
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

279 | P a g e

www.ijacsa.thesai.org

A Novel Edge Cover based Graph Coloring

Algorithm

Harish Patidar

Research Scholar

Department of Computer Science and Engineering

Sir Padampat Singhania University

Udaipur, India

Dr. Prasun Chakrabarti
Professor and Head

Department of Computer Science and Engineering

Sir Padampat Singhania University

Udaipur, India

Abstract—Graph Colouring Problem is a well-known NP-

Hard problem. In Graph Colouring Problem (GCP) all vertices

of any graph must be coloured in such a way that no two

adjacent vertices are coloured with the same colour. In this

paper, a new algorithm is proposed to solve the GCP. Proposed

algorithm is based on finding vertex sets using edge cover

method. In this paper implementation prospective of the

algorithm is also discussed. Implemented algorithm is tested on

various graph instances of DIMACS standards dataset.

Algorithm execution time and a number of colours required to

colour graph are compared with some other well-known Graph

Colouring Algorithms. Variation in time complexity with

reference to increasing in the number of vertices, a number of

edges and an average degree of a graph are also discussed in this

paper.

Keywords—Graph Colouring Problem; Edge Cover;

Independent Set; NP-Hard Problem

I. INTRODUCTION

Graph Colouring Problem is used to the optimal solution of
many real world practical applications like Time table
scheduling [13], Air traffic flow management [29], Frequency
assignment and Computer gaming. The graph colouring
problem is defined as follows. Let G= (V, E) is a graph with |V|
is a number of vertices and |E| is a number of edges, which
connects vertices to each other. The edges are of the form (a,
b) where a, b ∈ E. The problem of graph colouring is to assign
a colour to each vertex a ∈ V such that a and b does not colour
with the same colour.

Finding the optimum solution in optimum time is always
the objective of researchers. In general colouring optimisation
is the primary objective of graph colouring algorithms. But
when it comes to a large graph where a number of vertices and
number of edges are in large number, time complexity is more
important than colouring optimisation. For example genetic
algorithm with multipoint guided mutation algorithm
(MSGCA) generate optimum chromatic number (5) for graph
instance 4-Insertion_4, i.e. number of colours required to
colour graph of 475 vertices and 1795 edges are five. But
algorithm takes 1071 seconds to complete execution [8]. And
proposed algorithm gives the same chromatic number and
generates results in 0.41 second only.

Today, graph colouring algorithms are used for many
internet applications, social media websites where graph size is
very large. And user required fast results of their web access.

Rest of the paper is organised as follows: In section II,
related work done by researchers in the field of graph colouring
is discussed. In section III problem with the existing algorithm
is highlighted. In section IV an algorithm is proposed to solve
the problem highlighted in section III. In section V
experimental results of proposed algorithm on DIMACS graph
instances are shown. In section VI, results analysis is done on
the bases of experimental results and results are also compared
with some other well-known graph colouring algorithms. In
Section VII, the conclusion of research work is discussed and
future enhancement in proposed algorithm is also discussed.

II. RELATED WORK AND BACKGROUND

There are already so many approaches to solving the GCP
given by the researchers. These approaches are widely divided
into two categories: (1) approximate [2], and (2) exact. The
approximate approach does not give the best solution but can
give a result with the large graphs. The algorithm developed by
exact approach gives satisfactory results but most of the exact
algorithms are not suitable for large graphs.

On the basis of an execution graph colouring algorithm can
be sequential and parallel. There are number of algorithm like,
Cuckoo optimisation algorithm [3], modified cuckoo
optimisation algorithm [4], polynomial 3-SAT encoding
algorithm [5], Ant colony optimisation algorithm [6], Mimetic
algorithm [7], GA with multipoint guided mutation algorithm
[8] many more are sequential graph colouring algorithm. On
the other hand Parallel largest-log-degree-first (LLF) [9],
Parallel smallest-log-degree-first (SLF) [9], a parallel
algorithm based on BRS [10], parallel graph colouring on multi
core CPUs [11] are a parallel algorithm. The parallel algorithm
is more time efficient then sequential algorithm due to parallel
execution of different iterations of the algorithm.

III. PROBLEM IDENTIFICATION

The primary objective of graph colouring algorithm is to
find the optimum chromatic number (number of colours
required to colour all vertices of the graph), but when graph
size is large and average vertex degree of a graph is high, the
time complexity of the algorithm is more important than the
chromatic number. For the large graphs algorithm execution
time should be finite and optimum. In a review of different
kinds of literature it has been found that most of the algorithms
are not able to colour large graphs in optimum time.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

280 | P a g e

www.ijacsa.thesai.org

IV. PROPOSED ALGORITHM

In this paper, edges cover based graph colouring algorithm
is proposed. This proposed algorithm full fill the need of
optimum time complexity for large graphs. This algorithm is
based on finding an independent set (not a single connecting
edge between vertices) of vertices using edges cover technique.
The algorithm is able to give results for all kinds of graph
instances successfully. Execution time is also optimum for
large graphs.

A. Edges Cover Technique

Edge cover technique is a selection of vertices of any graph
in such a manner that all edges of the graph will be covered.
The remaining vertices set is called independent set. There
should be minimum vertices in edge cover vertices set, to get
maximum independent set.

V EC V I V (1)

where,

V (EC) is set of Edge cover vertices.

V (I) is set of Independent vertices in the graph.

V is set of all vertices of the graph.

B. Edge Cover Graph Coloring Algorithm

Proposed Edges cover graph colouring algorithm works in
an iterative manner. Each iteration gives a single set of
vertices. This set contains vertices independent to each other,
so that each vertex of the set can assign a single colour. The
behaviour of iteration depends on a number of sets. For the
large graph it is difficult to predict a number of sets. Figure 1
shows algorithm flow and different iterations.

Proposed algorithm takes the graph instance as input in the
form of adjacency edge list. The algorithm generates a certain
number of vertices sets as an output each set of vertices can be
coloured with the same colour.

C. Complexity Analysis of Algorithm

Proposed graph colouring algorithm is NP-hard in nature.
So it is hard to determine the complexity hypothetically. The
complexity of algorithm depends on a number of independent
sets. A number of independent sets are unpredictable. Proposed
algorithm works on iterations. All iterations have three parts
where maximum execution time is required.

First: when the degree of vertices is calculated. Equation
(2) shows the complexity of calculating the degree of vertices
in determining the single independent set.

|Nv|*|Ne| (2)
where,

Nv is a number of vertices in vertex set.

Ne is a number of edges in edge set.

At the end of algorithm execution if algorithm generates
total k independent sets then the total complexity of calculating
the degree of all vertices in all iterations is shown in equation
(3).

 ∑ Nv N
 (3)

where,

Nvi is a number of vertices in vertex set while finding ith
independent set.

Nei is Number of edges in edge set while finding ith
independent set.

k is a number of independent sets

Fig. 1. Flow chart of algoritm

Second, time complexity in finding maximum degree
vertices is shown by equation (4).

 ∑ V (V)
 (4)

where,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

281 | P a g e

www.ijacsa.thesai.org

Vi is a number of vertices in vertex set while finding ith
independent set.

k is Number of independent sets.

And third is when edge set required editing. Complexity to
update edge set in all iteration of the algorithm can be
evaluated by equation (5).

 ∑ |V | D (V x)
 E

 (5)
where,

Veci is a number of vertices in edge cover set while finding
ith independent set.

Degree(Vmax) is a degree of maximum degree vertex.

Eec is a number of edges connected to vertices available in
edge cover set.

V. EXPERIMANTAL RESULTS

To evaluate the proposed algorithm DIMACS graph
instances are used. DIMACS instances of graphs are
introduced by scientists for graph colouring problem. Most of
the graph colouring algorithms are tested on DIMACS graph
instances. Some graphs of DIMACS are generated randomly
by computer programs and some of them are results of real
world applications.

Proposed algorithm is implemented in JAVA Programming
language (jdk1.8.0_74). Eclipse JUNA Editor is used to write
the program. Operating system Windows Server 2012 Standard
64-bit is used. Intel Pentium Dual CPU G640 @2.80Ghz with
2 GB RAM is used for implementation and result evaluation.

In this section of paper, test results on DIMACS graph
instances are shown. Test results are shown in the tabular form.
Each table contains graph Instance name, Number of vertices
(V) in the graph, Number of edges connected to vertices (E),
Number of coloured required to colour graph (K) which is
generated by an algorithm, and Time (in Seconds) taken by the
algorithm to execute.

A. DSJC Series Graphs Results

Table 1 shows the DSJC series of instances results. They
are random graphs used in the paper by David S. Johnson.

TABLE I. DSJC GRAPHS TEST RESULTS

Instance Vertices (V) Edges (E) Colours (K) Time (s)

DSJC125.1 125 736 8 0.125

DSJC125.5 125 3891 25 0.797

DSJC125.9 125 6961 56 1.739

DSJC250.1 250 3218 12 0.673

DSJC250.5 250 15668 42 3.578

DSJC250.9 250 27897 94 13.932

DSJC500.1 500 12458 19 2.328

DSJC500.5 500 62624 73 41.642

DSJC500.9 500 224874 168 209.882

B. DSJRx Graphs Results

DSJRx graph instances are geometric random graphs with x
nodes randomly distributed in the unit square. These graphs are

used in a paper by David S. Johnson. Table 2 shows the
proposed algorithm results.

TABLE II. DSJRX GRAPHS TEST RESULTS

Instance Vertices (V) Edges (E)
Colours

(K)
Time (s)

DSJR500.1 500 3555 15 1.265

DSJR500.1c 500 121275 103 599.203

DSJR500.5 500 58862 197 493.005

C. Myciel Graphs Results

Myciel graphs are based on the Mycielski transformation
and they are triangle free graphs. Table 3 show the results of
myciel graphs on proposed algorithm.

TABLE III. MYCIEL GRAPHS TEST RESULTS

Instance Vertices (V) Edges (E)
Colours

(K)
Time (s)

myciel3 11 20 4 0.016

myciel4 23 71 5 0.031

myciel5 47 236 6 0.094

myciel6 95 755 7 0.188

myciel7 191 2360 10 0.422

D. k-Insertion graphs and Full Insertion graphs results

k-insertion graphs and full insertion graphs are also tested
on proposed algorithm. These graphs are a generalisation of
myciel graphs with inserted nodes to increase graph size but
not density. These instances are created by M. Caramia and P.
D ll’Ol o. T bl 4 shows the results of k-insertion graphs and
full insertion graphs.

TABLE IV. K-INSERTION AND FULL INSERTION GRAPHS TEST RESULTS

Instance Vertices (V) Edges (E) Colors (K) Time (s)

1-FullIns_3 30 100 4 0.032

1-FullIns_4 93 593 5 0.14

1-FullIns_5 282 3247 6 0.469

1-Insertions_4 67 232 5 0.063

1-Insertions_5 202 1227 6 0.219

1-Insertions_6 607 6337 7 0.953

2-FullIns_3 52 201 5 0.078

2-FullIns_4 212 1621 6 0.252

2-FullIns_5 852 12201 8 1.484

2-Insertions_3 37 72 4 0.016

2-Insertions_4 149 541 5 0.161

2-Insertions_5 597 3936 8 0.75

3-FullIns_3 80 346 6 0.078

3-FullIns_4 405 3524 8 0.594

3-FullIns_5 2030 33751 9 6.789

3-Insertions_3 56 110 4 0.031

3-Insertions_4 281 1046 5 0.219

3-Insertions_5 1406 9695 7 1.858

4-FullIns_3 114 541 8 0.187

4-FullIns_4 690 6650 9 0.985

4-FullIns_5 4146 77305 10 33.566

4-Insertions_3 79 156 4 0.078

4-Insertions_4 475 1795 5 0.406

5-FullIns_3 154 792 8 0.188

5-FullIns_4 1085 11395 10 1.422

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

282 | P a g e

www.ijacsa.thesai.org

E. Matrix Partitioning Problem Graphs Results

These graphs are generated by Matrix partitioning problem.
Graphs from a matrix partitioning problem in the segmented
columns approach to determine sparse Jacobian matrices.
Table 5 shows the results of proposed algorithm on these
graphs.

TABLE V. MATRIX PARTITIONING PROBLEM GRAPHS TEST RESULTS

Instance Vertices (V) Edges (E)
Colours

(K)
Time (s)

ash331GPIA 662 4185 6 0.953

ash608GPIA 1216 7844 6 1.797

ash958GPIA 1916 12506 6 3.25

F. Register Allocation Problem Graphs Results

Proposed algorithm is also tested on graph instances
generated by register allocation problem. Table 6 shows the
results of register allocation problem generated graphs.

TABLE VI. REGISTER ALLOCATION PROBLEM GRAPHS TEST RESULTS

Instance
Vertices (V) Edges (E) Colours (K) Time (s)

fpsol2.i.1 496 11654 65 1.954

fpsol2.i.2 451 8691 31 1.328

fpsol2.i.3 425 8688 31 1.297

inithx.i.1 864 18707 54 2.969

inithx.i.2 645 13979 31 2.062

inithx.i.3 621 13969 31 1.944

mulsol.i.1 197 3925 49 0.848

mulsol.i.2 188 3885 31 0.624

mulsol.i.3 184 3916 31 0.578

mulsol.i.4 185 3946 31 0.592

mulsol.i.5 186 3973 31 0.577

zeroin.i.1 211 4100 51 0.902

zeroin.i.2 211 3541 32 0.562

zeroin.i.3 206 3540 32 0.526

G. Latin Square Problem Graphs Results

The problem corresponds to assigning colours to the cells
of an empty matrix such that there is no repetition of colours in
each row/column of the matrix is called Latin Square Problem.
Some graphs are generated by Latin square problem are also
used to test the proposed algorithm. Table 7 shows the results
of graphs generated by Latin square problem.

TABLE VII. LATIN SQUARE PROBLEM GRAPHS TEST RESULTS

Instance Vertices (V) Edges (E) Colours (K) Time (s)

qg.order100 10000 990000 128 20540.5

qg.order30 900 26100 40 17.441

qg.order40 1600 62400 60 96.171

qg.order60 3600 212400 82 978.151

latin_square_10 900 307350 152 1095.71

H. Leighton Graphs Results

L hton phs n t d by L hton’s ph
covering theorem (Two finite graphs which have a common

covering have a common finite covering). Leighton graphs
results on proposed algorithm are shown in Table 8.

TABLE VIII. LEIGHTON GRAPHS TEST RESULTS

Instance Vertices (V) Edges (E)
Colours

(K)
Time (s)

le450_15a 450 8168 23 1.817

le450_15b 450 8169 23 1.736

le450_15c 450 16680 33 3.69

le450_15d 450 16750 34 3.789

le450_25a 450 8260 33 1.907

le450_25b 450 8263 30 2

le450_25c 450 17343 39 4.063

le450_25d 450 17425 40 4.598

le450_5a 450 5714 11 1.11

le450_5b 450 5734 13 1.188

le450_5c 450 9803 9 1.143

le450_5d 450 9757 8 1.266

I. Miles Graphs Results

In miles graphs nodes are placed in space with two nodes
connected if they are close enough. The nodes represent a set
of United States cities. Proposed algorithm test results are
shown in Table 9.

TABLE IX. MILES GRAPHS TEST RESULT

Instance Vertices (V) Edges (E)
Colours

(K)
Time (s)

miles1000 128 6432 51 1.406

miles1500 128 10396 81 2.588

miles250 128 774 10 0.18

miles500 128 2340 26 0.422

miles750 128 4226 39 0.953

J. Queen Graphs Results

A queen graph is a graph on n^2 nodes, each corresponding
to a square of the board. Two nodes are connected by an edge
if the corresponding squares are in the same row, column, or
diagonal. 13 different instances of queen problem are tested on
proposed algorithm. The test result is shown in Table 10.

TABLE X. QUEEN PROBLEM GRAPHS TEST RESULTS

Instance Vertices (V) Edges (E)
Colours

(K)
Time (s)

queen10_10 100 2940 17 0.437

queen11_11 121 3960 18 0.703

queen12_12 144 5192 19 0.859

queen13_13 169 6656 20 1.046

queen14_14 196 8372 21 1.375

queen15_15 225 10360 25 1.86

queen16_16 256 12640 27 2.221

queen5_5 25 320 7 0.094

queen6_6 36 580 10 0.125

queen7_7 49 952 12 0.203

queen8_12 96 2736 15 0.468

K. School Scheduling Graphs Results

School scheduling graphs are generated for scheduling the
classes of school. Test results are shown in Table 11.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

283 | P a g e

www.ijacsa.thesai.org

TABLE XII. SCHOOL SCHEDULING GRAPHS TEST RESULTS

Instance Vertices (V) Edges (E)
Colours

(K)
Time (s)

school1 385 19095 43 4.682

school1_nsh 352 14612 40 2.924

L. Large Random Graph Result

Proposed algorithm is also tested on a random graph. This
graph has 2000 vertices and 999836 edges. Table 12 shows the
number of coloured and execution time of proposed algorithm.

TABLE XIII. RANDOME LARAGE GRAPHS TEST RESULTS

Instance Vertices (V) Edges (E)
Colours

(K)
Time (s)

C2000.5 2000 999836 239 19091.7

M. Quasi-random coloring problem generated graphs results

Graph generated by Quasi-random colouring problem test
results are shown in Table 13.

TABLE XIV. QUASI-RANDOM COLORING PROBLEM GRAPHS TEST RESULTS

Instance Vertices (V) Edges (E) Colours (K) Time (s)

flat1000_50_0 1000 245000 125 698.714

flat1000_60_0 1000 245830 125 697.875

flat1000_76_0 1000 246708 128 642.514

flat300_28_0 300 21695 45 5.954

R50_1g 50 108 5 0.047

R50_1gb 50 108 5 0.047

R50_5g 50 612 15 0.093

R50_5gb 50 612 15 0.124

R50_9g 50 1092 25 0.265

R50_9gb 50 1092 25 0.251

R75_1g 70 251 6 0.063

R75_1gb 70 251 6 0.078

R75_5g 75 1407 16 0.234

R75_5gb 75 1407 16 0.281

R75_9g 75 2513 39 0.577

R75_9gb 75 2513 39 0.593

N. Geometric Random Graphs Results

Geometric random graphs test result on proposed algorithm
is shown in Table 14.

TABLE XV. GEOMETRIC RANDOM GRAPHS TEST RESULTS

Instance Vertices (V) Edges (E)
Colours

(K)
Time (s)

r1000.1c 1000 485090 124 1220.47

r1000.5 1000 238267 411 2035.23

r250.5 250 14849 101 7.327

O. Geometric Graph with Bandwidth and Node Weights

Graphs Results

In these graph instances bandwidth of each edge and
weights of nodes are given. Proposed algorithm tested by
ignoring edges bandwidth and nodes weight. Results of
geometric graphs are shown in Table 15.

TABLE XVI. GEOMETRIC GRAPHS WITH BANDWIDTH AND NODE WEIGHT

TEST RESULTS

Instance Vertices (V) Edges (E)
Colours

(K)
Time (s)

GEOM100 100 647 10 0.14

GEOM100a 100 1092 16 0.219

GEOM100b 100 1150 20 0.234

GEOM110 110 748 11 0.171

GEOM110a 110 1317 19 0.234

GEOM110b 110 1366 21 0.281

GEOM120 120 893 11 0.187

GEOM120a 120 1554 21 0.312

GEOM120b 120 1611 23 0.328

GEOM20 20 40 5 0.016

GEOM20a 20 57 6 0.031

GEOM20b 20 52 4 0.032

GEOM30 30 80 6 0.031

GEOM30a 30 111 7 0.046

GEOM30b 30 111 6 0.031

GEOM40 40 118 6 0.047

GEOM40a 40 186 8 0.062

GEOM40b 40 197 7 0.093

GEOM50 50 177 6 0.062

GEOM50a 50 288 11 0.078

GEOM50b 50 299 10 0.094

GEOM60 60 245 7 0.062

GEOM60a 60 399 11 0.093

GEOM60b 60 426 12 0.124

GEOM70 70 337 9 0.078

GEOM70a 70 529 12 0.125

GEOM70b 70 558 12 0.156

GEOM80 80 429 8 0.125

GEOM80a 80 692 14 0.156

GEOM80b 80 743 15 0.172

GEOM90 90 531 10 0.125

GEOM90a 90 879 16 0.234

GEOM90b 90 950 18 0.219

P. Book Graphs Results

Book graphs are created where each node represents a
character. Two nodes are connected by an edge if the
corresponding characters encounter each other in the book.
Proposed algorithm test result of book graphs are shown in
Table 16.

TABLE XVII. BOOK GRAPHS RESULTS

Instance Vertices (V) Edges (E) Colours (K) Time (s)

anna 138 986 12 0.202

david 87 812 12 0.204

huck 74 602 11 0.109

jean 80 508 10 0.078

Q. Game graph results

Game graph representing the games played in a college
football season can be represented by a graph where the nodes
represent each college team. Two teams are connected by an
edge if they played each other during the season. Test results of
the game graph are shown in Table 17.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

284 | P a g e

www.ijacsa.thesai.org

TABLE XVIII. GAME GRAPH RESULTS

Instance Vertices (V) Edges (E)
Colours

(K)
Time (s)

games120 120 1276 9 0.281

VI. RESULT ANALYSIS

In this section certain facts are extracted from the test
results of section 5. The time complexity of proposed
algorithm is also compared with some well known graph
colouring algorithms.

Proposed edge cover based graph colouring algorithm is
tested on many large graphs. Table 18 shows graph instances
with their execution time (in Seconds) and a number of colours
required to colour graphs.

TABLE XIX. LARGE GRAPH INSTANCES

Instance Vertices (V) Edges (E) Colours (K) Time (s)

C2000.5 2000 999836 239 19091.7

qg.order100 10000 990000 128 20540.531

DSJC1000.9 1000 449449 307 4025.27

latin_square_10 900 307350 152 1095.714

wap03a 4730 286722 86 1100.153

wap04a 5231 294902 70 1158.958

DSJC1000.5 1000 249826 127 684.343

qg.order60 3600 212400 82 978.151

DSJC500.9 500 224874 168 209.882

wap02a 2464 111742 59 206.283

wap01a 2368 110871 59 188.199

wap08a 1870 104176 68 150.603

wap07a 1809 103368 65 149.708

DSJR500.1c 500 121275 103 102.53

DSJR500.5 500 58862 197 98.664

qg.order40 1600 62400 60 96.171

Implementation results of proposed edge cover based
algorithm are compared with a well-known Ant-based
algorithm for colouring graphs (ABAC) [13]. Table 19 shows
the comparison results of both algorithms. The table also
shows the results chromatic number (K) of both algorithms.

TABLE XX. COMPARISON OF PROPOSED ALGORITHM AND ANT-BASED

ALGORITHM (ABCA)

Instance
Proposed ABCA

K Time (s) K Time (s)

2-Insertions_3 4 0.016 4 0.02

3-Insertions_3 4 0.031 4 0.07

1-Insertions_4 5 0.063 5 0.1

4-Insertions_3 4 0.078 4 0.17

mug88_25 4 0.078 4 0.16

mug88_1 5 0.062 4 0.17

1-FullIns_4 5 0.14 5 0.31

myciel6 7 0.188 7 0.56

mug100_25 4 0.125 4 0.35

mug100_1 4 0.078 4 0.25

4-FullIns_3 8 0.187 7 0.73

miles250 10 0.18 8 0.57

miles500 26 0.422 20 1.53

miles750 39 0.953 31 1.95

2-Insertions_4 5 0.161 5 0.74

5-FullIns_3 8 0.188 8 1.38

myciel7 10 0.422 8 2.49

1-Insertions_5 6 0.219 6 1.64

2-FullIns_4 6 0.252 6 2.03

3-Insertions_4 5 0.219 5 4.69

4-Insertions_4 5 0.406 5 12.9

2-Insertions_5 8 0.75 6 17.82

1-Insertions_6 7 0.953 7 18.6

4-FullIns_4 9 0.985 8 22.53

2-FullIns_5 8 1.484 7 29

5-FullIns_4 10 1.422 9 33.5

3-Insertions_5 7 1.858 6 36.68

Figure 2 shows the execution time of proposed and ABCA
algorithm for different size of graphs. X axis is representing a
number of vertices in graph and Y axis is representing
execution time in seconds of the algorithm. Figure 2 is
generated by the data available in Table 19. Figure 2 clearly
shows that execution time of proposed algorithm is less then
ABCA algorithm, especially for the large graphs.

Table 20 present the comparison of execution time (in
seconds) and a chromatic number of proposed algorithm and
Genetic algorithm with multipoint guided mutation algorithm
(MSPGCA) [8].

Figure 3 generated from graph instances their execution
time available in Table 20. It has been observed that proposed
algorithm execution completed in optimum time.

In Table 21 Parallel genetic algorithm based on CUDA
(PGACUDA) [13] is compared with proposed algorithm.
Figure 4 shows execution time behaviour of both algorithms.
By Figure 4 it is clear that for the larger graphs execution time
of proposed algorithm is optimum compared to PGACUDA.

Fig. 2. Execution time comparison of proposed algorithm and ABAC

algorithm

TABLE XXI. COMPARISON OF PROPOSED AND GENETIC ALGORITHM WITH

MULTIPOINT GUIDED MUTATION ALGORITHM (MSPGCA)

Instance
Proposed MSPGCA

K Time (s) K Time (s)

mug88_25 4 0.08 4 15

myciel6 7 0.19 7 4

mug100_25 4 0.13 4 18

4-FullIns_3 8 0.19 7 2

miles750 39 0.95 31 69

2-Insertions_4 5 0.16 5 3

5-FullIns_3 8 0.19 8 3

myciel7 10 0.42 8 3

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

285 | P a g e

www.ijacsa.thesai.org

1-Insertions_5 6 0.22 5 148

2-FullIns_4 6 0.25 6 96

3-Insertions_4 5 0.22 5 6

4-Insertions_4 5 0.41 5 1071

2-FullIns_5 8 1.48 7 450

Fig. 3. Execution time comparison of proposed algorithm and MSPGCA

algorithm

TABLE XXII. COMPARISON OF PROPOSED AND PARALLEL GENETIC

ALGORITHM BASED ON CUDA (PGACUDA)

Instance
Proposed PGACUDA

K Time (s) K Time (s)

2-Insertions_3 4 0.02 4 0.018

3-Insertions_3 4 0.03 4 0.043

1-Insertions_4 5 0.06 5 0.029

4-Insertions_3 4 0.08 4 0.013

mug88_25 4 0.08 4 0.063

mug88_1 5 0.06 4 0.059

1-FullIns_4 5 0.14 5 0.053

myciel6 7 0.19 7 0.174

mug100_25 4 0.13 4 0.084

mug100_1 4 0.08 4 0.085

4-FullIns_3 8 0.19 7 0.133

miles250 10 0.18 8 0.174

miles500 26 0.42 20 0.591

miles750 39 0.95 31 1.207

2-Insertions_4 5 0.16 5 0.151

5-FullIns_3 8 0.19 8 0.137

myciel7 10 0.42 8 0.496

1-Insertions_5 6 0.22 6 0.365

2-FullIns_4 6 0.25 6 0.313

3-Insertions_4 5 0.22 5 0.316

4-Insertions_4 5 0.41 5 0.947

2-Insertions_5 8 0.75 6 2.225

1-Insertions_6 7 0.95 7 3.495

4-FullIns_4 9 0.99 8 4.948

2-FullIns_5 8 1.48 7 8.475

5-FullIns_4 10 1.42 9 14.925

3-Insertions_5 7 1.86 6 20.419

Modified cuckoo optimisation algorithm (MCOACOL) [4]
is modified algorithm of the cuckoo optimisation algorithm for
graph colouring algorithm. Cuckoo optimisation well knows

graph colouring algorithm based on u oo b d’s b h v our.
This paper also compared the results of MCOACOL algorithm
to proposed algorithm results. Table 22 has the comparison
proposed and MCOACOL algorithm. To analyse the Figure 5
it has been observed that time complexity of proposed
algorithm is better than MCOACOL. The time complexity of
proposed algorithm is highly expectable for the large graphs.

Fig. 4. Execution time comparison of proposed algorithm and PGACUDA

algorithm

TABLE XXIII. COMPARISON OF PROPOSED AND MODIFIED CUCKOO

OPPTIMIXATION ALGORITHM (MCOACOL)

Instance
Proposed MCOACOL

K Time (s) K Time (s)

2-Insertions_3 4 0.02 4 0.4

3-Insertions_3 4 0.03 4 0.5

1-Insertions_4 5 0.06 5 0.5

4-Insertions_3 4 0.08 4 0.6

mug88_25 4 0.08 4 1.3

mug88_1 5 0.06 4 1.1

1-FullIns_4 5 0.14 5 0.5

myciel6 7 0.19 7 0.5

mug100_25 4 0.13 4 0.5

mug100_1 4 0.08 4 0.8

4-FullIns_3 8 0.19 7 0.7

miles250 10 0.18 8 1.1

miles500 26 0.42 20 1.2

miles750 39 0.95 31 1.5

2-Insertions_4 5 0.16 5 1.1

5-FullIns_3 8 0.19 9 0.5

myciel7 10 0.42 8 3.8

1-Insertions_5 6 0.22 6 1.2

2-FullIns_4 6 0.25 6 1.2

3-Insertions_4 5 0.22 5 2.1

4-Insertions_4 5 0.41 5 3.7

2-Insertions_5 8 0.75 6 6.5

1-Insertions_6 7 0.95 7 8.1

4-FullIns_4 9 0.99 8 7.7

2-FullIns_5 8 1.48 7 10.7

5-FullIns_4 10 1.42 9 28

3-Insertions_5 7 1.86 6 45

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

286 | P a g e

www.ijacsa.thesai.org

Fig. 5. Execution time comparison of proposed algorithm and MCOACOL

algorithm

VII. CONCLUSION AND FUTURE SCOPE

Proposed edge cover based graph colouring algorithm is an
exact graph colouring algorithm to solve the graph colouring
problem. The algorithm is tested and evaluated on various
categories of DIMACS graph instances. Results are also
compared with some well-known graph colouring algorithms.
Proposed edge cover based graph colouring algorithm is
suitable for all size of graphs. Execution success rate is high of
proposed algorithm. Execution time is optimum for large
graphs. Proposed algorithm generates an optimum chromatic
number for small and medium size graphs.

There are certain areas of an algorithm, like calculating the
degree of vertices and calculating edge sets in iterations.
Parallel execution can be applied to make algorithm more time
efficient. The algorithm can also enhance to get the more
optimum chromatic number for large graphs by adding some
more iteration.

REFERENCES

[1] B. Huss n, A. S. H. B s , A. S. Sh b h tull h, nd S. A. As , “Ex
t t bl n us n ph olou n pp o h”, IEEE Conf n on Op n
Systems, Langkawi, 25-28, pp.139-144, September, 2011.

[2] A. Gupt , nd H. P t d , “A su v y on h u stic graph coloring
 l o th ”, Int n t on l Jou n l for Scientific Research &
Development, vol. 4, issue 04, pp. 297-301, 2016.

[3] S.P. T w , K. K. B ns l, nd T. Ch uh n, “Su v y p p on solv n
 ph olo n p obl ”, Int n t on l Jou n l of Adv n d Research in
Computer Science and Software Engineering, vol. 4, issue 2, pp. 29-31,
February, 2014.

[4] S. M h oud , S. Lotf b , “Mod f d u oo opt z t on l o th
 MCOA to solv ph olo n p obl ”, Els v , Appl d Soft
Computing 33, pp. 48–64, 2015.

[5] P. C. Sh nd N. S. Ch udh , ”Polyno l 3-SAT encoding for K-
colorability of graph", International Journal of Computer Applications,
pp. 19-23, 2014.

[6] E. S l nd K. Esh h , “An ACO l o th fo th ph olo n
p obl ”, Int n t on l Jou nal Contemp. Math Sciences, vol. 3, no.6,
pp. 293-304, 2008.

[7] Z. Lü, and Jin-K o H o, “A t l o th fo ph olo n ”,
Elsevier, European Journal of Operational Research 203, pp. 241–250,
2010.

[8] B. Ray, A. J Pal, D. Bhattacharyya, and Tai-hoon Kim, “An ff nt
GA with multipoint u d d ut t on fo ph olo n p obl s”,
International Journal of Signal Processing, Image Processing and Pattern
Recognition, vol. 3, No. 2, pp. 51-58, June, 2010.

[9] W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson,
“O d n h u st s fo p ll l ph olo n ”, R po t, N t on l
Science Foundation ACM, pp.166-177, 2014.

[10] G. M. Slot , S. R j n , nd K. M ddu , “BFS nd olo n -
based parallel algorithms for strongly connected components and related
p obl s”, IEEE 8th Int n t on l P ll l & D st but d P o ss n
Symposium, pp. 550-559, 2014.

[11] E. G. Boman, D. Bozda, U. Catalyurek, A. H. Gebremedhin, and F.
M nn , “A s l bl p ll l ph olo n l o th fo d st but d
 o y o put s”, L ture note in Computer Science 3648, pp. 241-
251, August, 2005.

[12] B. Ch n, Bo Ch n, H. L u, X. Zh n ,” A f st p ll l n t l o th
fo ph olo n p obl b s d on CUDA”, Int n t on l Conf n
on Cyber-Enabled Distributed Computing and Knowledge Discovery,
China, pp. 145-148, 2015.

[13] T.N. Bui, T.H. Nguyen, C.M. Patel, K.-A.T. Ph n, “An nt-based
 l o th fo olo n phs”, D s t Appl. M th. 56, pp. 90–200,
2008.

