI for the communication 
between the nodes themselves, and as shown in all the 
experiments it leads to particularly high speedup and efficiency 
values even for very large / huge LP problems. It has also been 
shown to perform considerably better than other competitive 
approaches of the literature. Further, our hybrid MPI+OpenMP 
scheme is then suitably extended in order to gain improved 
performance when a CUDA-enabled GPU is also involved in 
the hybrid environment. A robust hybrid CPU multithreading/ 
GPU offloading scheme is proposed that can efficiently use the 
CPU cores and the GPU concurrently. A GPU-offloading only 
scheme has also been implemented for comparison purposes. 
In the corresponding experiments the proposed CPU/GPU-
collaboration scheme proves to be superior to the GPU-only 
scheme, with an additional speedup of up to 1.28 being 
achieved for randomly generated LP problems of size 
10000x10000. The performance of both the CPU/GPU-
collaboration and the GPU-only schemes are comparable to 
other relevant implementations in the literature, whereas they 
are also clearly superior to the OpenMP-based CPU-only 
implementation (even for 8 cores). Finally, and the most 
important, we have integrated our proposed schemes into a 
fully hybrid one, and we present some very encouraging 
experiments which lead to quite significant improvements (up 
to 15,9%); when this scheme is used over a fully hybrid multi-
node platform, for large and very large LP problems. In all the 
experiments we've used desktop-level GPUs in order to 
emphasize the capability of using the GP-GPU computing 
model for scientific applications on desktop environments too. 
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