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Abstract—Large Scale Graph Matching (LSGM) is one of the
fundamental problems in Graph theory and it has applications in
many areas such as Computer Vision, Machine Learning, Pattern
Recognition and Big Data Analytics (Data Science). Matching
belongs to the combinatorial class of problems which refers to
finding correspondence between the nodes of a graph or among
set of graphs (subgraphs) either precisely or approximately.
Precise Matching is also known as Exact Matching such as
(sub)Graph Isomorphism and Approximate Matching is called
Inexact Matching in which matching activity concerns with
conceptual/semantic matching rather than focusing on structural
details of graphs. In this article, a review of matching problem is
presented i.e. Semantic Matching (conceptual), Syntactic Match-
ing (structural) and Schematic Matching (Schema based). The
aim is to present the current state of the art in Large Scale Graph
Matching (LSGM), a systematic review of algorithms, tools and
techniques along with the existing challenges of LSGM. Moreover,
the potential application domains and related research activities
are provided.
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I. INTRODUCTION

In this era of big data, graphs are considered as data
representation tool that is capable for holding large scale
attributed data and the relationships among data entities. It has
been proven that graphs can represent structural information in
the form of attributed objects (vertices) and their relationships
(edges) in an efficient manner. The ubiquitous nature of graph
structure provides better modeling approach for representation
of relationships among almost anything (any kind of entities).
Some examples from real world where graphs are playing an
important role are: Social Networks[1], World Wide Web[2],
Flight Route Graphs[3], Communication Networks[4] and Bi-
ological/ Chemical Networks[5] etc.

According to literature of graph processing, the problem
sizes (benchmarked data sets) are getting large such as Social
Network Graph has reached the limit of trillions of edges.
Other examples are the Twitter graph which is one of the
largest graphs that have 1.5 Billion edges and graph for Yahoo
(The Altavista graph) contains 6.6 Billion edges [6], [7]. All
the real world graphs with billions or trillions of vertices and
edges are challenging to store, process and analyze.

There are various domains like Distributed Systems, Im-
age Processing, Bio/Cheminformatics, Computer Vision and
Pattern Matching in which characteristics of graphs are ex-
ploited . It is required in many applications to find similar-
ity among objects/graphs. The problem of finding similarity

among (sub) graphs is known as (sub) Graph Pattern Matching.
Graph simulation[8], Graph isomorphism[9] and Attributed
matching[10] are widely studied problems in graph matching.
Isomorphism belongs to the NP-complete class of problems
and is used for strictest matching of graphs which is concep-
tually applicable but could not scale well for large graphs[8].
On contrary, graph simulation is considered as an alternative to
isomorphism with the relaxation in matching constraints and
practically possible in polynomial time[11].

The outline followed in this paper is as: in section 2
it is discussed, how a data model can be represented as a
graph model. Section 3 describes the graph matching problems
grouped in three categories: semantic, syntactic and schematic
matching. Further in section 4, graph matching measures
are discussed. In section 5, a systematic review of existing
algorithms, tools and techniques related to graph matching
along with their potential applications is presented. In sec-
tion 6, open challenges for both academia and industry are
discussed. Related work is presented in section 7, followed by
the conclusion in section 8.

II. DATA MODELS AS GRAPHS

The matching problem for graph-oriented data is challeng-
ing. Big data and IoT has made World Wide Web (WWW)
a major source of data. In many diverse application domains,
graphs are one of the important data structures to represent
variety of data (Unstructured, Semi-structured, and Structured).
Graphs are dominant among data models because of their
expressive nature and power to model highly connected and
attributed data[9]. Data models such as relational, object-
oriented, XML, ontologies, RDF and hierarchies can be repre-
sented as graph-oriented data model. In this paper, data models
are presented which can map structural data into graph data.

Relational data model is one of the basic and traditional
data models which implements first order predicate logic for
data management. Data entities have attributes and relation-
ships. Key constraints (such as primary and foreign keys) or
referential constraints are applied to attributes and possibly
some attributes have data instances as well. The question arises
about the data mapping from one model to another model. How
can the relational data be represented as the graph data? How
can nodes and edges of a graph represent entities, attributes,
relationships, key-constraints and data instances of relational
data? There are many possible ways for such kind of data
mappings.

Generally, graphs represent data as nodes and edges. In
the case of relational databases, database name becomes root
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node and schema is partitioned into tables at level-1 where
edges between level-0 (Root Node) and level-1 (Table Nodes)
represent relationships. At level-2, nodes can be specified as
columns and edges can be considered as attributes. Further, leaf
nodes specify data instances or can be referred as tuples. We
present a general mapping tree of height 3 (see 1), considering
the fact that tree is a specialized form of graph and it is possible
to map data from one model to another.

Fig. 1. Data Mapping from Relational Data Model to Graph Data Model

XML data model is capable to model big data like it
can capture features of data which is semi-structured and
unstructured in nature. DAGs (Directed Acyclic Graphs) are
used to represent XML data. Data instances in XML model
can either be elements or attributes. Relationships among data
entities can be referred as IS-A property. The mechanism of
obtaining DAG from XML data is known as ID/IDREF. As
XML data possess irregular structure, duplication, missing
values and loose constraints, the mechanism of ID/IDREF
causes removal of duplicated data and makes it sure that one
object has one or more than one instances. The resultant data
will be a graph with Parent-Child hierarchy (DAG). Therefore,
matching problems related to data source can be resolved by
mapping data from one model to another model. Similarly,
conceptual hierarchies, ontologies, RDFs and object oriented
data models can also be transformed into graph model[12]. The
scope of this work is graph or subgraph matching problem.
Data models (Relational model for structured data and XML
model for semi-structured/Unstructured data) are discussed in
which input data could be available for matching problems and
it have to be transformed into graph data model.

III. GRAPH MATCHING

In Graph theory, Computer Scientists and Mathematicians
have done variety of significant work. Graph Matching is one
of the graph-based techniques which is briefly discussed in
this paper. As Graph matching problems belong to the class
of combinatorial problems so it can be practically (compu-
tationally) expensive. Graph algorithms which usually take
labeled and attributed graphs as an input are good candidates
for solving matching problems. From 1976 onward, there
has been an increase of algorithms and techniques on graph
matching. Representative example of matching algorithms is
Ullmans matching algorithm[9]. Other tools and techniques
are presented in section 5. In graph matching, categories
can be made between matching techniques based on three
classifications.

First, does the matching require on structural (topology)
level between vertices of one graph or among transactions (set
of graphs)? Matching of graph structure is often called as Exact
matching or Precise matching or Syntactic Matching. Syntactic
matching refers to the techniques in which input is interpreted
as a function of structural information which follows formal
definition of an algorithm. It was proposed by Bernstein and
Cupid [13] system was used for its implementation. There are
several graph matching approaches that work on structure-
based matching[14], [15]. Conceptual similarity matching is
usually insufficient in syntactic matching.

The second category in matching techniques for graphs is
based on finding conceptual correspondence between graphs
and it is also called semantic matching or approximate match-
ing. Semantic matching refers to the techniques in which input
is interpreted as model-theoretic/formal semantics and valid
justifications of results are provided[8].

The final distinction in graph matching can be made by
matching graphs on the basis of schema and it is also referred
as schema-based matching or Schematic Matching. Graph
mining is another interesting problem that exploits the similar
concepts as graph matching. Graph mining[16] is also known
as structural motif finding and it is aimed to find common and
interesting patterns in single graph or in transactions (set of
small graphs)[17], [4]. In this work, different aspects of graph
matching problems and techniques are focused. Several aspects
of Graph mining are discussed in surveys which provides a
thorough understanding about this technique [18], [19].

IV. GRAPH MATCHING MEASURES

Graph matching measures are well-known concepts that are
also known as graph similarity measures such as Graph edit
distance, Median Graph, Maximum Common Subgraph, Mini-
mum Common SuperGraph, Graph Isomorphism and Subgraph
Isomorphism. Graph isomorphism is used to check whether
graphs have structural similarity or not. Subgraph Isomorphism
is used to find if a graph is a subgraph(part of a graph) of
another.

A. Graph Edit Distance(GED):

The GED (Graph Edit Distance) of data graphs is deter-
mined by the number of edit operations needed to transform
one graph into another. Thus, smaller the edit distance of two
graphs, the more similarity will exist between graphs. Among
the graph similarity measures, GED (Graph Edit Distance) is
most commonly used to find similarities between pair of graphs
or subgraphs.It is also referred as error-tolerant graph isomor-
phism. Many applications need to manipulate graph-oriented
data with less distortion in order to transform a graph into a
similar structured graph[20]. Like SED (String Edit distance),
GED performs a set of basic graph edit operations for ma-
nipulation such as vertex/edge insertion, vertex/edge deletion
and vertex/edge substitution. It has numerous applications in
the fields of Computer Vision, Pattern Recognition, Machine
Learning, Handwriting Recognition and Cheminformatics.

B. Median Graph:

The concept of median graph is used for representation
of graphs. It can be exploited to extract significant structural
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patterns from graphs on the basis of similarity or dissimilarity.
The resultant graph that contains important information can
be obtained by the procedure of graph matching[21]. Graphs
for big data are usually stored in clusters. Median graph
is a potential candidate for better partitioning of graphs in
clustered environment. Web Mining, Shape Matching and
Image Retrieval are some of the dominant applications of
median graph.

C. Maximum Common Subgraph(MCS)

The similarity of the objects can be measured by Maximum
Common Subgraph (MCS) if no isomorphism exists between
graphs. Graph matching can be accomplished by MCS between
a set of (sub) graphs[22]. For example in Cheminformatics
and Bioinformatics, MCS plays an important role in several
aspects like Molecular Spectra Interpretation, Biochemical Ac-
tivity Prediction, Reaction Modeling and many others. There
are many research fields other than Chem/Bioinformatics as
well, in which MCS is playing a significant role such as
Image Recognition, Computer Vision, Mathematics and Pattern
Matching etc.The minimum common supergraph of corre-
sponding graphs can be thought of as either the concept of
smallest super trees between corresponding trees or the shortest
common supersequence among collection of strings.

V. POTENTIAL APPLICATION DOMAINS, ALGORITHMS,
TOOLS AND TECHNIQUES FOR LSGM

There are many emerging applications where semantic
matching is applicable such as schema emergence, event pro-
cessing, data migration/integration, management of knowledge
diversity, query translation and resource discovery etc[41].

In Health Sciences, Subgraph Matching has applications
for example biological graphs [42], alignment of metabolic
and protein networks [43], [44], inference of brain connectivity
on MRI(Magnetic Resonance Imaging) data[45] and biological
network analysis[5]. Network monitoring[2], schema matching
[46], information fusion and control[47], product assembling
and design [48], process management[49], document classi-
fication [50] and anomaly detection[51] are among real use
cases of Graph Matching.

Schema based matching is used to operate traditional
applications such as data warehousing , information integration
and distributed query processing as well as emergent applica-
tions like service integration on WWW, peer to peer database
management and agent communication etc. Generally, such
applications exploit structural data or typically conceptual
models.

Computer Vision and Image processing have various po-
tential applications where GM is intensively used for example,
similar image detection[52], Person or Object identification
and retrieval[53] , 3D perspective reconstruction[54], image
extrapolation[55], satellite imagery [56] etc.

Table I presents the systematic review of surveyed Graph
Matching tools, techniques and algorithms. DualIso[40] is an
algorithm that performs exact matching for subgraph isomor-
phism problem by exploiting pruning algorithm which makes
it conceptually simple and memory efficient. TuboIso[39] is
another robust and efficient solution for Isomorphic subgraph

search for large scale graphs which is exploiting two novel
concepts: COMP/PREM (Combine and Permute strategy) and
the Candidate Region Exploration. STwig[12] is the first sys-
tem that can perform online graph matching and exploration
on large scale graphs. For graph exploration, graph data is
deployed on memory cloud which exploits commodity hard-
ware (machines) for clusters. Spidermine[38] is suitable to
obtain top-K results for graph pattern matching from input
graphs. SIGMA (A SET-COVER-BASED INEXACT GRAPH
MATCHING ALGORITHM)[37] provides efficient inexact
graph matching featured by filtering algorithms.

Catalog integration is one of the prominent applications of
web service integration. Conceptual hierarchies can be repre-
sented as trees with attributed nodes and edges. In applications
like catalog integration, catalogs/service dictionaries can be
represented as conceptual hierarchies. eBay and Amazon cat-
alogs are typical examples of such catalogs to quote. Catalog
Matching Problem and mapping techniques are discussed in
[57]. Web services are applications that provide web interface
for users so that they can interact and utilize web services[58].
On the other hand, semantic web exploits the concepts of
ontologies and knowledge representation in order to deliver
better services. In [59], the process of integration and discovery
of web services is presented.

VI. EXISTING CHALLENGES FOR LARGE SCALE GRAPH
MATCHING

With the advent of cutting edge technologies, data is
getting huge and traditional approaches are not sufficient to
grasp the meaningful hidden insights from data. There are
many significant open challenges that are posed by the scale
of graphs ranging from storage infrastructures to processing
paradigms. General purpose systems for graph processing
are not available yet because it is critical to develop such
platforms. Graph analytics are of two types that is real-
time/online graph analytics and batch/offline graph processing.
Distributed systems are considered as feasible platform for
both kind of processing for graphs that contain hundreds of
billions of nodes. Dataset of graph can be a single large graph
or a set of small graphs that are often known as transactions.

Graph partitioning belongs to the class of problems which
are NP-complete. Parallel and distributed tools and techniques
are upsurging to analyze graph data efficiently. Since the
graph of big data is difficult to process at once so it has to
be partitioned into set of small graphs while preserving the
connectedness of graph and balancing the load on clusters.
Therefore, in distributed environments it is challenging to ap-
ply state-of-the-art graph algorithms and analytics techniques.
A well discussed problem of graph processing is to find
good and balanced partitions of large graphs so they could
evenly distribute the computational load across clusters[60].
The prominent methods for graph partitioning are edge-cut
partitioning and vertex-cut partitioning. Communication over-
heads can be reduced by exploiting edge-cut partitioning also
it can balance the number of nodes (vertices) for each partition
[1]. On contrary, vertex-cut partitioning technique can be used
to partition Power-Law graphs that contain real-world data
such as Collaboration Network or Social Networks.

Graph comparison can be performed by matching graphs
or subgraphs. Generally, graph matching problem is to find
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TABLE I. ALGORITHMS, TOOLS AND TECHNIQUES FOR LSGM

Algorithms,tools Indexing Matching Locality Spatial Temporal
and Techniques Scheme Scheme Complexity Complexity
Ullman[15] 1976 No-Indexing Exact In-Memory O(N3) O(N !N2)
SubDue[23] 1994 Frequent Subgraph Inexact Out-of -core - Exponential
GraphGrep[24] 2002 Frequent Subgraph Both In-Memory O(lp.np.li)

lp O(nq + eq)

gIndex[25] 2004 Inverted Indexing Both Out-of-core - θ( 1

maxl )
2

CTree[26] 2006 Frequent Subgraph Both In-Memory O(n2) O(n.d2logn)
FG-Index[27] 2007 Edge indexing Exact Out-of-core O(Fd) O(T )
Tree+Delta[28] 2007 Tree-based indexing Exact In-Memory O(Cq) Ploynomial
TALE[29] 2008 NH-Indexing Inexact Out-of-core O(Sbit.log(d)) O(Sbit)

GraphQL[30] 2008 Frequent Subgraph Both In-Memory O(k.n) O(nk)
RJOIN[31] 2008 Frequent Subgraph Both In-Memory O(n.5n) O(mn5n)
QuickSi[32] 2008 Swift Indexing Exact In-Memory O(SEQq + g) Polynomial
GADDI[33] 2009 NH-Indexing Exact In-Memory O(n2) O(n3)
DistanceJoin[34] 2009 Frequent Subgraph Inexact In-Memory O(n) O(n)
BitMat[35] 2010 Edge indexing Exact In-Memory O(m) O(m)
Rdf-3x[36] 2010 Edge indexing Inexact Out-of-core O(m) O(m)
SIGMA[37] 2010 Frequent Subgraph Inexact On-cloud - -
SpiderMine[38] 2011 Frequent Subgraph Exact Out-of-core - Exponential
STwig[12] 2012 No-Indexing Both On-Cloud O(n) O(n)
TurboIso[39] 2013 No-Indexing Exact In-Memory Polynomial O(G2)
DualIso[40] 2014 Vertex Indexing Exact In-Memory O(E) O(E)

the similarity (or dissimilarity) between model graph and
input graph. Graph matching can be exact that is exploiting
graphs by using their syntactical description or inexact which
means comparison between graphs can be performed on the
basis of semantics of graphs. There are different approaches
used to achieve exact matching for example Isomorphism,
monomorphism and subgraph isomorphism.

During last few decades, it has been an open challenge
to design well suited algorithms with low complexity for
matching large scale graphs. There are many different in-
variant of graph properties such as scaling and rotation etc.
Usually, a good structural correspondence between graphs can
be achieved by Graph Isomorphism [61]. Graph isomorphism
has applications like Bio/Cheminformatics, Automation of
Electronic Circuits and Exact Pattern Recognition[62].

VII. RELATED WORK

In case of big data, graph-oriented data is too large to
be queried in an easy and efficient manner. Graph pattern
matching queries can be large,take exponential time and return
number of matches from a graph[63]. Among classes of
queries, TWIG queries are grabbing attention of users from
both academia and industry. Many important queries like RDF
queries and XQuery/ XPath queries which are XML queries
can be treated as TWIG queries[64].

Experiments can be performed on real datasets as well as
on synthetic datasets. Examples of existing real datasets are US
Patents and WordNet which represents relationships between
US referenced patents and English words, respectively. First
mentioned graph contains 133,455 edges and 82,670 vertices
[65]while second graph has 16,533,438,8 edges and 3,774,768
vertices[66]. Additionally, R-MAT[67] can be used to generate
synthetic datasets. The problem of matching graphs for big
data is challenging due to the concern of size of graph.
Some existing approaches for matching graphs are: Indices
method[68] and pruning methods [69]. Distributed and parallel
approaches are also used for processing large graphs for
example MST (Minimal spanning tree), SPP (Shortest path
problem) and connected component are algorithmic strategies
that can be used for computation[3].

Matching operations can be classified in various dimen-
sions such as on the basis of input/output of algorithms or on
the basis of characteristics of an entire matching process[10].
As first dimension, data/conceptual model representation (ei-
ther schema or ontology) can be considered as an input for
algorithm. For example OWL and RDF models are supported
by QOM[70], Relational and XML models are supported by
Cupid[13] and Object Oriented and Relational models are
supported by Artemis[63]. As a second possibility, algorithms
can exploit the characteristic of data (what is the kind of
input data?) that is either the input provides instance level
information, the schema level information or both. For example
COMA[71]and Cupid[13] rely on schema level information,
GLUE[36] rely on Instance level information while QOM[70]
rely on both. In matching process, algorithms can be classified
as semantic, syntactic and schematic nature of computation.
Algorithms are used analyze the patterns of data exactly or
approximately.

Recently proposed Matching Systems based on schema
level matching are Artemis (Analysis of Requirements: Tool
Environment for Multiple Information Systems), Similarity
Flooding (SF), QOM (Quick Ontology Mapping), OLA (OWL
Lite Aligner), COMA (Combination of Matching Algorithms),
Cupid, NOM (Naive Ontology Mapping) and Anchor Prompt
[72], [70], [71], [13]. There also exist some infrastructures that
use matching as integration such as Protoplasm, OntoMerge,
MAFRA and Chimaera [73].

VIII. CONCLUSION

We are living in the age of Big Data and graphs are the
most suitable choice for representing large scale multi-modal
data as they can effectively represent the relationships of dif-
ferent data. Large scale graphs have been used for analysis of
complex data sets like social networks, bioinformatics, health
informatics, social security, web and scientific applications that
produce large amount of data. To fully utilize the information
represented by graphs, efficient matching algorithms, tools
and techniques are required. In this paper, a review of state
of the art Large Scale Graph Matching (LSGM) algorithms,
techniques and tools has been presented. Matching problem
is described according to various types of graph matching.
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Moreover, potential applications and research activities has
been presented. This article will be helpful for the researchers
to get firsthand knowledge of existing LSGM algorithms and
techniques and to plan for future research.
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