
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

356 | P a g e

www.ijacsa.thesai.org

Simplex Parallelization in a Fully Hybrid Hardware

Platform

Basilis Mamalis

Technological Educational Institute of Athens

Agiou Spyridonos, 12210, Egaleo

Athens, GREECE

Marios Perlitis

Democritus University of Thrace

University Campus, 69100

Komotini, GREECE

Abstract—The simplex method has been successfully used in

solving linear programming (LP) problems for many years.

Parallel approaches have also extensively been studied due to the

intensive computations required, especially for the solution of

large LP problems. Furthermore, the rapid proliferation of

multicore CPU architectures as well as the computational power

provided by the massive parallelism of modern GPUs have

turned CPU / GPU collaboration models increasingly into focus

over the last years for better performance. In this paper, a highly

scalable implementation framework of the standard full tableau

simplex method is first presented, over a hybrid parallel platform

which consists of multiple multicore nodes interconnected via a

high-speed communication network. The proposed approach is

based on the combined use of MPI and OpenMP, adopting a

suitable column-based distribution scheme for the simplex

tableau. The parallelization framework is then extended in such a

way that it can exploit concurrently the full power of the

provided resources on a multicore single-node environment with

a CUDA-enabled GPU (i.e. using the CPU cores and the GPU

concurrently), based on a suitable hybrid multithreading/GPU

offloading scheme with OpenMP and CUDA. The corresponding

experimental results show that the hybrid MPI+OpenMP based

parallelization scheme leads to particularly high speed-up and

efficiency values, considerably better than in other competitive

approaches, and scaling well even for very large / huge linear

problems. Furthermore, the performance of the hybrid

multithreading/GPU offloading scheme is clearly superior to

both the OpenMP-only and the GPU-only based implementations

in almost all cases, which validates the worth of using both

resources concurrently. The most important, when it is used in

combination with MPI in a multi-node (fully hybrid)

environment, it leads to substantial improvements in the speedup

achieved for large and very large LP problems.

Keywords—Parallel Processing; Linear Programming; Simplex

Algorithm; MPI; OpenMP; CUDA

I. INTRODUCTION

Linear programming is the most important and well studied
optimization problem. The simplex method, which can be
found in many textbooks, has been successfully used for
solving linear programming problems for many years. Parallel
approaches have also extensively been studied due to the very
intensive computations required and the substantial need for
faster implementations that make effective use of modern
computer architectures.

Most research (with regard to sequential simplex method)
has been focused on the revised simplex method since it takes

advantage of the sparsity that is inherent in most linear
programming applications. The revised method is also
advantageous for problems with a high aspect ratio; that is, for
problems with many more columns than rows. However, there
have not been seen many parallel/distributed implementations
of the revised method that scale well [1]. On the other hand, the
standard method is more efficient for dense linear problems
and it can be easily converted to a distributed/parallel version
with satisfactory speedup values and good scalability [1-4]. A
detailed overview is given in Section II. Also, lately, some
alternative very promising efforts have been made, based on
the block angular structure (or decomposition) of the initially
transformed problems [5-6], and they have led to very good
results for large scale problems over distributed memory
multicore environments.

Furthermore, with regard to parallelism, until recently, the
relevant models, languages, and libraries for shared-memory
and distributed-memory architectures have evolved separately,
with MPI [7] becoming the dominant approach for the
distributed-memory (message-passing) model, and OpenMP
[8] emerging as the dominant high-level approach for shared
memory with threads. Recently, the hybrid model has begun to
attract more attention, for at least two reasons. The first is that
it is relatively easy to pick a language/library instantiation of
the hybrid model (OpenMP, MPI, MPI 3.0 Shared Memory
etc.). The second reason is that scalable parallel computers now
appear to encourage this model. The fastest machines now
virtually all consist of multi-core nodes connected by a high
speed network. The idea of using OpenMP threads to exploit
the multiple cores per node (with one multithreaded process
per node) while using MPI to communicate among the nodes is
the most known. The last 3-4 years however, another strong
alternative has evolved; the MPI 3.0 Shared Memory support
mechanism, which improves significantly the previous existed
Remote Memory Access utilities of MPI, towards the direction
of optimized operation inside a multicore node. As analyzed in
[9-11] both the above referred hybrid models (MPI+OpenMP,
MPI+MPI 3.0 Shared Memory) have their pros and cons, and
it’s not straightforward that they outperform pure MPI
implementations in all cases. Among all the alternatives the
MPI+OpenMP hybrid approach is still regarded as the most
efficient one, however the MPI+MPI 3.0 Shared Memory
approach is highly competitive.

Moreover, nowadays the computational power provided by
the massive parallelism of modern graphics processing units
(GPUs), has brought increasingly into focus several kinds of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

357 | P a g e

www.ijacsa.thesai.org

GPU-accelerated solutions. Although in simplex parallelization
there have not been noticed as many relevant attempts as one
would expect and no parallel GPU-based implementation of
the simplex algorithm has yet offered significantly better
performance relative to an efficient sequential simplex solver
(at least not in all types of problems), quite significant progress
has been achieved at least for dense LP problems [12]. There
also exist various approaches in the field of parallel scientific
computing that adopt extended CPU/GPU collaboration [13-
17]. However, the efficient CPU/GPU collaboration through
the combined use of relevant programming models (such as
OpenMP and CUDA) still remains a major research challenge.
Also, to the best of our knowledge there is no relevant
approach in the literature adopting extended CPU/GPU
collaboration for parallelizing the simplex method.

In this work we focus on the parallelization of the standard
full tableau simplex method and we firstly present and evaluate
a relevant highly scalable implementation (on the basis of a
carefully designed column-based distribution scheme) for the
most efficient of the hybrid parallelization alternatives referred
above (MPI+OpenMP) assuming there are not GPU-
accelerators in our hybrid hardware platform. We then
demostrate the high efficiency and scalability of the proposed
hybrid MPI+OpenMP parallelization scheme, over a suitable
subset of the well known and widely used NETLIB test LP
problems. The corresponding experiments have been
perfromed over a hybrid, newly developed, parallel platform
which consists of up to 8 quad-core processors (making a total
of 32 cores) connected via Gigabit ethernet interface. In all
cases the hybrid MPI+OpenMP based parallelization scheme
leads to considerably high speedup and efficiency values and
performs better than other alternatives [18]. Note also that it
has been shown (over the less powerful platform of [18]) to
perform quite better than the relevant, higly competitive,
approach presented in the work of [4].

Secondly, we extend the proposed hybrid parallelization
scheme (MPI+OpenMP) over multicore platforms with
CUDA-enabled GPUs, and we present a highly efficient
framework which can exploit the full power of both the
provided multiple CPU-cores and the GPU, concurrently. In
the above context, we've designed and implemented a hybrid
multithreading/GPU offloading scheme (based on the
combined use of OpenMP and CUDA) that efficiently adopts
full CPU/GPU collaboration, as well as two complementary
schemes for comparison purposes, i.e. a (multithreading)
OpenMP-based only scheme, and a GPU-based only (CUDA).
The corresponding experimental results show that the
performance of our GPU-based only implementation is
comparable to other relevant approaches in the literature [18],
and superior to our OpenMP-based only implementation
(leading to speedup values up to 14.06 for a GTX 760 GPU
and up to 23.22 for a GTX TitanX GPU - compared to the
sequential implementation). Moreover, the performance of our
hybrid multithreading/GPU offloading scheme is clearly
superior to the GPU-based only implementation in almost all
cases (leading to an additional speedup of up to 1.28 for the
GTX 760 GPU and up to 1.23 for the GTX TitanX GPU),
which validates the worth of using both resources concurrently.
The most important, when the proposed CPU/GPU

collaboration scheme is used in combination with MPI in a
multi-node (fully hybrid) environment, it leads to substantial
performance gains that rise up to 15,9%.

A very early version of this work (in a much less powerful
platform, without adopting full CPU/GPU collaboration, and
without addressing the fully hybrid platform integration) has
been presented in [18,20]. The rest of the paper is organized as
follows. In Section II the related work is summarized. In
Section III the necessary background is stated with regard to
simplex method. In Section IV the detailed description of our
basic hybrid parallelization scheme (using MPI and OpenMP)
is given. In Section V the relevant extension with CPU/GPU
collaboration is presented. In Section VI the experimental
results of our basic schemes (MPI+OpenMP and OpenMP+
CUDA) are given, whereas in Section VII we present the
performane gains of our fully hybrid parallel approach
(MPI+OpenMP+CUDA). Section VIII concludes the paper.

II. RELATED WORK

Earlier work on simplex parallelization focused mainly on
tightly coupled or shared memory hardware structures as well
as on clusters and networks of workstations. Hall & McKinnon
[21] and Shu & Wu [22] worked on the parallel revised method
over powerful shared memory and hypercube platforms
respectively. Thomadakis & Liu [23] worked on the standard
method utilizing the MP-1 and MP-2 MasPar. Eckstein et al.
[24] showed in the context of the parallel connection machine
CM-2 that the iteration time for parallel revised method tended
to be higher than for parallel full tableau method even when the
revised method is implemented very carefully. Stunkel [25]
found a way to parallelize both the revised and standard
methods so that both obtained a similar advantage in the
context of the parallel Intel iPSC hypercube. Two other
valuable attempts are presented in [26-27] following the
primal-dual simplex method and the sparse simplex method,
and they've led to satisfactory results for large scale problems.
Till recently, no other valuable attempts have been made to
parallelize the classical revised simplex method, thus making
the one presented by Huangfu and Hall [28-29] a distinguished
one. The authors in [28-29] have designed and implemented a
very efficient parallelization scheme of the dual revised method
with use of the suboptimization technique, and they have
obtained speedup values comparable to those of the best
commercial simplex solvers. A relevant survey which covers
adequately all the recent advances in simplex parallelization
can be found in [12].

As already mentioned, the standard method can be easily
and effectively extended to a coarse-grained, distributed
algorithm [4]. It should also be noted that although dense
problems (which suit better the standard method) are
uncommon in general, they do occur frequently in some
important applications within linear programming [24].
Furthermore, existing distributed memory implementations of
the standard simplex method naturally vary in the way that the
simplex tableau is distributed among the processors [1,30].
Either a column distribution scheme or a row distribution
scheme may be applied, depending on several parameters
(relative number of rows and columns, total size of the
problem, target hardware environment details etc.). The most

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

358 | P a g e

www.ijacsa.thesai.org

recent works following the column distribution scheme (mostly
used for practical problems) were by Yarmish et al. [4] as well
as (an older one) by Qin et al [3]. On the other hand, the work
of Badr et al. [2] referred above followed the row distribution
scheme and presented a quite efficient implementa-tion for
loosely coupled processors. A comprehensive study and
comparison of the above distribution schemes as well as
corresponding implementations achieving particularly high
speedup values are given in the recent works of Mamalis et al.
[18,30]. As shown in [30], the column distribution scheme is
the most efficient one for the most types of LP problems.

A number of valuable simplex parallelization attempts have
also been seen in the literature with use of GPU accelerators.
Spampinato et al [31] have proposed a parallel implementation
of the revised simplex method based on NVIDIA CUBLAS
and LAPACK libraries, with a maximum speedup of 2.5, using
a GTX 280 GPU vs. the sequential implementation on CPU
with Intel Core2 Quad 2.83 GHz for randomly generated LP
problems of size 2000x2000. In [32] another implementation of
the revised simplex method on GPU was proposed, which
permits one to speed up solution with a maximum factor of 18
in single precision on a GeForce 9600 GT GPU card as
compared with GLPK solver run on Intel Core 2 Duo 3GHz
CPU. Lalami et al. [19] have presented a GPU mainly based
parallel implementation via CUDA of the standard simplex
algorithm for dense LP problems. Experiments carried out on
an Intel Xeon 3GHz and a GTX 260 GPU have shown
substantial speedup of 12.5 in double precision, for randomly
generated LP problems of size up to 8000x8000. The authors
have also extended their work on a multi-GPU implementation
[33] and their computational results showed a maximum
speedup of 24.5, using two Tesla C2050 boards. Meyer et al.
[34] proposed a mono- and a multi-GPU implementation of the
tableau simplex algorithm, and they compared its performance
to the serial Clp solver, using a Tesla S1070 board with T10
GPUs. Their implementation outperformed Clp solver on large
sparse LP problems. Finally, Ploskas and Samaras [35]
proposed two efficient GPU-based implementations of the
revised simplex and a primal–dual exterior point simplex
algorithm, using Matlab. The experimental results showed
great speedups for the exterior point algorithm and quite worse
for the revised simplex method. Other valuable attempts can
also be found in [36-38] achieving very satisfactory speedups
with C1060, S1070 and GTX 670 boards.

Considering also the general field of parallel scientific
computing, several attempts have been made adopting
extended CPU/GPU collaboration. Harmony [15] is an
integrated programming model which allows the coding and
executing of programs for CPU/GPU systems. It also includes
an automated distribution of the computational load on the
CPU and the GPU, and achieves very good performance
mainly in audio-processing systems. In [14,16-17] more recent,
relevant approaches are presented in the field of linear algebra
and systems. In [17] an additional speedup of up to 1.25 is
achieved (compared to the GPU-only implementation) for the
parallel execution of the conjugate gradient method, whereas in
[14,16] the CPU/GPU collaboration schemes in the field of
linear algebra achieved a speedup ranging from 1.15 up to 1.35
for different sizes and types of problems. The works of [14,17]

have the major advantage of supporting dynamic distribution
of the workload between CPU and GPU. Finally in [39] the
authors present a novel generic framework that transparently
orchestrates collaborative execution of a single data-parallel
kernel across multiple asymmetric CPUs and GPUs. To our
knowledge there is no relevant approach in the literature
adopting extended CPU/GPU collaboration (i.e. not only for
the reduction operations as in [19] or semi-hybrid as in [20])
for parallelizing the simplex method.

III. THE SIMPLEX METHOD

In linear programming problems [34], the goal is to
minimize (or maximize) a linear function of real variables over
a region defined by linear constraints. In standard form, it can
be expressed as shown in Table I (full tableau representation),
where A is an mxn matrix, x is an n-dimensional design
variable vector, c is the PRICE vector, b is the right-hand side
vector of the constraints (m-dimensional), and T denotes
transposition. We assume that the set of basis vector (columns
of A) is linearly independent. The simplex algorithm consists
of two steps; first, a way of finding out whether a current basic
feasible solution is an optimal solution, and second, a
procedure of obtaining an adjacent basic feasible solution with
the same or better value for the objective function. We focus
here on the standard full tableau format of the simplex method,
which is more efficient for full dense linear problems and it can
be easily converted to a distributed version for cluster
platforms or hybrid environments.

TABLE I. SIMPLEX FULL TABLEAU REPRESENTATION

 x1 x2 ... xn xn+1 ... xn+m z
-c1 -c2 ... -cn 0 ... 0 1 0

xn+1 a11 a12 ... a1n 1 ... 0 0 b1
xn+2 a21 a22 ... a2n 0 ... 0 0 b2

...
xn+m am1 am2 ... amn 0 ... 1 0 bm

Based on the full tableau representation, the basic steps of
the standard simplex method can be summarized (without loss
of generality) as follows:

Initialization Step: Start with a feasible basic solution and
construct the corresponding tableau.

Step 1: Choice of entering variable: find the winning
column (the one having the larger negative coefficient of the
objective function – entering variable).

Step 2: Choice of leaving variable: find the winning row
(apply the min ratio test to the elements of the winning column
and choose the row number with the min ratio – leaving
variable).

Step 3: Pivoting (this step involves the most calculations):
construct the next simplex tableau by performing pivoting in
the previous tableau rows based on the new pivot row found in
the previous step.

Iterate/Finalization Step: Repeat the above steps until the
best solution is found or the problem gets unbounded.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

359 | P a g e

www.ijacsa.thesai.org

IV. BASIC PARALLELIZATON

In the following paragraphs we present in details the
algorithmic approach we followed in our basic hybrid parallel
implementation. Our approach is based on the most popular
and widely used column-based distribution scheme [4] (as
opposed to the other relevant alternative of row-based
distribution). This is a relatively straightforward parallelization
scheme within the standard simplex method which involves
dividing up the columns of the simplex table among all the
processors and it is (both theoretically and experimentally)
regarded as the most effective one in the general case.

Following this scheme all the computation parts except step
2 of the basic (sequential) algorithm are fully parallelized.
Additionally, this form of parallelization looks as the most
natural choice since in most practical problems the number of
columns is larger than the number of rows. It has also been
proved to be the most efficient one (as shown in the literature
[4,30]). The basic steps of the algorithm are given below:

Initialization Step: The simplex table is shared among the
processors by columns. Also, the right-hand constraints vector
is broadcasted to all processors.

Step 1: Each processor searches in its local part and
chooses the locally best candidate column – the one with the
larger negative coefficient in the objective function part (local
contribution for the global determination of the entering
variable).

Step 2: The local results are gathered in parallel and the
winning processor (the one with the larger negative coefficient
among all) is found and globally known. At the end of this step
each processor will know which processor is the winner and
has the global column choice.

Step 3: The processor with the winning column (entering
variable) computes the leaving variable (winning row) using
the minimum ratio test over all the winning column’s elements.

Step 4: The same (winning) processor then broadcasts the
winning column as well as the winning row’s id to all
processors.

Step 5: Each processor performs (in parallel) on its own
part (columns) of the simplex tableau all the calculations
required for the global rows pivoting, based on the pivot data
received during step 4.

Iterate/Finalization Step: The above steps are repeated
until the best solution is found or the problem gets unbounded.

Based on the above step by step decomposition we've
designed and implemented our basic hybrid parallelization
scheme, assuming a hybrid parallel platform which consists of
multiple multicore nodes interconnected via a high-speed
communication network. MPI was used for the communication
among the network connected nodes, whereas OpenMP was
used for the communication among the multiple cores in each
node. More concretely, the available constructs, functions and
special mechanisms of both the above parallelization
frameworks were suitably used as follows:

 Appropriately built OpenMP parallel for constructs
were used for the efficient thread-based parallelization
of the loops implied by steps 1, 3 and 5.

 Especially with regard to the parallelization of steps 1
(in cooperation with step 2) and 3, in order to optimize
the parallel implementation of the corresponding
procedures (which both involve a reduction operation),
we used the min/max reduction operators of OpenMP
API.

 Also, with regard to the parallelization of step 5, in
order to achieve even distribution of computations to
the working threads (given that the computational costs
of the main loop iterations cannot be regarded a-priori
equivalent) we used collapse-based nested parallelism
in combination with dynamic scheduling policy.

 Beyond the OpenMP-based parallelization inside each
node, the well-known MPI collective communication
functions (MPI_Scatter, MPI_Bcast, MPI_Reduce etc.)
were also used for the communication between the
network connected nodes as in pure MPI
implementation.

V. CPU / GPU COLLABORATION

Furthermore, considering within each multicore node the
case of existence of a CUDA-enabled GPU, we've extended
our basic parallel approach in such a way that it can exploit
concurrently the full power of the provided resources (i.e.
using the CPU cores and the GPU concurrently), and thus lead
to even better performance. The relevant extension is based on
a suitable hybrid multi-threading/GPU offloading scheme,
implemented with the combined use of OpenMP and CUDA.
In the following paragraphs we briefly present the extended
algorithm separately (as an autonomous hybrid approach
operating on a single-node multicore environment with a
CUDA-enabled GPU), for better understanding. Apparently, it
can fit in a straightforward manner to our fully hybrid approach
described in the previous section, in the case of multi-node
environments (see also section VII). Specifically, we first
suppose (upper-level parallel approach) that a global column-
based distribution scheme is followed with regard to the
distribution of the full simplex tableau among the provided
resources (CPU-cores and GPU).

Next, with regard to the required CPU/GPU collaboration
we apply a suitable extension of the GPU-oriented parallel
approach presented in [19]

1
, by assigning a portion (a number

of columns) of the full simplex tableau to be processed by the
GPU and leaving the remaining portion to be processed by the
CPU. However, with respect to the internal processing within
the GPU-cores, the distribution scheme of the corresponding
tableau portion is turned to a block-oriented one, which fits
better to the internal architecture and the processing
capabilities of an NVIDIA GPU [19].

Based on the above considerations, and assuming that we
have a single node with n CPU-cores and one CUDA-enabled

1 The work of [19] is mostly a GPU-only approach, with the CPU being used

only for the reduction operations.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

360 | P a g e

www.ijacsa.thesai.org

GPU, we've implemented a hybrid CPU+GPU implementation
(OpenMP+CUDA) as follows:

Setup: A process with t (n ≥ t ≥ 2) threads is scheduled,
with one of them mainly used for GPU handling (offloading /
kernel launching) and the remaining t-1 threads kept for CPU
assigned computations.

Initialization Step: A portion θ of the simplex tableau is
offloaded to the GPU. The remaining portion (1-θ) remains for
shared-memory computations among the t-1 CPU threads. The
right-hand constraints vector is both offloaded to the GPU and
kept in the CPU shared memory too.

Step 1: The t-1 CPU threads and the GPU compute (in
parallel) the maximum negative coefficient over their own
protion of the first line of the simplex tableau, yielding to two
local maximum index values, say k1 and k2 respectively. The
GPU local maximum k2 is transferred to the CPU memory, it
is then compared to k1, and the global maximum index of the
winning column is determined (entering variable).

Step 2: If the entering variable belongs to the portion θ of
the GPU-assigned simplex tableau, the index k is transferred to
the GPU memory. The ratio computation is applied to all the
elements of the winning column in the GPU. The minimum
ratio is also computed in parallel by the GPU cores and the
index r of the winning row is determined (leaving variable).
The index r of the winning row as well as the elements of the
winning column are transferred to the CPU memory.

Step 3: If the entering variable belongs to the portion 1-θ of
the CPU-assigned simplex tableau, the t CPU threads apply in
parallel the ratio computation to all the elements of the winning
column in the CPU memory. Consequently, they also compute
in parallel the minimum ratio, and the index r of the winning
row is determined (leaving variable). The index r of the
winning row as well as the elements of the winning column are
transferred to the GPU memory.

Step 4: The t-1 CPU threads and the GPU perform (in
parallel) on their own portion of the simplex tableau all the
calculations required for the global rows pivoting, based on the
pivot data received during the previous step.

Iterate/Finalization Step: The above steps are repeated
until the best solution is found or the problem gets unbounded.
A suitable synchronization is required in this step between
CPU and GPU per iteration.

The tasks implied by steps 1 and 2 of the sequential
algorithm (determining the entering and the leaving variables)
require finding a max/min within a set of values. In our hybrid
approach, part of the corresponding operations are being
performed in the GPU, using appropriate reduction techniques.
Our experiments showed (as opposed to [19] and [20]) that the
performance obtained by sharing these reduction steps in both
the CPU and GPU, was at least equivalent (and in any case
note worse) to the alternative followed there (of performing the
reduction operations totally in the CPU). The relatively large
size of the tested problems, the double precision operations,
and the limitations of the NVIDIA architecture itself, lead to

limited efficiency when the GPU participates in the reduction
computations. However, in the more recent NVIDIA GPUs the
efficiency of these computations has been improved, thus
allowing their proper use in corresponding tasks.

VI. EXPERIMENTAL RESULTS

Our basic parallelization scheme presented in section IV
has been implemented with the use of MPI 3.0 message
passing library and OpenMP 4.0/4.5 API, and it has been
extensively tested (in terms of speed-up and efficiency
measures) over a powerful hybrid parallel environment
(distributed memory, multi-core nodes)2. The speed-up for p
processors (Sp) is computed as the time required for the
execution in one processor divided by the time required for the
execution in p processors, whereas the efficiency for p
processors (Ep) is computed as the speed-up achieved in p
processors divided by p. The efficiency measure actually
represents the fraction of the maximum theoretical speed-up
that has been achieved. The corresponding results are presented
and discussed in the next paragraph, whereas in the rest of the
section we give the results of the extensions presented in
section V. Our test environment for this set of experiments
consists of up to 8 Intel Core 3.0GHz quad-core processors
(making a total of 32 cores) with 4GB RAM each, connected
via gigabit ethernet (1Gbps) network interface. The relevant
computing components were mainly available and accessed
through the Okeanos Cyclades cloud computing services [40]
and local infrastructure in T.E.I. of Athens and Democritus
University of Thrace.

A. Performance of the MPI+OpenMP hybrid scheme

In order to examine and validate the high efficiency and
scalability of our basic hybrid MPI+OpenMP parallelization
scheme, we've run on our platform a suitable subset of the well
known and widely used NETLIB test linear problems of
varying (large and very large) sizes that reflect close to the real
word practical cases. The corresponding measurements, over
all the non-trivial power-of-two numbers of processors/cores
(from 4 up to 32), are presented in Table II.

As it can be seen in Table II the achieved speed-up and
efficiency values of the hybrid MPI+OpenMP approach are
particularly high in all cases, even for large number of cores
and very large NETLIB problems. One can also easily observe
that the efficiency values decrease with the increase of the
number of processors. However, this decrease is quite slow,
and the efficiency values remain high even for 16 and 32
processors/cores (no less than 81% and 70% respectively), in
all cases. Moreover, particularly high efficiency values (almost
linear speedup) are achieved for all the high aspect ratio
NETLIB problems (e.g. see the values for problems FIT2P,
80BAU3B and QAP15 where the efficiency even for 16 and 32
processors/cores is over 90% and 85% respectively). This
happens because in the case of 16 or 32 processors/cores (4 and
8 nodes respectively), although the required communications
progressively increase, as it is shown in [30]: the higher the
aspect ratio of the linear problem the better the performance of
the column distribution scheme we follow here, with regard to
the total communication overhead.

2 Much more powerful than the one used in [18].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

361 | P a g e

www.ijacsa.thesai.org

TABLE II. SCALABILITY OF MPI+OPENMP FOR VERY LARGE PROBLEMS

Note also that the proposed hybrid scheme has been shown
[18] to perform better than the alternative of MPI+MPI3.0
Shared Memory approach, as well as than the coresponding
implementation of [4] which is one of the most competing
relevant approaches in the literature. Furthermore, consider that
the implementation of [4] has also been compared to MINOS, a
well-known implementation of the revised simplex method,
and it has been shown to be highly competitive, even for very
low density problems.

B. Performance of the CPU/GPU collaboration scheme

The complementary single-node hybrid parallellization
scheme presented in section V (that assumes the existence of a
CUDA-enabled GPU as well) has also been implemented with
the use of OpenMP 4.5 API and CUDA 7.0 Toolkit, and it has
been extensively tested over a real hybrid hardware platform
(much more powerful than the one in [20]). More concretely,
for this set of experiments we've used an Intel Dual Quad Core
3.0GHz Xeon system (8 cores in total), as well as one GTX
760 and one GTX TitanX NVIDIA GPUs, which are of
different technologies (Kepler and Maxwell respectively).
These desktop-level GPUs have relatively low double precision
(DP) performance (the GTX 760 gives ~95 GFLOPS with
1152 cores, whereas the GTX TitanX gives ~192 GFLOPS
with 3072 cores), however as it can be seen they can lead to
quite significant improvements. This emphasizes the capability
of using GPUs for scientific computing on desktop
environments too. Note also that we've chosen to use the above
referred 8-core Xeon system instead of one of the quad-core
machines used in our first set of experiments in order to have
more available cores in a single machine, and conclude to more
representative, conveincing and sufficiently reliable results.
However, it should be noticed that the per core performance of
the two different test platforms is approximately the same.

1) Performance of the GPU offloading only scheme
First, we briefly present our initial experiments, in which

our CPU-only and GPU-only schemes are compared to each
other for varying number of CPU-cores. The performance
gains achieved by our GPU-only approach are shown in Tables
III,IV as well as in Fig. 1. Later on we present the additional
performance gains achieved by our CPU/GPU collaboration

(OpenMP+CUDA) scheme over the GPU-only approach, thus
demonstaring the really high level of improvements that can be
offered by the use of a combined CPU/GPU computing
approach in hybrid (multi-node, multi-core) environments that
involve CUDA-enabled GPUs too. The measurements
presented in Tables III and IV have been taken over a dense
randomly generated LP problem of size equal to 10000x10000
and similar properties as in [19,33].

The specific problem size is the larger one in our
experiments and leads to the best speedup values for all the
tested cases. It's also near the maximum LP problem size that
can fit and be processed conveniently within the available
memory of the GTX 760 card (2GB), which is the main card
used in the experiments made over our fully hybrid platform
(presented in section VII). Further experiments involving quite
larger LP problems over the GTX Titan X card (which offers a
substantially larger amount of memory, i.e. 12GB) are of high
priority in our future work.

In Table III, in the first columns the performance
measurements for our OpenMP (CPU-only) implementation
are shown. Specifically, the execution time per iteration is
given for varying number of cores (from 1 up to 8) as well as
the corresponding speedup (Sp) values achieved in each case.
On the other hand, in the last two columns we give the
execution time per iteration achieved by the GPU-only
implementation with the GTX 760 GPU, as well as the
corresponding speedup achieved over the CPU-only
implementation for each different number of cores. In Table IV
the relevant measurements are presented for the GTX TitanX
GPU, in an equivalent manner.

As it can be seen the speedup achieved with the GTX 760
GPU ranges from 1.94 (compared to the 8-core CPU-only
implementation) to 14.06 (compared to the 1-core/sequential
implementation), whereas the speedup achieved with the GTX
TitanX GPU ranges from 3.20 to 23.22 respectively. These
speedup values are quite satisfactory and they validate the
worth of using desktop-level GPUs for this kind of scientific
computations, although their DP performance is relatively low.
They are also comparable to other relevant approaches in the
literature, and quite better than the ones of [20]. For example in

Linear

Problems

Speed-up & Efficiency / MPI+OpenMP

2x2=4 cores 2x4=8 cores 4x4=16 cores 8x4=32 cores

 Sp Ep Sp Ep Sp Ep Sp Ep

FIT2P (3000x13525) 3.94 98.50% 7.80 97.50% 15.25 95.30% 29.50 92.20%

80BAU3B (2263x9799) 3.91 97.80% 7.72 96.50% 14.93 93.30% 28.64 89.50%

QAP15 (6330x22275) 3.89 97.30% 7.62 95.30% 14.48 90.50% 27.10 85.20%

MAROS-R7 (3136x9408) 3.87 96.80% 7.54 94.30% 14.13 88.30% 26.27 82.10%

QAP12 (3192x8856) 3.86 96.50% 7.50 93.80% 13.97 87.30% 25.70 80.30%

DFL001 (6071x12230) 3.85 96.30% 7.50 93.80% 14.05 87.80% 25.95 81.10%

GREENBEA (2392x5405) 3.84 96.00% 7.40 92.50% 13.58 84.90% 24.38 76.20%

STOCFOR3 (16675x15695) 3.79 94.80% 7.23 90.40% 12.96 81.00% 22.50 70.30%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

362 | P a g e

www.ijacsa.thesai.org

[19] a speedup of 12.5 is achieved over the sequential
execution, with a GTX 260 GPU (which has a DP performance
of ~90 GFLOPS). Note also that our CPU-only implementation
is a highly efficient/scalable one, since the efficiency values
(obtained if we divide Sp by the corresponding number of
processors in each case) are over 90% in all cases and the
speedup remains particularly high (7.26) even for 8 cores.

TABLE III. SPEEDUP FOR GTX 760 GPU IMPLEMENTATION

P CPU (multi-threaded) GPU (760)

#cores Time/iter Sp Time/iter Sp

1 2.8915 1.00 0.2056 14.06

2 1.5139 1.91 0.2056 7.37

3 1.0135 2.85 0.2056 4.93

4 0.7674 3.77 0.2056 3.73

5 0.6245 4.63 0.2056 3.04

6 0.5250 5.51 0.2056 2.56

7 0.4519 6.40 0.2056 2.20

8 0.3985 7.26 0.2056 1.94

TABLE IV. SPEEDUP FOR GTX TITANX GPU IMPLEMENTATION

P CPU (multi-threaded) GPU (TitanX)

#cores Time/iter Sp Time/iter Sp

1 2.8915 1.00 0.1245 23.22

2 1.5139 1.91 0.1245 12.16

3 1.0135 2.85 0.1245 8.14

4 0.7674 3.77 0.1245 6.17

5 0.6245 4.63 0.1245 5.02

6 0.5250 5.51 0.1245 4.21

7 0.4519 6.40 0.1245 3.62

8 0.3985 7.26 0.1245 3.20

TABLE V. EXECUTION TIMES FOR CPU+GPU IMPLEMENTATION

portion CPU+GPU(760) CPU+GPU(TitanX)

(θ) 4 cores 8 cores 4 cores 8 cores

0.0 0.7674 0.3985 0.7674 0.3985

0.1 0.6817 0.3591 0.6753 0.3526

0.2 0.6070 0.3177 0.5953 0.3136

0.3 0.5288 0.2793 0.5167 0.2703

0.4 0.4572 0.2370 0.4493 0.2326

0.5 0.3909 0.1984 0.3824 0.2015

0.6 0.3337 0.1602 0.3250 0.1707

0.7 0.2598 0.1765 0.2482 0.1339

0.8 0.1853 0.1883 0.1788 0.1015

0.9 0.2022 0.2027 0.1142 0.1176

1.0 0.2056 0.2056 0.1245 0.1245

Fig. 1. Speed-up curves for different LP sizes

Additionally, in Fig.1 the behavior of our GPU-only
approach over different sizes of LP problems is shown, in
terms of the corresponding speedup curves). The experiments
have been performed over randomly generated dense LP
problems ranging in size from 640x640 to 10000x10000, of
similar properties as in [19,33], and with double precision
arithmetic. Note also that the speedup values have been
computed (without loss of generality) comparing to the 1-
core/sequential implementation. As it was expected the
speedup increases with the increase of the problem size.
Moreover, the speedup reaches a sufficiently high value (near
the maximum) for LP problems greater or equal to 2500x2500,
whereas it decreases sharply for smaller LP problems. This
happens because as the problem size decreases the shared
computational load also decreases a lot, and the total CPU-
GPU communication overhead (and/or the corresponding
reduction overhead) naturally becomes the dominant factor
with regard to the total processing time.

2) Performance of the Hybrid OpenMP+CUDA Scheme
In our second set of experiments we measure the

performance of our hybrid CPU/GPU implementation and we
show its superiority over the GPU-only implementation, which
was the faster among the other two. The measurements were
taken by varying the load distribution factor (portion θ) of the
simplex tableau, from 0 (equivalent to the CPU-only approach)
to 1 (equivalent to the GPU-only approach) by steps of 0.1.

In Table V, the corresponding execution times are given for
both the tested GPUs, supposing they share the computational
load (according to the varying value of θ) with 4 and 8 CPU
cores, over the randomly generated 10000x10000 LP problem;
which gives the better performance. As it can be seen, in all
cases there is at least one value of θ that leads to better
execution time than the GPU-only implementation. This
clearly validates the worth of using both resources (CPU and
GPU) concurrently, instead of the GPU alone. Moreover, the
maximum improvement is achieved for 8 CPU-cores, where
we have an improvement of 22.1% (from 0.2056 to 0.1602) for
the GTX 760 GPU and 18.5% (from 0.1245 to 0.1015) for the
GTX TitanX GPU. In terms of speedup values the above
improvements imply an additional speedup improvement of
1.28 and 1.23 for our two different test cards respectively.
These achievements are comparable to the ones presented in
other recent works in the literature [14,16-17].

Fig. 2. Speedup curves for CPU/GPU collaboration

0

5

10

15

20

25

640 1280 2500 4000 6000 8000 10000

Sp
e

e
d

u
p

LP size (n)

760

TitanX

0

5

10

15

20

25

30

640 1280 2500 4000 6000 8000 10000

Sp
e

e
d

u
p

LP size (n)

760

TitanX

760+CPU

TitanX+CPU

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

363 | P a g e

www.ijacsa.thesai.org

Furthermore, the value θ that leads to the larger
improvement for 4 CPU-cores is 0.8 for the GTX 760 and 0.9
for the GTX TitanX GPU, whereas the corresponding values
for 8 CPU-cores become 0.6 and 0.8 respectively. The fact that
are all greater than 0.5 is not surprising since the GPU-only
implementation leads to significant speedup over the CPU-only
implementation, itself; near or greater than 2 in any case (even
for 8 cores). Thus, it's naturally expected that in order to gain
some additional improvement from CPU/GPU collaboration,
the larger portion of the simplex tableau should be offloaded to
the GPU. Intuitively, we can say that if the GPU-only
implementation leads to a speedup of 's' compared to the
corresponding CPU-only implementation, in order to improve
the execution time by applying CPU/GPU collaboration, we
should assign to the CPU certainly less than the '1/s' portion
(practically much less) of the total computational load. Also, as
the number of the CPU-cores increase the maximum
improvement that can be achieved naturally increases too,
since a greater portion of computational load can be assigned
to the CPU with equivalent performance as it was in GPU.

Also, in Fig. 2, the behavior of the hybrid CPU/GPU
approach for different sizes of LP problems is shown.
Specifically, the execution times and the speedup values (over
the 1-core/sequential implementation) have been measured for
the randomly generated LP problems ranging in size from
640x640 to 10000x10000, and the corresponding speedup
curves have been drawn along with the speedup curves of Fig.
1. All the measurements have been taken for 8 participating
CPU cores and for the value θ that maximizes the performance
in each case. As it can be seen the maximum achieved speedup
decreases with the decrease of the problem size, for both the
tested GPUs. This is naturally explained again by the fact that
as the problem size decreases the shared computational load
decreases analogously, and the CPU-GPU communication
overhead becomes more crucial for the total processing time.
Note that in the CPU/GPU collaboration scheme there is
additional CPU-GPU communication (i.e. per iteration) beyond
the initial offloading overhead.

VII. FULLY HYBRID PARALLELIZATION

Finally (standing as the most important contribution of our
work), we've appropriately integrated our basic hybrid schemes
into one fylly hybrid design, and we've performed a number of
compementary experiments in order to demonstrate the worth
of use of our parallel approaches in a fully hybrid parallel
platform, i.e. a multi-node environment with multicore nodes
and also equipped with one CUDA enabled GPU. As it has

already been mentioned in Section V, our CPU/GPU
collaboration approach can fit in a straightforward manner to
our MPI+OpenMP approach, in the case of multi-node
environments. More concretely, we first have to share the
whole simplex tableau and broadcast the right-hand constraints
vector to all the processors, according to the algorithmic
approach presented in Section IV. Then each processor can
execute the CPU/GPU collaboration algorithm presented in
Section V on the local part of the simplex tableau that it has
received. Furthermore, additional (MPI-based) communication
steps between all processors have been introduced in each
iteration.

3
 Our test equipment for this set of experiments is the

same as for our first set of experiments (up to 8 Intel 3.0GHz
quad-core processors with 4GB RAM and gigabit ethernet
network connection), with each node also equipped with a
GTX 760 NVIDIA GPU. Based on the above platform, we've
run experiments over the set of very large NETLIB problems
used for the experiments in paragraph VI-A; where the
MPI+OpenMP scheme is used on the same platform, however
without the GTX 760 GPUs. The corresponding results are
presented in Table VI, for the cases of 16 (4 nodes/processors)
and 32 (8 nodes/processors) cores in total, together with the
corresponding results of Table II for comparative reasons.

As it can be seen in Table VI, the combined use of the GTX
760 GPUs in each node introduces a substantial improvement
on the speedup and efficiency values for both the cases of 4
and 8 nodes/processors

4
. This improvement increases as the

size of the problem gets larger, and it rises up to 15,9% (the
efficiency increases from 70.3% to 81.5%) for STOCFOR3
(which is the larger LP problem in our experiments) over 8
nodes/32 cores. This is naturally explained by the fact that in
larger problems the computational load is much larger within
each node/processor, so a substantial improvement on their
execution time can influence significantly the total
performance, especially in the case of prior downgrade due to
increased communication overhead. For smaller problems (e.g.
FIT2P and 80BAU3B) the improvement is quite smaller
(however clear in all cases) since the speedup and efficiency
values for these problems is quite high even without the use of
the GPUs. Also the corresponding improvement decreases a
little as the number of nodes decreases, e.g. for STOCFOR3 it
becomes equal to 11.7% over 4 nodes/16 cores (the efficiency
increases from 81% to 90.5%). This happens for similar
reasons as above, i.e. because for less number of nodes the
communication overhead is quite smaller, so the total speedup
and efficiency values are quite higher and the substantial
improvement in the execution times of the computational tasks
cannot influence the total performance in the same degree.

3 In order the globally max negative coefficient be computed and the winning

column/row be broadcasted.

4 Note that as it comes out from Table III (comparing to the use of 4 CPU

cores), we can have a speedup of 3.73 (0.2056 vs. 0.7674) by using a GTX

760 GPU, whereas we can have an additional 10% (0.1853 vs. 0.2056, see

Table 5) by using the 4 CPU cores and the GTX 760 GPU in collaboration.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

364 | P a g e

www.ijacsa.thesai.org

TABLE VI. PERFORMANCE OF THE FULL HYBRID SCHEME WITH GTX 760 GPUS

Linear

Problems

MPI+OpenMP MPI+OpenMP+Cuda (GTX 760)

4x4=16 cores 8x4=32 cores 4x4=16 cores 8x4=32 cores

 Sp Ep Sp Ep Sp Ep Sp Ep

FIT2P (3000x13525) 15.25 95.30% 29.50 92.20% 15.66 97.90% 30.43 95.10%

80BAU3B (2263x9799) 14.93 93.30% 28.64 89.50% 15.47 96.70% 30.18 94.30%

QAP15 (6330x22275) 14.48 90.50% 27.10 85.20% 15.25 95.30% 29.50 92.20%

MAROS-R7 (3136x9408) 14.13 88.30% 26.27 82.10% 15.18 94.90% 28.86 90.20%

QAP12 (3192x8856) 13.97 87.30% 25.70 80.30% 15.06 94.10% 28.54 89.20%

DFL001 (6071x12230) 14.05 87.80% 25.95 81.10% 15.06 94.10% 28.61 89.40%

GREENBEA (2392x5405) 13.58 84.90% 24.38 76.20% 14.85 92.80% 27.58 86.20%

STOCFOR3 (16675x15695) 12.96 81.00% 22.50 70.30% 14.48 90.50% 26.08 81.50%

VIII. CONCLUSION

A highly scalable parallel implementation framework of the
standard full tableau simplex method on a hybrid experimental
platform has been presented and evaluated throughout the
paper, in terms of typical performance measures. Specifically,
we have designed, implemented and evaluated a highly
efficient hybrid parallelization scheme over a real hybrid
parallel (distributed memory, multicore) platform, with use of
the standard Netlib test linear problems. The proposed hybrid
scheme involves the use of OpenMP for the parallelization
over the cores of each node and MPI for the communication
between the nodes themselves, and as shown in all the
experiments it leads to particularly high speedup and efficiency
values even for very large / huge LP problems. It has also been
shown to perform considerably better than other competitive
approaches of the literature. Further, our hybrid MPI+OpenMP
scheme is then suitably extended in order to gain improved
performance when a CUDA-enabled GPU is also involved in
the hybrid environment. A robust hybrid CPU multithreading/
GPU offloading scheme is proposed that can efficiently use the
CPU cores and the GPU concurrently. A GPU-offloading only
scheme has also been implemented for comparison purposes.
In the corresponding experiments the proposed CPU/GPU-
collaboration scheme proves to be superior to the GPU-only
scheme, with an additional speedup of up to 1.28 being
achieved for randomly generated LP problems of size
10000x10000. The performance of both the CPU/GPU-
collaboration and the GPU-only schemes are comparable to
other relevant implementations in the literature, whereas they
are also clearly superior to the OpenMP-based CPU-only
implementation (even for 8 cores). Finally, and the most
important, we have integrated our proposed schemes into a
fully hybrid one, and we present some very encouraging
experiments which lead to quite significant improvements (up
to 15,9%); when this scheme is used over a fully hybrid multi-
node platform, for large and very large LP problems. In all the
experiments we've used desktop-level GPUs in order to
emphasize the capability of using the GP-GPU computing
model for scientific applications on desktop environments too.

REFERENCES

[1] J.A. Hall. Towards a Practical Parallelization of the Simplex Method.
Computational Management Science, Springer, 7(2), 2010, pp. 139-170.

[2] E.S. Badr, M. Moussa, K. Paparrizos, N. Samaras and A. Sifaleras.
Some Computational Results on MPI Parallel Implementation of Dense
Simplex Method. World Acad. of Science, Engineering, Technology, 23,
2008, pp. 778-781.

[3] J. Qin and D.T. Nguyen. A Parallel-vector Simplex Algorithm on
Distributed-Memory Computers. Structural Optimizations, 11(3), 1996,
pp. 260-262.

[4] G. Yarmish and R.V. Slyke. A Distributed Scaleable Simplex Method.
Journal of Supercomputing, Springer, 49(3), 2009, pp. 373-381.

[5] M. Lubin, J.A. Hall, C.G. Petra and M. Anitescu. Parallel Distributed-
Memory Simplex for Large-Scale Stochastic LP Problems.
Computational Optimization and Applications, 55(3), 2013, pp. 571-
596.

[6] K.K. Sivaramakrishnan. A Parallel Interior Point Decomposition
Algorithm for Block Angular Semidefinite Programs. Computational
Optimization and Applications, 46(1), 2010, pp. 1-29.

[7] T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell,
W.D. Gropp, V. Kale and R. Thakur. MPI + MPI: A New Hybrid
Approach to Parallel Programming with MPI Plus Shared Memory.
Computing J, Springer, 95, 2013, pp. 1121-1136.

[8] B. Chapman, G. Jost and R. van der Pas. Using OpenMP. MIT Press,
2008.

[9] R. Rabenseifner, G. Hager and G. Jost. Hybrid MPI and OpenMP
Parallel Programming. Supercomputing 2013 Conference, Nov 17-22,
Denver, USA, Tutorial, http://openmp.org/ wp/sc13-tutorial-hybrid-mpi-
and-openmp-parallel-programming, 2013.

[10] R. Rabenseifner, G. Hager and G. Jost. Hybrid MPI/OpenMP Parallel
Programming on Clusters of Multi-Core SMP Nodes. Proceedings of
17th Euromicro Intl. Conf. on Parallel, Distributed and Network-based
Processing, 2009, pp. 427-436.

[11] Rabenseifner, R., and Wellein, G. Comparison of Parallel Programming
Models on Clusters of SMP Nodes. Proceedings of the Intl. Conf. on
High Performance Scientific Computing, March 10-14, Hanoi, Vietnam,
2004, pp. 409-426.

[12] B. Mamalis and G. Pantziou. Advances in the Parallelization of the
Simplex Method. Proceedings of ALGO 2015 Annual Event, Springer,
LNCS 9295 Festschrift (P. Spirakis), September 14-18, Patras, Greece,
2015, pp. 281-307.

[13] O. Adenikinju, J. Gilyard, J. Massey and T. Stitt. Concurrent Solutions
to Linear Systems using Hybrid CPU/GPU Nodes, SIAM Undergraduate
Research Online, vol. 8, 2015, pp. 1-10.

[14] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier and J.
Dongarra. DAGuE: A generic distributed DAG engine for High
Performance Computing, Parallel Computing, 38 (1-2), 2012, pp. 37-51.

http://scholar.google.gr/citations?user=2kwWnckAAAAJ&hl=el&oi=sra
http://www.springerlink.com/content/?Author=Kartik+Krishnan+Sivaramakrishnan
http://www.springerlink.com/content/60402m7473t03331/
http://www.springerlink.com/content/60402m7473t03331/
http://www.springerlink.com/content/0926-6003/
http://www.springerlink.com/content/0926-6003/
http://www.springerlink.com/content/0926-6003/46/1/
http://www.mcs.anl.gov/publications?author=1989
http://www.mcs.anl.gov/publications?author=942
http://www.mcs.anl.gov/publications?author=1
http://www.mcs.anl.gov/publications?author=2251
http://www.mcs.anl.gov/publications?author=2006
http://www.mcs.anl.gov/publications?author=2455
http://www.mcs.anl.gov/publications?author=90
http://www.mcs.anl.gov/publications?author=2456
http://www.mcs.anl.gov/publications?author=8
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4912899
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4912899
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4912899

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

365 | P a g e

www.ijacsa.thesai.org

[15] G.F. Diamos and S. Yalamanchili. Harmony: an execution model and
runtime for heterogeneous many core systems, in 17th International
Symposium On High performance distributed computing, HPDC'08,
ACM, 2008, pp. 197-200.

[16] M. Fatica. Accelerating linpack with CUDA on heterogenous clusters, in
2nd Workshop on General Purpose Processing on Graphics Processing
Units, GPGPU-2, ACM, New York, NY, USA, 2009, pp. 46-51.

[17] J. Lang and G. Runger. Dynamic distribution of workload between CPU
and GPU for a parallel conjugate gradient method in an adaptive FEM,
ICCS 2013 Conference, in Procedia Computer Science, 18, 2013, pp.
299-308.

[18] B. Mamalis and M. Perlitis. Hybrid Parallelization of Standard Full
Tableau Simplex Method with MPI and OpenMP. Proceedings of the
18th Panhellenic Conference in Informatics, ACM ICPS, 2014, pp. 1-6.

[19] M.E. Lalami, V. Boyer and D. El-Baz. Efficient Implementation of the
Simplex Method on a CPU-GPU System, IEEE International Parallel &
Distributed Processing Symposium, 2011, pp. 1994-2001.

[20] B. Mamalis and M. Perlitis. A Hybrid Parallelization Scheme for
Standard Simplex Method based on CPU/GPU Collaboration,
Proceedings of the 20th Panhellenic Conference in Informatics, ACM
ICPS, 2016, pp. 12.

[21] J.A. Hall and K. McKinnon. ASYNPLEX an Asynchronous Parallel
Revised Simplex Algorithm. Annals of Operations Research, 81, 1998,
pp. 27-49.

[22] W. Shu and M.Y. Wu. Sparse Implementation of Revised Simplex
Algorithms on Parallel Computers. Proceedings of the 6th SIAM
Conference in Parallel Processing for Scientific Computing, Norfolk,
VA, USA, 1993, pp. 501-509.

[23] M.E. Thomadakis and J.C. Liu. An Efficient Steepest-edge Simplex
Algorithm for SIMD Computers. Proceedings of the Intl. Conference on
Supercomputing, Philadelphia, PA, USA, 1996, pp. 286-293.

[24] J. Eckstein, I. Boduroglu, L. Polymenakos and D. Goldfarb. Data-
Parallel Implementations of Dense Simplex Methods on the Connection
Machine CM-2. ORSA Journal on Computing, Vol. 7 (4), 1995, pp.
402-416.

[25] C.B. Stunkel. Linear Optimization via Message-based Parallel
Processing. Proceedings of Intl. Conf. on Parallel Processing,
Pennsylvania, PA, USA, 1998, pp. 264-271.

[26] D. Klabjan, L.E. Johnson and L.G. Nemhauser. A Parallel Primal-dual
Simplex algorithm.. Operations Research Letters, Vol. 27 (2), 2000, pp.
47-55.

[27] I. Maros and G. Mitra. Investigating the Sparse Simplex Method on a
Distributed Memory Multiprocessor, Parallel Computing, 26(1), 2000,
pp. 151-170.

[28] J.A. Hall and Q. Huangfu. A high performance dual revised simplex
solver. Parallel Processing and Applied Mathematics, LNCS 7203,
Springer, 2012, pp. 143-151.

[29] Q. Huangfu and J.A. Hall. Parallelizing the dual revised simplex
method. Technical Report ERGO-14-011, http://www.maths.ed.ac.uk/
hall/Publications.html, 2014.

[30] B. Mamalis, G. Pantziou, D. Kremmydas and G. Dimitropoulos. Highly
Scalable Parallelization of Standard Simplex Method on a Myrinet
Connected Cluster Platform. Acta Intl. Journal of Computers and
Applications, 35(4), 2013, pp. 152-161.

[31] D.G. Spampinato and A.C. Elster. Linear optimization on modern
GPUs, in Proc. of the 23rd IEEE IPDPS’09 Conference, 2009, pp. 1-8.

[32] J. Bieling, P. Peschlow and P. Martini. An efficient GPU
implementation of the revised Simplex method, in Proc. of IEEE 24th
International Symposium on the Parallel & Distributed Processing,
Workshops and Phd Forum (IPDPSW), 2010, pp. 1-8.

[33] M.E. Lalami, D. El-Baz and V. Boyer. Multi GPU implementation of
the simplex algorithm, in Proc. of the 2011 IEEE 13th International
Conference on High Performance Computing and Communications
(HPCC), Banff, Canada, 2011, pp. 179-186.

[34] X. Meyer, P. Albuquerque and B. Chopard. A multi-GPU
implementation and performance model for the standard simplex
method, in Proc. of the 1st Intl. Symposium and 10th Balkan Conference
on Operational Research, Thessaloniki, Greece, 2011, pp. 312–319.

[35] N. Ploskas and N. Samaras. Efficient GPU-based implementations of
simplex type algorithms. Applied Mathematics and Computation, 250,
2015, pp. 552–570.

[36] V. Boyer and D. El-Baz. Recent Advances on GPU Computing in
Operations Research. In Proc. of IEEE 27th International Symposium on
Parallel & Distributed Processing Workshops and PhD Forum
(IPDPSW), 2013, pp. 1778-1787.

[37] A. Gurung, B. Das and R. Rajarshi. Simultaneous Solving of Linear
Programming Problems in GPU, in Proc. of IEEE HIPC 2015
Conference: Student Research Symposium on HPC, Vol. 8, Bengaluru,
India, 2015, pp. 1-5.

[38] C.T. Yang, C.L. Huang and C.F. Lin. Hybrid CUDA, OpenMP, and MPI
parallel programming on multicore GPU Clusters, Computer Physics
Communications, 182, 2011, pp. 266–269.

[39] J. Lee, M. Samadi, Y. Park and S. Mahlke. Transparent CPU-GPU
Collaboration for Data-Parallel Kernels on Heterogeneous Systems, in
Proc. of the 22nd International Conference on Parallel Architectures and
Compilation Techniques, PACT '13, 2013, pp. 245-256.

[40] Okeanos Cyclades Cloud Services. Greek Ministry of Education,
General Secretariat for Research and Technology (G.S.R.T.), https://
okeanos.grnet.gr/services/cyclades, 2015.

http://link.springer.com/book/10.1007/978-3-642-31464-3
http://link.springer.com/bookseries/558
http://www.maths.ed.ac.uk/hall/HuHa13/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5465895
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5465895

