
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

30 | P a g e

www.ijacsa.thesai.org

Dynamic Service Adaptation Architecture

Mohammed Yassine BAROUDI

University of Tlemcen

Tlemcen, Algeria

Abdelkrim BENAMAR

University of Tlemcen

Tlemcen, Algeria

Fethi Tarik BENDIMERAD

University of Tlemcen

Tlemcen, Algeria

Abstract—This paper proposes a software architecture for

dynamical service adaptation. The services are constituted by

reusable software components. The adaptation’s goal is to

optimize the service function of their execution context. For a

first step, the context will take into account just the user needs

but other elements will be added. A particular feature in our

proposition is the profiles that are used not only to describe the

context’s elements but also the components itself. An Adapter

analyzes the compatibility between all these profiles and detects

the points where the profiles are not compatibles. The same

Adapter search and apply the possible adaptation solutions:

component customization, insertion, extraction or replacement.

Keywords—Adaptative service; software component; service;

dynamic adaptation

I. INTRODUCTION

Software is executed in complex, heterogeneous, and
highly interwoven computer infrastructures, in which a
diversity of events may take place. Such events may be, for
example, security threats, network problems, reduced
performance in one of the servers, etc. In such situations, it is
preferable to adapt the software to continue to provide the
required functionality. The software adaptation can be
considered as the possibility for man to reconfigure the
software and then restart it; it may also be seen as the
software's ability to reconfigure during execution [1]. The first
case of adaptation is considered as static, while the second one
is dynamic. It is possible to perform static adaptations or
adjustments in cases where the system can be stopped to make
the required manual adjustments. However, there are critical
systems that cannot be stopped to implement the modifications,
e.g. software that run power grids, and software used in the
World Bank. In such situations, the software needs to
dynamically adapt its behavior during execution in response to
the changing conditions within its computer infrastructure
support ([2], [3], [4]).

Such software programs are increasingly based on a
service-oriented architecture and are implemented in dynamic
and distributed large scale environments.

A service-based application should take into account
different elements that interact with its functioning. It is well
accepted that:

 Service-based applications are characterized by the use
of heterogeneous and distributed components provided
by third parties, a component is a binary composition
unit with specified contractually interfaces and explicit
context dependencies; it can be deployed independently
and is subject to composition by third parties.

 The miniaturization of the devices and their mobility
make them personal objects in their own right. Users
then show a particular interest in being able to access a
multitude of services and features from anywhere and
any device.

 Users are also increasingly sensitive to the
customization of the applications they use on their
devices, such as adapting the GUI to the capabilities of
the device, adapting the application to suit their
preferences such as language, or adaptation depending
on their movements or physical environment
(brightness, temperature, etc.).

All these enumerated items are grouped in the concept of
context of service. This context is variable; Dynamic
availability of devices, network connectivity, location, and user
preferences may change unpredictably during application
execution. The adaptation of services to the context is an
important problem whose solution varies over time.

Consider that a service application is built by assembling
components. It is believed that the adaptation of this
application is performed in its architecture by adding /
removing / replacing its components.

This article is organized as follows: section 2 consists of a
study of the existing domain and presents some models of
components and some service architectures. After studying the
weaknesses found in previous solutions, an illustrative example
is used to present our proposal, in sections 3 and 4. The
prototype implemented in this study, in order to validate the
architecture, is described in section 5. Finally, the results
obtained are exposed in the conclusion.

II. STUDY OF THE EXISTING SITUATION

Several studies, addressing the dynamic adaptation, are
founded on component-based models. Recently, a component
model has emerged in the industrial world, namely the Web
service.

Basically, a Web service is a special software component
that is searched, linked, and executed at runtime. It enables
systems to interact through standard Internet protocols [5]. In
order to reach their full potential, Web services can be
combined to achieve specific functionalities. If the
implementation of a Web service for business logic implies the
use of other Web services, then this is called a composite
service. In the case of web services, the assembly has a
temporal dimension and is configured as a workflow assembly.

Research works ([6], [7], [8], [9]) targeted the evaluation of
quality attributes of service orchestrations based on

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

31 | P a g e

www.ijacsa.thesai.org

aggregation rules. These works share the same principle. The
basic idea is to define the rules of aggregation for each
workflow pattern and for each quality attribute. In most cases,
the rules are defined for a couple of workflow patterns, often
denoted as "composition patterns" ([7], [8]), except for
"sequence" and "loop" patterns, which are considered
individually.

Related works on the dynamic adaptation of service
compositions can be classified into three groups. The first
group supports the dynamic adaptation at the language level
([10], [11], [12], [13], [14]). This approach may harm the
reasoning of adaptations with complex scripts and may be
prone to error ([15]). The second group focuses on the low-
level implementation mechanisms for self-adaptation ([15],
[16], [17], [18]). This approach is not widely supported for the
analysis of the variability inherent in the dynamic adaptation at
the time of conception, and can impair the reasoning about
adaptations with complex and error-prone scripts.

The third group carries on by using the reconfiguration
transition system (RTS). Authors in [19] defined a transition
graph model at the time of conception. The nodes of the graph
represent the configurations of the system, and the arcs (edges)
represent the reconfiguration transitions, which are the required
operations to adapt a system from one configuration to another.
However, the number of valid configurations may grow
exponentially for a large number of variability points of the
system due to the combination of characteristics. Therefore, the
construction of such a diagram model may be impossible in a
large number of areas.

III. OBJECTIVE

The present study aims to provide a software architecture
that enables the dynamic adaptation of services which are built
by assembling components, depending on different use
contexts.

In more detail:

The Evaluation of the behavior of each service in relation
to its context of use, is done by analyzing the behavior of each
component that constitutes the service.

Use a profile for each constituent of the service, which
describes the component itself and the set of context elements.

An adapter analyzes the conformance between the different
profiles of each component and the profiles of the context
elements.

The adapter must then be able to identify the different
incompatibilities, apply necessary modifications, with add,
remove or replace one or more service components to remedy
the problem of maladaptation.

As part of this first experiment, the context concerns the
needs of users. The main characteristic of our proposal is that
the behavior of each service with respect to its context of use is
evaluated from the analysis of the behavior of each component
making up the service. For this reason, profiles that describe
not only the elements of context but also each component
constituting the service are used. An Adapter analyzes the
conformity between the different profiles of each component
and the profiles of context elements. The adapter detects the
mismatch points, then seeks the required changes and applies
them to the different components of the service to restore this
compatibility, by changing the configuration parameters, by
adding, removing, or replacing components.

IV. ARCHITECTURE FOR DYNAMIC ADAPTATION OF

SERVICE

The proposed architecture consists of three parts, as
illustrated in Figure 1:

 The modifiable part. This portion is composed mainly
by the service, which consists of an assembly of
components. The modifiable items include the
components and the various interconnections between
them.

 The monitoring part. This portion is represented by
monitors which observe the resources and user profiles.
These elements provide the necessary data for a
complete description of the service, called meta-
description of the service-context.

 The control part. This section is represented by an
adapter which, from the description of the service-
context, decides which modification is necessary in
order to accommodate the service, and an assembler
which executes what the adaptor decides. The adapter
uses the existing components as adaptive solutions (by
adding, modifying or removing components). These
components are predefined by the application designer
and grouped into a component-based set.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

32 | P a g e

www.ijacsa.thesai.org

Fig. 1. Architecture for dynamic adaptation of service

A. Illustrative example

An electronic forum service or bulletin board system (BBS)
allows a community of students to exchange information on
scientific and cultural activities taking place within the
university.

For practical reasons, the language of communication is the
French language, and student members have the opportunity to
write and read on the forum.

B. Identify the Headings

Figure 2 illustrates a perspective on the meta-description of
the service-context that corresponds to the scenario presented
in the illustrative example. Three different levels are found:

 The user plane (UP) which includes the physical
elements of the context

 The arrangement scheme of components containing the
architecture description language (ADL) of the service
as well as the interface definition language (IDL) of the
components.

 The ADLs describe the software architectures. The
rewriting rules capture and combine the adaptations in
the form of sets of rules (patterns) and facilitate their
selection.

 The profiles plane combines the service profile and the
context profile; it indicates the operation of the service.

a) The user plane – physical elements of context: The

physical plane comprises the physical elements of the context.

In this case, these elements are the users of the forum service.

The elements found in this plane have projections in the

profile plane. These projections constitute the meta-

description of the context.

b) The compnent plane – Service, components, and

assembly: The component plane includes service S in the form

of an assembly of software components, which form the basis

of the Bundles of the OSGI platform. In our example, this

plane consists of:

 Component A to display messages posted to the forum,

 Component E to write a new message,

 Component F to represent the forum containing all the
messages posted to the forum.

The HMI of service S is developed from a composition of
the HMIs of components E and A. The component plane
represents the syntactic part of the meta-description of the
service. To describe the service in this plane, an architecture
description language is used to determine the internal
architecture of the service, the IDL descriptors and the
interconnections, which are MANIFEST.MF files for the
components. The HMI is also included in the interconnections
(or connectors).

c) The profile plane - User profile, component profile,

composition of profiles: The profile plane is essential for

adaptation, because it represents the semantic part of the meta-

description of the service-context. For the chosen example,

this plane contains:

The profile service (PS) and the user profile (UP). The
profile service (PS) results from the combination of profiles of
components that make up the S Service, i.e. profile for writing
a message (WP), profile for displaying a message (DP), and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

33 | P a g e

www.ijacsa.thesai.org

forum profile (FP). This plane contains the semantics of the
service-context.

In our example, the user profile contains one single
parameter, namely language = 'Ar' indicating a user who writes
Arabic. The profile of a component indicates how this
component operates with respect to the context parameters.
The profile for a translation component Arabic – French is
given next:

<profile>

 <component>Translation AR_FR</component>

 <point>

 <interface>Translation</interface>

 <method>translate</method>

 <argument>text</argument>

 <argtype>String</argtype>

 <precondition>langue = ‘AR’ </precondition>

 </point>

 <point>

 <interface>Translation</interface>

 <method>translate</method>

 <returntype>String</returntype>

 <function>=</function>

 <postcondition>langue = ‘FR’</postcondition>

 </point>

</profile>

This profile indicates the behavior of the component
relative to the language; at the interface "Translation" of the
component "Translation AR_FR", there is a pre-condition on
the parameter "language" which requests the value "AR".

The returned value gives the value "FR". Therefore, this
component changes the language. Thanks to the profile, the
adapter can discover this fact.

The service profile, which is a composite component,
results from the composition of the profiles of components W
(write), D (display), F (forum); conventionally, F requires
language = 'FR'.

d) Adaptation axioms of the service-context: Regarding

the semantic part of the service-context, i.e. the one

corresponding to the profile plane, there is a need to define the

axioms (evidence or condition) that are verified to see if a

service is adapted to its context. For the example under

consideration, there is one axiom only. There is a need to

adapt the service-context if the profile parameter values are

contradictory. In our example, if the user writes in Arabic,

there is a contradiction for the "language" parameter (Ar <>

Fr) at the HMI of service S. In this case, the adaptation axiom

is not verified.

Fig. 2. Meta-description of the service-context - Various view planes

C. The adapter - Algorithm

The adapter should be able to adapt the service; its
automation requires the use of dynamic formalisms and
proceeds in three stages [20]:

 A technique is developed to detect in compatibilities,

 An abstract description of the properties of the adapted
system, the mediator between components (adapter), or
a simple correspondence between interfaces is
provided; this is called the mapping of adaptation,

 The adaptation process is then generated automatically,
using that Mapping with the interfaces of the
components to be adapted. When the adapter is placed
within the execution context, it allows correcting the
system.

The Mapping of adaptation can be obtained automatically
by using techniques from the field of semantic Web services
[21]; It may also be provided by the software architect, and this
is the case treated here.

An adapter is proposed here to perform the following
operations:

a) Checking: The adaptation axioms are verified, for

each parameter of the profiles; if they are all satisfied, it is an

adapted service.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

34 | P a g e

www.ijacsa.thesai.org

b) Searching for an adaptation solution: . If for at least

one parameter, an axiom is not satisfied, an adaptation should

be found:

 For each parameter that does not satisfy the axioms, the
adapter builds a graph with nodes representing the
component interfaces which have a relationship with
that parameter and whose arcs are the interconnections,

 In this graph, the adapter locates the branches (chain of
nodes) containing unequal values. For each branch, the
adapter searches for components whose insertion in this
branch helps restore the equal values.

c) applying the solution: if the adapter reaches that

point, it can apply the solution obtained.

V. PROTOTYPE

The proposed architecture consists of three parts, as
illustrated in Figure 1:

A – Display the forum

E - Write a message,

Proxy F - a local connector towards the remote component
F - Forum.

Component T - Translation is dynamically added to the
request of the adapter, using:

 The Wcomp platform [22] which offers a development
environment based on software components; it allows
creating dynamically the interconnections with
ISL4Wcomp. The dynamic adaptation to Wcomp is
done by the addition, removal, connection and
disconnection of the software components during the
execution of the application.

 The interaction language ISL4Wcomp [23] (Interaction
Specification Language For Wcomp) is based on the
interaction specification language (ISL) which enables
to describe the interaction patterns between objects
[24]. However, ISL4Wcomp tends to adapt these
specifications in order to take into account the
interactions that are based on messages or events in the
components encountered in the assembly aspects.

The adapter finds the translation component T in the
component directory. The search is carried out from the
component profile while respecting the type of connections.

Fig. 3. Schematic of the prototype

VI. CONCLUSION

An architecture that allows the dynamic adaptation of
services is developed in this article. Our proposal is based on
the meta-description of the service-context in which we have a
limited set of adaptation axioms that are based on the
semantics of the service. It is not necessary to describe the
different evolution rules; they can be found through the
analysis of inadequacy cases, under the condition that each
component is described with its profile.

To show that this architecture works, a prototype of forum
service was proposed. This service was initially created for
French-speaking users, but the proposed architecture enables
adapting this service by dynamically adding a translation
component if the user’s language is not French.

The main weakness of the proposed architecture is its
complexity. The suggested model still needs to be generalized
and simplified so that the various profile parameters may
combine in a simpler manner, while retaining the richness
which is required to express the axioms of adaptation.

Despite these limitations and difficulties, the authors
believe that the future of adaptation belongs to the semantic
composition of services. To achieve this, the functioning of the
service-context must be understandable both for the machine
and the human services developer.

REFERENCES

[1] Akkawi, F., Akkawi, K., Bader, A., Ayyash, M., Fletcher, D., Alzoubi,
K., 2007,March. Software adaptation: a conscious design for oblivious
programmers. In:Proceedings of the IEEE Aerospace Conference, pp. 1–
12.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

35 | P a g e

www.ijacsa.thesai.org

[2] McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C., 2004, July.
Composing adap-tive software. Computer 37, 56–64.

[3] Cetina, C., Giner, P., Fons, J., Pelechano, V., 2009, October. Autonomic
computingthrough reuse of variability models at runtime: the case of
smart homes. Com-puter 42, 37–43.

[4] Alférez, G.H., Pelechano, V.,2011a. Context-aware autonomous web
services in soft-ware product lines. In: Proceedings of the 2011 15th
International SoftwareProduct Line Conference. SPLC’11. IEEE
Computer Society, Washington, DC, USA,pp. 100–109.

[5] Koning, M., Sun, C.-a., Sinnema, M., Avgeriou, P., 2009, February.
VxBPEL: supportingvariability for web services in BPEL. Information
and Software Technology 51,258–269.

[6] Cardoso, J., Miller, J., Sheth, A., and Arnold, J. (2002). Modeling
quality of service for workflows and web service processes. Journal of
Web Semantics, 1 :281–308.

[7] C. Jaeger, M. (2007). Optimising Quality-of-Service for the
Composition of Electronic Services. PhD thesis, Berlin University,
Germany.

[8] Rosenberg, F. (2009). QoS-Aware Composition of Adaptive Service-
Oriented Systems. PhD thesis, Technical University Vienna, Austria.

[9] Coppolino, L., Romano, L., Mazzocca, N., and Salvi, S. (2007). Web

[10] services workflow reliability estimation through reliability patterns.
Security and Privacy in Communications Networks and the Workshops,.

[11] Colombo, M., Di Nitto, E., Mauri, M., 2006. SCENE: a service
composition exe-cution environment supporting dynamic changes
disciplined through rules.In: Dan, A., Lamersdorf, W. (Eds.), Service-
Oriented Computing – ICSOC 2006.Vol. 4294 of Lecture Notes in
Computer Science. Springer, Berlin/Heidelberg,pp. 191–202.

[12] Baresi, L., Guinea, S., 2011, March. Self-supervising BPEL processes.
IEEE Transactions on Software Engineering 37, 247–263.

[13] Narendra, N.C., Ponnalagu, K., Krishnamurthy, J., Ramkumar, R.,2007.
Run-timeadaptation of non-functional properties of composite web
services using aspect-oriented programming. In: Proceedings of the 5th
International Conference on Service-Oriented Computing. ICSOC’07.
Springer-Verlag, Berlin, Heidelberg, pp.546–557.

[14] Sonntag, M., Karastoyanova, D.,2011, August. Compensation of
adapted service orchestration logic in BPEL‘n’aspects. In: Proceedings
of the 9th InternationalConference on Business Process Management
(BPM 2011). Springer-Verlag,Clermont-Ferrand, France, pp. 1–16.

[15] Moser, O., Rosenberg, F., Dustdar, S.,2008. Non-intrusive monitoring
and serviceadaptation for WS-BPEL. In: Proceedings of the 17th

International Con-ference on World Wide Web. WWW’08. ACM, New
York, NY, USA,pp. 815–824.

[16] Fleurey, F., Solberg, A.,2009. A domain specific modeling language
supportingspecification, simulation and execution of dynamic adaptive
systems. In:Proceedings of the 12th International Conference on Model
Driven Engineer-ing Languages and Systems. MODELS’09. Springer-
Verlag, Berlin, Heidelberg,pp. 606–621.

[17] Erradi, A., Maheshwari, P.,2005. wsBus: QoS-aware middleware for
reliable webservices interactions. In: Proceedings of the 2005 IEEE
International Confer-ence on e-Technology, e-Commerce and e-Service
(EEE’05) on e-Technology,e-Commerce and e-Service. EEE’05. IEEE
Computer Society, Washington, DC,USA, pp. 634–639.

[18] Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F., 2010. Adaptive
management ofcomposite services under percentile-based service level
agreements. In: Maglio,P., Weske, M., Yang, J., Fantinato, M. (Eds.),
Service-Oriented Computing. Vol.6470 of Lecture Notes in Computer
Science. Springer, Berlin/Heidelberg, pp.381–395.

[19] Mosincat, A., Binder, W.,2008. Transparent runtime adaptability for
BPEL processes.In: Proceedings of the 6th International Conference on
Service-Oriented Com-puting. ICSOC’08. Springer-Verlag, Berlin,
Heidelberg, pp. 241–255.

[20] Oliveira, N, Barbosa LS (2014) A Self-adaptation Strategy for Service-
based Architectures In: VIII Brazilian Symposium on Software
Components, Architectures and Reuse. SBCARS’2014, 44–53.. IEEE,
Maceió, Alagoas.Google Scholar

[21] CANAL C., MURILLO J. M., POIZAT P., « Software Adaptation »,
L’Objet. Special Issue on Coordination and Adaptation Techniques, vol.
12, n o 1, 2006, p. 9-31.

[22] BEN MOKHTAR S., GEORGANTAS N., ISSARNY V., « Ad Hoc
Composition of User Tasks in Pervasive Computing Environments »,
Software Composition, Springer Verlag, LNCS 3628, 2005, p. 31-46.

[23] Cheung-Foo-Wo D., Blay-Fornarino M ., Tigli J-Y., Lavirotte S., Riveill
M., « Adaptation dynamique d’assemblage de dispositifs par des
modèles », 2ème journée sur l’ingénierie dirigée par les modèles (IDM),
2006a.

[24] Blay-Fornarino M., Charfi A., Emsellem D., Pinna-Dery A.-M., Riveill
M., « Software interactions », Journal Of Object Technology, vol. 3, n°
10, p. 161-180, 2004.

[25] Berger L., Mise en Oeuvre des Interactions en Environnements
Distribués, Compilés et Fortement Typés : le Modèle MICADO, Thèse
de doctorat, Université de Nice-Sophia Antipolis - Faculté des sciences
et techniques, Ecole doctorale STIC - Informatique, Octobre, 2001.

