
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

392 | P a g e

www.ijacsa.thesai.org

Optimized Quality Model for Agile Development:

Extreme Programming (XP) as a Case Scenario

Atika Tabassum

Dept. of Software Engineering

Bahria University Islamabad,

Pakistan

Dr. Shahid Nazir Bhatti

Bahria University Islamabad,

Pakistan

Aneesa Rida Asghar

Bahria University Islamabad,

Pakistan

Iqra Manzoor

Dept. of Software Engineering,

Bahria University Islamabad, Pakistan

Dr. Imtiaz Alam

Dept. of Electrical Engineering

Bahria University Islamabad, Pakistan

Abstract—The attributes of quality are that it is complex

taxonomy, it cannot be weighted or measured but can be felt,

discussed and judged. Early assessment and verification of

functional attributes (requirements) are supported well by

renowned standards while the nonfunctional attributes

(requirements) are not. Agile software development

methodologies are of high repute as the most popular and

effective approaches to the development of software systems.

Early requirements verification methodologies in Agile

Software Engineering are well focused in this way and hence

mainly researched have achieved in functional requirements. For

early quality aspects (attributes) in order to bring quality in our

design and hence development process, it is very important to

consider nonfunctional requirements quality metrics (attributes).

A comprehensive work is also being done to propose and validate

(using iThink) different quality models which could make sure

the quality of agile software products being developed, which will

be though available in detail in the literature review (section II).

Yet a generic and standard quality metrics model is missing in

this for the agile software practices in all, which off course is

further needed to make sure that the agile product being

developed, will surely accomplish quality characteristics as

decided by the stakeholders as well as the mentioned quality

standard they are addressing. In this work we have proposed a

quality metrics model that fulfills the desired quality attributes

exist in ISO/IEC (Quality standards, ISO 9126, ISO 25000) in

early requirements, we validated this by performing simulations

in iThink technology that also ensures that the quality of item

being produced to meet the described criteria.

Keywords—Agile Software Engineering (ASE); Agile Software

Development (ASD); Extreme Programming (XP); ISO; ISO 9126;

ISO 25000

I. INTRODUCTION

Extreme Programming is one of a software engineering
practice, articulated in 90s by Ward Cunningham, Kent Beck,
and Ron Jeffries [17], the most important and noticeable
among several methodologies. XP is different from traditional
methodologies in a way that it emphasizes on adaptation than
on prediction. In XP programming it is believed that it is more
realistic to adapt different changes that appear during the whole
software development process rather than specifying all the
requirements at the beginning. XP provides a way for

improvement and new style for development. XP aims at
lowering the cost of change. The process of Extreme
Programming starts with planning and then there are four steps
that are followed in all iterations: designing, coding, testing,
and listening. Though in the software development process,
requirement management and requirement engineering
practices are also very important & very critical [18].

The product quality that is being established by adopting
the extreme programing methodology is also very important.
Different quality models have been proposed that try to cover
all the important and critical quality attributes [9] [4]. Here we
have proposed a quality model specifically by considering the
activities of extreme programming. The details about
mentioned quality attributes, model and need for the model in
this is highlighted in detail in the literature review section
(section II), some limitations are given in section III, further
the details about the survey that has been conducted to
calculate the effect of different quality attributes are given in
section IV and then a model is proposed in section V.

II. LITERATURE REVIEW

A. McCall Quality Model

This very first quality model was offered by Jim McCall
[12], the quality characteristics of this model were categorized
into three major groups. These three groups contain 11 quality
attributes. First is product revision that consists of flexibility,
maintainability and testability. Second is product operation
which is dependent on honesty, reliability, precision,
effectiveness and usability. And third is product conversion
that contains the attributes reusability, transferability and
interoperability. The sole aim of this model was to minimize
the gap between the developers and the end users by
emphasizing on the dimensions of quality. This model is
suggested for generic systems, and hence the attributes that are
specific for different domains are not clearly spoken in the
space of the mentioned model [9].

B. Boehm Model

Boehm's quality model portrays a numerous leveled
structure of attributes, each of which adds to the total quality.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

393 | P a g e

www.ijacsa.thesai.org

Boehm's quality model [3] is fundamentally the expansion of
McCall Quality model.

Utility characterizes how effortlessly, dependably and
effectively programming item can be utilized, practicality
characterizes how effectively modifiable and retestable the
product item is and portability characterizes how the product
item can be utilized after change has happened as a part of a
domain [11]. Boehm distinguished seven quality components:
Portability, Reliability, Efficiency, Usability, Testability,
Understandability, and Flexibility [9].

C. FURPS Model

FURPS model [4], classify attributes into two unique
requirements, for example, Functional Requirements (F) which
is characterized by predictable input and output and Non
Functional Requirements in which U represents Usability, R
represents Reliability, P represents Performance (incorporates
practical prerequisites) and S represents Supportability
(incorporates reinforcement, essential of plan, execution,
interface) [9]. One drawback of the FURPS model is that it
doesn't reflect the portability perspective, which might be a
vital basis for application advancement, particularly for
programming based frameworks [11].

D. Dromey's Quality Model

Dromey's proposed an operational structure [15] [9] [4] for
evaluating Requirement assurance, plan and practice stages.
The structure involves three models, i.e. Requirement quality
model, Design quality model and Implementation quality
model. The top item properties for this model incorporate [11]:

 First one is correctness that checks that no defacto
standard is affected and also checks the usefulness of
quality characteristics.

 Second is internal measure that how well a module has
been situated by future use, with proficiency,
practicality, and dependability as quality
characteristics.

 Third is contextual that manage the outer effects on the
use of a constituent, with quality attributes in
dependability, viability, reusability, and compactness.

E. IEEE Quality Model

IEEE Quality Model is mainly standard for software
maintenance [6]. This model offers a process for handling and
executing software maintenance actions. Standards like quality
assurance, confirmation and authentication, software formation
controlling in which linked processes are well-defined [9]. This
model represents numerous proportions of qualitative features
and signifies features that are Reliability, Functionality,
Usability, Efficiency and Maintainability [9] [14].

F. ISO 9126-1 Model

ISO 9126 is a universal model for the improvement of
programming [11]. ISO 9126 states and figures the product
item quality regarding inner and outside programming qualities
and their relationship to properties. The ISO 9126-1 quality
model [9] [14] is additionally ordered into two groups. Initial
one is Quality being used traits and the second that contains
internal quality properties and External Quality properties.

Quality being used traits is those properties that can be
evaluated just when programming is satisfied and conveyed to
the end client. Then again inner quality properties are those
that can be measured even without executing the item, though
outer quality characteristics are those that can't be measured
without executing the item. ISO 9126-1 quality model contains
these properties so that the item can meet the guidelines of
quality.

G. Ghezzi Model

Ghezzi C. et al. [7], characterizes that center qualities
manage the structure of programming which benefits the
product engineers to achieve those outer qualities for which
programming clients have a ton of concern furthermore
conveyed both internal and external characteristics of
programming which are Reliability, Maintainability,
Reusability Usability, Flexibility, Portability, Accuracy, and
Integrity [14].

H. Other quality models/frameworks

Richard et al [8] discussed the 24 quality attributes
specifically focusing on extreme programming. In XP a
customer take part with the development team so specification
is not a single document. It consists of user stories, acceptance
tests written by customers and unit test written for each
module. Author basically applied those 24 quality attributes
that were proposed by Davis [9] for a quality SRS, on a
specification created with XP. However extreme programming
process achieves higher values in nine attributes and drops the
values in two. The most positive results were in ambiguity and
understandability because in extreme programming customer is
present at all times to answer every question [8].

M. Usman et al. [9] proposed a quality metric model for
agile development. Eight quality attributes were considered
most important for agile development. Those were availability,
flexibility, testability, scalability, performance, portability,
understandability and usability. And the influence of these
quality attributes among individual phases of SDLC was also
evaluated. Results emphasized that flexibility is the best quality
attribute among all attributes and then portability and
understandability. However it was suggested at the end that
more quality attributes can also be included in the quality
model that are maintainability and modifiability and their
influence on software development lifecycle.

Robert et al. [10] presented the influence of agile
development on quality inside the administrative, procedural
and traditional back ground and provided business standard
approvals to reduce such influences. It was suggested that IT
organizations should practice quality techniques and quality
frameworks like AAIM, AQT and ASSF. The agility
characteristics that were described are flexibility, speed,
thinness, learning and receptiveness. However this work
largely concentrated on the surface of administrative and
traditional impacts. More research examination and survey are
needed to increase the knowledge base linked to this matter.

Deepshihka et al. [11] proposed a framework that contained
some steps for the improvement of different quality models.
Here author’s basically compared different quality models and
found the main alterations between these models. It was found

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

394 | P a g e

www.ijacsa.thesai.org

that in the 17 features only one quality feature is same in all
models and that is reliability. Similarly, there are merely three
features (i.e. portability, efficiency, usability) which are fitting
to four quality models. Two features are mutual only to three
quality models and that are functionality and maintainability.
Two features fit in to two models and that are testability and
reusability. And, nine features are presented in only one quality
model. At the end some comments were given to these models.
It was said about McCall model that it is a general model based
only upon the finding of a person’s questionnaire. FURPS was
built for a company so it is a special purpose model, however it
was suggested that a new model can be built from these quality
models [9] [4] [7].

 Inderpal et al. [12] compared different characteristics of
different quality models and it was found that maintenance cost
depends so much upon the quality of a product. Author
compared different quality models and it was found that
reliability is a common characteristic of all quality models. It
was also suggested that different quality features can be
executed with relative to cost, schedule and modification.
However it was suggested at the end that it’s very significant to
have very decent description of software requirements to have
greatest results. It should be noted that different phases that are
involved in a process should be done in proper way to have
quality.

Ranbir et al. [15] presented a survey of different quality
models [3] [4] [12] [6] and also did their comparative analysis.
To do the comparison data was collected from various

organizations through questionnaire and also through different
published articles. Interviews were also taken from various
students. The questionnaire contained different quality
attributes from different quality models and their suitability
was measured and analyzed. Analysis was basically done by
using different tools that help for analyzing different things and
then results were presented in the form of comparison table.
However, it was suggested at the end that all these quality
models are working well but still there is a need a software
quality model that can be applied during whole software
development lifecycle.

Sanjay et al. [14] depicted various quality models and their
investigative assessment, decided programming capability and
its subjective attributes all the more plainly. Diverse
programming quality models were suggested for programming
applications by different scientists. The ISO 9126-1 model
which in actuality joins the consequences of various different
models has been thought as the most recognizable model and
this has been broadly recognized and acknowledged as an
elementary model in range of business and research. This was a
comprehensive study to process the diverse components of
various programming quality models and figure their near
plausibility. Simultaneously, an investigation of various
models which have been utilized to ascertain the quality will be
inspected suitably.

Table I comprehensively highlight the comparison of
different quality models/ frameworks ascribed in detail in
literature in section II.

TABLE I. COMPARISON OF DIFFERENT QUALITY FRAMEWORKS [9] [11] [7] [4] [10] [3]

III. LIMITATIONS OF DIFFERENT QUALITY MODELS

A few limitations have been observed in various quality
models. These are followings:

One of the most significant offerings of McCall model for
software quality is describing the association between SQ
dimensions. Though, this model did not
reflect one of the main features of software quality that is

functionality. By description, functionality is what a product
can do for a user. So functionality is key factor to assess the
software so that it would meet the expectations of user.

Boehm proposed a quality model based on the needs of
users but did not provide any recommendations for evaluating
the software quality features in that model. There can be
additional research done on the depth of

Quality Attributes McCall Boehm FURPS Ghezzi IEEE
ISO

9126
Dromey

Robert

et al

M.

Usman et

al

Micheal

et al

Correctness

Efficiency

Flexibility

Reliability

Testability

Maintainability

Portability

Functionality

Modifiability

Performance

Interoperability

Security

Usability

Robustness

Accuracy

Integrity

Reusability

Supportability

Scalability

Process Maturity

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

395 | P a g e

www.ijacsa.thesai.org

SQ dimensions. Hence this research displays a need to assess
the software quality.

One of the major drawback of FURPS model is that it does
not reflect one of the significant quality attribute portability.
Portability is the ability of the software to work in dissimilar or
diverse situations and environments. And user’s environment
might keep changing and therefore software also needs to
adjust to new computing environment. Especially in agile
portability can be a main attribute and for that reason cannot be
ignored.

ISO-9126 appears to be more precise, comprehensive and
does not fall short as other models do. But, it has not delivered
the clarity of how some specific software quality attributes can
be measured. This can, however, be the best model in
comparison to the other proposed models.

Dromey’s model tried to enhance the understanding of the
association between features and sub-features. So this model
could not emphasis on how to measure the software quality. It
has recognized the relationship between quality features and
sub-features. This research therefore studies this relationship
and evaluates the software quality.

IV. RESEARCH METHODOLOGY

Taking this comprehensive research literature into account
and research work done into the quality metrics in agile
software engineering (XP etc.) it has been observed that the
quality aspect is the most important aspect in every
methodology that is used for the development of software
products. Further that for bringing improvement in the quality
of the product, different models have been suggested and used
in the industry. Those models are helpful for achieving high
quality software products but we precisely we are unable to
identify in the mentioned literature and others about a model
that is specific for agile methodologies and especially and
precisely about the extreme programming. As we know that
extreme programming is different from other previous
methodologies [17], there must be a standard quality metric
model that fulfills the criteria for the activities and quality
attributes (metrics) of agile methods especially extreme
programming. Those quality attributes that contain highest
influence on the activities of extreme programming must be
analyzed and measured.

A survey has been conducted through different software
organizations (at Software Technology Park). The
methodology used for this scenario to conduct this survey
(Qualitative analysis) was that of set of questionnaires and face
to face interviews (mostly open-ended). In this almost 20
different software houses/ software companies have been
contacted and hence covered via this survey. The frequently
asked questions were as follows:

1) Do you think that choosing the most suitable quality

model is a real challenge when you are working properly in

agile?

2) In order to ensure high quality product do you think the

developer must concentrate on the quality of the process?

3) Is there a need of a quality model specifically for

extreme programming (agile)?

4) Are there any attributes in different quality models that

not need to be addressed in agile development?
Almost all the companies/software houses agreed that

selecting the most appropriate model is a challenge because all
those models are developed for traditional methodologies.
Most of these models appear to be fully adopted in large scaled
organizations or enterprises. Maybe these models could
accommodate small companies or shorter version of
businesses. All of the quality models emphasize too much on
documentation which agile proves to be resisting due to
development at a very high pace.

Almost 80% of the organizations think that there is a need
of a quality model specifically for extreme programming
(agile) because all the previously developed models contain so
many attributes that are not needed in extreme programming
(agile) so we can say that those models are complex for agile
development. Secondly most of these models appears to be
fully adopted in large scaled organizations or enterprises.
Maybe these models could accommodate small companies or
shorter version of businesses.

It is known that XP is different from all other
methodologies in many ways. It basically involves user stories,
customer availability, pair programming, small releases and
iterations, continuous integration, unit and integration testing,
acceptance testing and customer feedbacks. On the basis of
these steps, we can try to define that which quality attributes
are most important for XP and we can make a new quality
model specifically for the products that are developed through
XP approach.

Quality product is always very important and it is
understood that in case to accomplish a quality product, quality
of the process must be considered. Our proposed model will
basically represent all the phases/steps of extreme
programming and the quality parameters that are necessary to
achieve the quality product.

An evaluation criteria is defined here to measure the
influence of different attributes on agile SDLC.

Very Strong

Effect

Strong

Effect

Average

Effect
Low Effect

Very low

Effect

10 8 6 4 2

Almost 25 quality attributes in our questionnaire from all
the quality models are considered and evaluated against all the
phases involved in extreme programming (agile).

On the basis of this survey through questionnaire it has
been observed that 7 quality attributes are the most important
quality attributes for an extreme programming (agile) product.
Those 7 attributes have the highest influence on the quality of
agile process as well as on the quality of agile product.

TABLE II. EFFECT OF QUALITY ATTRIBUTES ON EXTERME PROGRAMMING SDLC & XP PRODUCT

Quality

Attributes

User

stories/

Design/

Release

Implementation/P

air Programming

Unit

testing

Integration

testing

Small

Release

Acceptance

testing

Final

Product

Overall

Influence

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

396 | P a g e

www.ijacsa.thesai.org

Require

ments

planning

Availability 10 8 8 8 8 10 8 10 70

Efficiency 4 4 10 10 6 6 8 10 58

Usability 2 4 6 8 6 8 8 10 52

Maintainability 8 8 10 6 6 10 8 10 66

Testability 4 6 8 8 10 8 8 8 60

Flexibility 8 8 10 8 6 10 4 10 64

Portability 2 6 8 8 8 8 8 10 58

Fig. 1. Effect of quality attributes on extreme programming development process

V. PROPOSED MODEL

On the basis of these results from the survey, we have
developed our quality model for Extreme Programming
(Agile).

This model contains those attributes/features that have
highest influence on the quality of agile SDLC and agile
product. It also contains the sub features that are helpful for
measuring these attributes.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

397 | P a g e

www.ijacsa.thesai.org

Fig. 2. Quality model for XP process & product

The quality attributes of a proposed quality model (quality
model for extreme programming) are defined in a table 3.

And the sub features of proposed quality model (quality
model for extreme programming) are defined in table 4.

TABLE III. DEFINITIONS OF QUALITY ATTRIBUTES USED IN PROPOSED MODEL

Availability
It refers to working ability of the application. The degree to which a system can continue to work when a major component or set of

components goes down. [11]

Efficiency
A set of attributes that relate to the relationship between the level of performance of the software and the amount of resources used,

under stated conditions.

Usability
A set of attributes that relate to the effort needed for use, and on the individual assessment of such use by a stated or implied set of

users.

Testability Attributes of software that relate to the effort needed for validating the modified software.

Flexibility Flexibility refers to the ability of an application to undergo changes when required without affecting the overall application. [11]

Portability A set of attributes that relate to the ability of software to be transferred from one environment to another. [11]

Maintainability A set of attributes that relate to the effort needed to make specified modifications.

Efficiency

Usability

Testability

Flexibility

Portability

Maintainability

Availability Requirements/user stories

Design

Implementation/pair

programming

Unit testing

Integration testing

Small Release

Acceptance testing

Operability

Reliability

Time based efficiency

Storage based efficiency

Ease of use

Easy to learn

User satisfaction

Modularity

Heterogeneity

Separation of concerns

Ease of modification

Ease of interaction

Ease of adaptation

Compatibility

Ease of installation

Ease of code addition

Ease of upgradation

Ease of defect correction

Final Product

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

398 | P a g e

www.ijacsa.thesai.org

TABLE IV. DEFINITIONS OF SUB ATTRIBUTES USED IN PROPOSED MODEL

Operability Attributes of software that relate to the users' effort for operation and operation control.

Reliability
A set of attributes that relate to the capability of software to maintain its level of performance under stated conditions for a stated

period of time. [3]

Time based efficiency
This characteristic indicates the ability to perform a specific task at the correct time, under

specified conditions. [3]

 Storage based efficiency
It is the ability to store and manage data that consumes the least amount of space with little to no impact on performance; resulting

in a lower total operational cost. [3]

User satisfaction It is the degree to which a system is pleasant to use for the user.

Modularity It is the degree to which a system's components may be separated and recombined.

Heterogeneity It is the degree to which a system’s components are separated and flexible enough so that they can be tested or used easily.

Separation of concerns
Separation of concerns (SoC) is a design principle for separating a computer program into distinct sections, such that each section

addresses a separate concern.

Ease of modification
Corrections, improvements or adaptations of the software to changes in environment and in requirements and functional

specifications.

Ease of adaptation
Attributes of software that relate to on the opportunity for its adaptation to different specified environments without applying other

actions or means than those provided for this purpose for the software considered.

Compatibility Software that is composed of elements that can easily combine with other elements.

We have tried to validate our model with the help of a
dynamic simulation tool (iThink). The graphs generated at
the end (figures 4, 5 and 6) are showing that when we
increase our inflows that means when we increase rate of
availability, rate of efficiency, rate of modifiability, rate of
portability then we see that quality of the process increases
with time and vice versa.

Fig. 3. Simulation validation in iThink

Fig. 4. Increase in Quality at early iterations

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

399 | P a g e

www.ijacsa.thesai.org

Fig. 5. To Static Quality via Attributes

And we are changing the values of different attributes then
graph is changing constantly. In this way we can say that if we
emphasize on a quality process and we will maintain quality
steps at every development phase then quality of SDLC will
continue to increase.

Fig. 6. Development in progress vs quality

VI. CONCLUSION

Software systems have to ensure consistent and bug free
execution at a rapid pace every time they are used especially in
Agile Development. Improving software quality and
performance has become a priority for almost every

organization that relies on the software development. Thus the
quality issue related to the software’s industry becomes more
important, apparent and more technical also considering the
user’s requirements in this aspect. The following work
demonstrates the need for and a detailed quality model for an
XP process as well as for an XP product. Further this also
highlight that if we want a quality product then we must
concentrate on the quality of the process first and only by
estimating quality attributes of a quality process (ISO 25000)
we can achieve a quality product metrics (ISO 9126).

Improving software quality and performance has become a
priority for almost every organization that relies on the
software development. As software development grows more
powerful the users demand are more powerful, sophisticated
software. Thus the quality issue related to the software’s
industry becomes more important, apparent and more technical
also considering the user’s requirements in this aspect. To
value customer trust and overall quality as defined by
International Standards (ISO/ IEC 9126 & 25000), the quality
metrics attributes must be taken into account in the planning
and design of the software.

Further, in Quality estimation (metrics/ attributes) in Agile
Development (XP) as we basically involves user stories,
customer availability, pair programming, small releases etc., if
we specify which quality attributes are most important for XP
which was briefly highlighted using the proposed model. The
following methodology (framework) proposed essentially
represents all the phases/ steps of extreme programming and
the quality parameters that are necessary to achieve the quality
product in this way. As concluded already we have to subsist
with this that in case to accomplish a quality product, quality of
the process must be considered a prime initiative.

The following paper presents a comprehensive quality
model for agile and specifically for extreme programming. All

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

400 | P a g e

www.ijacsa.thesai.org

those attributes that have highest influence on the quality of
agile SDLC and agile product are included and mentioned in
this model. The influence and effect of each quality model has
also been presented in tabular form and also in the form of
graph. It has been observed availability, flexibility and
maintainability has the highest effect on the quality of agile
SDLC and agile product.

REFERENCES

[1] Kumar, A., Kumar, R. and Grover, P. S. (2006). A change Impact
Assessment in Aspect-Oriented Software Systems, In the proceedings of
International Software Engineering Conference Russia, (SECR-2006),
Dec, pp. 83-87.

[2] Capers Jones, (2009). Software Engineering Best Practices: Lessons
from Successful Projects in the Top Companies, 1st Edition, McGraw-
Hill Education; 1 edition

[3] Sanjay Kumar Dubey1, Soumi Ghosh2, Prof. (Dr.) Ajay Rana (2012)
Comparison of Software Quality Models: An Analytical Approach,
International Journal of Emerging Technology and Advanced
Engineering.

[4] Zainab Sultan, Rabiya Abbas, Shahid Nazir Bhatti and S. Asim Ali
Shah, “Analytical Review on Test Cases Prioritization Techniques: An
Empirical Study” International Journal of Advanced Computer Science
and Applications(IJACSA), 8(2), 2017.

[5] Boehm, B.W (1978). Characteristics of software Quality, TRW Series of
software Technology, Amsterdam, North Holland.

[6] Aneesa Rida Asghar, Shahid Nazir Bhatti, Atika Tabassum, “Role of
Requirements Elicitation & Prioritization to Optimize Quality in Scrum
Agile Development” International Journal of Advanced Computer
Science and Applications(IJACSA), 7(12), 2016.

[7] Scotch Ambler (2002) Agile Modeling: Effective practices for extreme
programming and the Unified Process, Wiley; 1 edition

[8] Shahid Nazir Bhatti, Deducing the complexity to quality of a system
using UML. ACM SIGSOFT Software Engineering Notes 34(3): 1-
7 (2009)

[9] Aneesa Rida Asghar, Shahid Nazir Bhatti, Atika Tabassum, “The Impact
of Analytical Assessment of Requirements Prioritization Models: An
Empirical Study” International Journal of Advanced Computer Science
and Applications(IJACSA), 8(2), 2017.

[10] Jeff Langr (2011) Agile in a Flash: Speed Learning Agile Software
Development, Pragmatic Bookshelf; 1 edition

[11] Ghezzi, Jazayeri, C. M. and Mandrioli, D.(1991) Fundamental of
software Engineering, Prentice–Hall, NJ, USA.

[12] Richard Duncan (2001) The Quality of Requirements in Extreme
Programming, The Journal of Defense Software Engineering

[13] M.Usman Malik, M. Haseeb Nasir, Ali Javed (2014)An Efficient
Objective Quality Model for Agile Application Development,
International Journal of Computer Applications

[14] Aneesa Rida Asghar, Shahid Nazir Bhatti, Atika Tabassum, “Role of
Requirements Elicitation & Prioritization to Optimize Quality in Scrum
Agile Development” International Journal of Advanced Computer
Science and Applications(IJACSA), 7(12), 2016.

[15] Robert Imreh , Mahesh S. Raisinghani (2011) Impact of Agile Software
Development on Quality within Information Technology Organizations,
Journal of Emerging Trends in Computing and Information Sciences

[16] Dr. Deepshikha Jamwal (2010) Analysis of Software Quality Models for
Organizations, International Journal of Latest Trends in Computing

[17] Inderpal Singh (2013) Different Software Quality Model, International
Journal on Recent and Innovation Trends in Computing and
Communication

[18] Robert K. Wysocki (2009) Effective Project Management: Traditional,
Agile, Extreme, Wiley; 5 edition

[19] Shahid N. Bhatti, Maria Usman, Amr A. Jadi, 2015, Validation to the
Requirement Elicitation Framework via Metrics. ACM SIGSOFT
Software Engineering Notes 40(5): 17, USA.

[20] R Geoff Dromey (1995) A model for Softwre Product Quality, IEEE
Transctions on Software Engineering

[21] http://testerwiki.blogspot.com/2012/12/quality-assurance-activities-in-
sdlc.html

[22] Jerzy Nawrocki, Bartosz Walter (2002) Extreme Programming
Modified: Embrace Requirements Engineering Practices, Proceedings of
the IEEE Joint International Conference on Requirements Engineering.

[23] Ranbireshwar S. Jamwal, Deepshikha Jamwal & Devanand Padha
(2009) Comparative Analysis of Different Software Quality Models,
Proceedings of the 3rd National Conference; INDIACom-2009.
Computing For Nation Development, February 26 – 27, 2009

[24] Farrukh Latif Butt, Shahid Nazir Bhatti, Sohail Sarwar, Amr Mohsen
Jadi and Abdul Saboor, “Optimized Order of Software Testing
Techniques in Agile Process – A Systematic Approach” International
Journal of Advanced Computer Science and Applications(ijacsa), 8(1),
2017.

[25] Alexey G. Malishevsky, Joseph R. Ruthruff, Gregg Rothermel,
Sebastian Elbaum “Cost-cognizant Test Case Prioritization” Technical
Report TRUNL-CSE-2006-0004, Department of Computer Science and
Engineering, University of Nebraska – Lincoln, 2006.

http://dblp.uni-trier.de/db/journals/sigsoft/sigsoft34.html#Bhatti09

