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Abstract—Graph Colouring Problem is a well-known NP-

Hard problem. In Graph Colouring Problem (GCP) all vertices 

of any graph must be coloured in such a way that no two 

adjacent vertices are coloured with the same colour. In this 

paper, a new algorithm is proposed to solve the GCP. Proposed 

algorithm is based on finding vertex sets using edge cover 

method. In this paper implementation prospective of the 

algorithm is also discussed. Implemented algorithm is tested on 

various graph instances of DIMACS standards dataset. 

Algorithm execution time and a number of colours required to 

colour graph are compared with some other well-known Graph 

Colouring Algorithms. Variation in time complexity with 

reference to increasing in the number of vertices, a number of 

edges and an average degree of a graph are also discussed in this 

paper.  

Keywords—Graph Colouring Problem; Edge Cover; 

Independent Set; NP-Hard Problem 

I. INTRODUCTION 

Graph Colouring Problem is used to the optimal solution of 
many real world practical applications like Time table 
scheduling [13], Air traffic flow management [29], Frequency 
assignment and Computer gaming. The graph colouring 
problem is defined as follows. Let G= (V, E) is a graph with |V| 
is a number of vertices and |E| is a number of edges, which 
connects vertices to each other.   The edges are of the form (a, 
b) where a, b ∈  E. The problem of graph colouring is to assign 
a colour to each vertex a ∈  V such that a and b does not colour 
with the same colour. 

Finding the optimum solution in optimum time is always 
the objective of researchers. In general colouring optimisation 
is the primary objective of graph colouring algorithms. But 
when it comes to a large graph where a number of vertices and 
number of edges are in large number, time complexity is more 
important than colouring optimisation. For example genetic 
algorithm with multipoint guided mutation algorithm 
(MSGCA) generate optimum chromatic number (5) for graph 
instance 4-Insertion_4, i.e. number of colours required to 
colour graph of 475 vertices and 1795 edges are five. But 
algorithm takes 1071 seconds to complete execution [8]. And 
proposed algorithm gives the same chromatic number and 
generates results in 0.41 second only. 

Today, graph colouring algorithms are used for many 
internet applications, social media websites where graph size is 
very large. And user required fast results of their web access.  

Rest of the paper is organised as follows: In section II, 
related work done by researchers in the field of graph colouring 
is discussed. In section III problem with the existing algorithm 
is highlighted. In section IV an algorithm is proposed to solve 
the problem highlighted in section III. In section V 
experimental results of proposed algorithm on DIMACS graph 
instances are shown. In section VI, results analysis is done on 
the bases of experimental results and results are also compared 
with some other well-known graph colouring algorithms. In 
Section VII, the conclusion of research work is discussed and 
future enhancement in proposed algorithm is also discussed.  

II. RELATED WORK AND BACKGROUND 

There are already so many approaches to solving the GCP 
given by the researchers. These approaches are widely divided 
into two categories: (1) approximate [2], and (2) exact. The 
approximate approach does not give the best solution but can 
give a result with the large graphs. The algorithm developed by 
exact approach gives satisfactory results but most of the exact 
algorithms are not suitable for large graphs. 

On the basis of an execution graph colouring algorithm can 
be sequential and parallel. There are number of algorithm like, 
Cuckoo optimisation algorithm [3], modified cuckoo 
optimisation algorithm [4], polynomial 3-SAT encoding 
algorithm [5], Ant colony optimisation algorithm [6], Mimetic 
algorithm [7], GA with multipoint guided mutation algorithm 
[8] many more are sequential graph colouring algorithm. On 
the other hand Parallel largest-log-degree-first (LLF) [9], 
Parallel smallest-log-degree-first (SLF) [9], a parallel 
algorithm based on BRS [10], parallel graph colouring on multi 
core CPUs [11] are a parallel algorithm. The parallel algorithm 
is more time efficient then sequential algorithm due to parallel 
execution of different iterations of the algorithm. 

III. PROBLEM IDENTIFICATION 

The primary objective of graph colouring algorithm is to 
find the optimum chromatic number (number of colours 
required to colour all vertices of the graph), but when graph 
size is large and average vertex degree of a graph is high, the 
time complexity of the algorithm is more important than the 
chromatic number. For the large graphs algorithm execution 
time should be finite and optimum. In a review of different 
kinds of literature it has been found that most of the algorithms 
are not able to colour large graphs in optimum time. 
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IV. PROPOSED ALGORITHM 

In this paper, edges cover based graph colouring algorithm 
is proposed. This proposed algorithm full fill the need of 
optimum time complexity for large graphs. This algorithm is 
based on finding an independent set (not a single connecting 
edge between vertices) of vertices using edges cover technique. 
The algorithm is able to give results for all kinds of graph 
instances successfully. Execution time is also optimum for 
large graphs. 

A. Edges Cover Technique 

Edge cover technique is a selection of vertices of any graph 
in such a manner that all edges of the graph will be covered. 
The remaining vertices set is called independent set. There 
should be minimum vertices in edge cover vertices set, to get 
maximum independent set. 

V  EC   V  I   V   (1) 

where, 

V (EC) is set of Edge cover vertices.  

V (I) is set of Independent vertices in the graph. 

V is set of all vertices of the graph.  

B. Edge Cover Graph Coloring Algorithm 

Proposed Edges cover graph colouring algorithm works in 
an iterative manner. Each iteration gives a single set of 
vertices. This set contains vertices independent to each other, 
so that each vertex of the set can assign a single colour. The 
behaviour of iteration depends on a number of sets. For the 
large graph it is difficult to predict a number of sets. Figure 1 
shows algorithm flow and different iterations. 

Proposed algorithm takes the graph instance as input in the 
form of adjacency edge list. The algorithm generates a certain 
number of vertices sets as an output each set of vertices can be 
coloured with the same colour. 

C. Complexity Analysis of Algorithm 

Proposed graph colouring algorithm is NP-hard in nature. 
So it is hard to determine the complexity hypothetically. The 
complexity of algorithm depends on a number of independent 
sets. A number of independent sets are unpredictable. Proposed 
algorithm works on iterations. All iterations have three parts 
where maximum execution time is required. 

First: when the degree of vertices is calculated. Equation 
(2) shows the complexity of calculating the degree of vertices 
in determining the single independent set. 

|Nv|*|Ne|      (2) 
where, 

Nv is a number of vertices in vertex set. 

Ne is a number of edges in edge set. 

At the end of algorithm execution if algorithm generates 
total k independent sets then the total complexity of calculating 
the degree of all vertices in all iterations is shown in equation 
(3). 

  ∑   Nv    N     
      (3) 

where, 

Nvi is a number of vertices in vertex set while finding ith 
independent set. 

Nei is Number of edges in edge set while finding ith 
independent set. 

k is a number of independent sets 

 
Fig. 1. Flow chart of algoritm 

Second, time complexity in finding maximum degree 
vertices is shown by equation (4).  

  ∑   V   ( V    )    
     (4) 

where, 
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Vi is a number of vertices in vertex set while finding ith 
independent set. 

k is Number of independent sets. 

And third is when edge set required editing. Complexity to 
update edge set in all iteration of the algorithm can be 
evaluated by equation (5). 

 ∑  |V    |  D     (V  x)   
    E     

 (5) 
where, 

Veci is a number of vertices in edge cover set while finding 
ith independent set. 

Degree(Vmax) is a degree of maximum degree vertex. 

Eec is a number of edges connected to vertices available in 
edge cover set. 

V. EXPERIMANTAL RESULTS 

To evaluate the proposed algorithm DIMACS graph 
instances are used. DIMACS instances of graphs are 
introduced by scientists for graph colouring problem. Most of 
the graph colouring algorithms are tested on DIMACS graph 
instances. Some graphs of DIMACS are generated randomly 
by computer programs and some of them are results of real 
world applications. 

Proposed algorithm is implemented in JAVA Programming 
language (jdk1.8.0_74). Eclipse JUNA Editor is used to write 
the program. Operating system Windows Server 2012 Standard 
64-bit is used. Intel Pentium Dual CPU G640 @2.80Ghz with 
2 GB RAM is used for implementation and result evaluation. 

In this section of paper, test results on DIMACS graph 
instances are shown. Test results are shown in the tabular form. 
Each table contains graph Instance name, Number of vertices 
(V) in the graph, Number of edges connected to vertices (E), 
Number of coloured required to colour graph (K) which is 
generated by an algorithm, and Time (in Seconds) taken by the 
algorithm to execute. 

A. DSJC Series Graphs Results 

Table 1 shows the DSJC series of instances results. They 
are random graphs used in the paper by David S. Johnson. 

TABLE I.  DSJC GRAPHS TEST RESULTS 

Instance Vertices (V)  Edges (E) Colours (K) Time (s) 

DSJC125.1 125 736 8 0.125 

DSJC125.5 125 3891 25 0.797 

DSJC125.9 125 6961 56 1.739 

DSJC250.1 250 3218 12 0.673 

DSJC250.5 250 15668 42 3.578 

DSJC250.9 250 27897 94 13.932 

DSJC500.1 500 12458 19 2.328 

DSJC500.5 500 62624 73 41.642 

DSJC500.9 500 224874 168 209.882 

B. DSJRx Graphs Results 

DSJRx graph instances are geometric random graphs with x 
nodes randomly distributed in the unit square. These graphs are 

used in a paper by David S. Johnson. Table 2 shows the 
proposed algorithm results. 

TABLE II.  DSJRX GRAPHS TEST RESULTS 

Instance Vertices (V)  Edges (E) 
Colours 

(K) 
Time (s) 

DSJR500.1 500 3555 15 1.265 

DSJR500.1c 500 121275 103 599.203 

DSJR500.5 500 58862 197 493.005 

C. Myciel Graphs Results 

Myciel graphs are based on the Mycielski transformation 
and they are triangle free graphs. Table 3 show the results of 
myciel graphs on proposed algorithm. 

TABLE III.  MYCIEL GRAPHS TEST RESULTS 

Instance Vertices (V)  Edges (E) 
Colours 

(K) 
Time (s) 

myciel3 11 20 4 0.016 

myciel4 23 71 5 0.031 

myciel5 47 236 6 0.094 

myciel6 95 755 7 0.188 

myciel7 191 2360 10 0.422 

D. k-Insertion graphs and Full Insertion graphs results 

k-insertion graphs and full insertion graphs are also tested 
on proposed algorithm. These graphs are a generalisation of 
myciel graphs with inserted nodes to increase graph size but 
not density. These instances are created by M. Caramia and P. 
D ll’Ol o. T bl  4 shows the results of k-insertion graphs and 
full insertion graphs. 

TABLE IV.  K-INSERTION AND FULL INSERTION GRAPHS TEST RESULTS 

Instance Vertices (V)  Edges (E) Colors (K) Time (s) 

1-FullIns_3 30 100 4 0.032 

1-FullIns_4 93 593 5 0.14 

1-FullIns_5 282 3247 6 0.469 

1-Insertions_4 67 232 5 0.063 

1-Insertions_5 202 1227 6 0.219 

1-Insertions_6 607 6337 7 0.953 

2-FullIns_3 52 201 5 0.078 

2-FullIns_4 212 1621 6 0.252 

2-FullIns_5 852 12201 8 1.484 

2-Insertions_3 37 72 4 0.016 

2-Insertions_4 149 541 5 0.161 

2-Insertions_5 597 3936 8 0.75 

3-FullIns_3 80 346 6 0.078 

3-FullIns_4 405 3524 8 0.594 

3-FullIns_5 2030 33751 9 6.789 

3-Insertions_3 56 110 4 0.031 

3-Insertions_4 281 1046 5 0.219 

3-Insertions_5 1406 9695 7 1.858 

4-FullIns_3 114 541 8 0.187 

4-FullIns_4 690 6650 9 0.985 

4-FullIns_5 4146 77305 10 33.566 

4-Insertions_3 79 156 4 0.078 

4-Insertions_4 475 1795 5 0.406 

5-FullIns_3 154 792 8 0.188 

5-FullIns_4 1085 11395 10 1.422 
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E. Matrix Partitioning Problem Graphs Results 

These graphs are generated by Matrix partitioning problem. 
Graphs from a matrix partitioning problem in the segmented 
columns approach to determine sparse Jacobian matrices. 
Table 5 shows the results of proposed algorithm on these 
graphs. 

TABLE V.  MATRIX PARTITIONING PROBLEM GRAPHS TEST RESULTS 

Instance Vertices (V)  Edges (E) 
Colours 

(K) 
Time (s) 

ash331GPIA 662 4185 6 0.953 

ash608GPIA 1216 7844 6 1.797 

ash958GPIA 1916 12506 6 3.25 

F. Register Allocation Problem Graphs Results 

Proposed algorithm is also tested on graph instances 
generated by register allocation problem. Table 6 shows the 
results of register allocation problem generated graphs. 

TABLE VI.  REGISTER ALLOCATION PROBLEM GRAPHS TEST RESULTS 

Instance 
Vertices (V)  Edges (E) Colours (K) Time (s) 

fpsol2.i.1 496 11654 65 1.954 

fpsol2.i.2 451 8691 31 1.328 

fpsol2.i.3 425 8688 31 1.297 

inithx.i.1 864 18707 54 2.969 

inithx.i.2 645 13979 31 2.062 

inithx.i.3 621 13969 31 1.944 

mulsol.i.1 197 3925 49 0.848 

mulsol.i.2 188 3885 31 0.624 

mulsol.i.3 184 3916 31 0.578 

mulsol.i.4 185 3946 31 0.592 

mulsol.i.5 186 3973 31 0.577 

zeroin.i.1 211 4100 51 0.902 

zeroin.i.2 211 3541 32 0.562 

zeroin.i.3 206 3540 32 0.526 

G. Latin Square Problem Graphs Results 

The problem corresponds to assigning colours to the cells 
of an empty matrix such that there is no repetition of colours in 
each row/column of the matrix is called Latin Square Problem. 
Some graphs are generated by Latin square problem are also 
used to test the proposed algorithm. Table 7 shows the results 
of graphs generated by Latin square problem. 

TABLE VII.  LATIN SQUARE PROBLEM GRAPHS TEST RESULTS 

Instance Vertices (V)  Edges (E) Colours (K) Time (s) 

qg.order100 10000 990000 128 20540.5 

qg.order30 900 26100 40 17.441 

qg.order40 1600 62400 60 96.171 

qg.order60 3600 212400 82 978.151 

latin_square_10 900 307350 152 1095.71 

H. Leighton Graphs Results 

L   hton    phs       n   t d by L   hton’s    ph 
covering theorem (Two finite graphs which have a common 

covering have a common finite covering). Leighton graphs 
results on proposed algorithm are shown in Table 8. 

TABLE VIII.  LEIGHTON GRAPHS TEST RESULTS 

Instance Vertices (V)  Edges (E) 
Colours 

(K) 
Time (s) 

le450_15a 450 8168 23 1.817 

le450_15b 450 8169 23 1.736 

le450_15c 450 16680 33 3.69 

le450_15d 450 16750 34 3.789 

le450_25a 450 8260 33 1.907 

le450_25b 450 8263 30 2 

le450_25c 450 17343 39 4.063 

le450_25d 450 17425 40 4.598 

le450_5a 450 5714 11 1.11 

le450_5b 450 5734 13 1.188 

le450_5c 450 9803 9 1.143 

le450_5d 450 9757 8 1.266 

I. Miles Graphs Results 

In miles graphs nodes are placed in space with two nodes 
connected if they are close enough. The nodes represent a set 
of United States cities. Proposed algorithm test results are 
shown in Table 9. 

TABLE IX.  MILES GRAPHS TEST RESULT 

Instance Vertices (V)  Edges (E) 
Colours 

(K) 
Time (s) 

miles1000 128 6432 51 1.406 

miles1500 128 10396 81 2.588 

miles250 128 774 10 0.18 

miles500 128 2340 26 0.422 

miles750 128 4226 39 0.953 

J. Queen Graphs Results 

A queen graph is a graph on n^2 nodes, each corresponding 
to a square of the board. Two nodes are connected by an edge 
if the corresponding squares are in the same row, column, or 
diagonal. 13 different instances of queen problem are tested on 
proposed algorithm. The test result is shown in Table 10. 

TABLE X.  QUEEN PROBLEM GRAPHS TEST RESULTS 

Instance Vertices (V)  Edges (E) 
Colours 

(K) 
Time (s) 

queen10_10 100 2940 17 0.437 

queen11_11 121 3960 18 0.703 

queen12_12 144 5192 19 0.859 

queen13_13 169 6656 20 1.046 

queen14_14 196 8372 21 1.375 

queen15_15 225 10360 25 1.86 

queen16_16 256 12640 27 2.221 

queen5_5 25 320 7 0.094 

queen6_6 36 580 10 0.125 

queen7_7 49 952 12 0.203 

queen8_12 96 2736 15 0.468 

K. School Scheduling Graphs Results 

School scheduling graphs are generated for scheduling the 
classes of school. Test results are shown in Table 11. 
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TABLE XII.  SCHOOL SCHEDULING GRAPHS TEST RESULTS 

Instance Vertices (V)  Edges (E) 
Colours 

(K) 
Time (s) 

school1 385 19095 43 4.682 

school1_nsh 352 14612 40 2.924 

L. Large Random Graph Result 

Proposed algorithm is also tested on a random graph. This 
graph has 2000 vertices and 999836 edges. Table 12 shows the 
number of coloured and execution time of proposed algorithm. 

TABLE XIII.  RANDOME LARAGE GRAPHS TEST RESULTS 

Instance Vertices (V)  Edges (E) 
Colours 

(K) 
Time (s) 

C2000.5 2000 999836 239 19091.7 

M. Quasi-random coloring problem generated graphs results 

Graph generated by Quasi-random colouring problem test 
results are shown in Table 13. 

TABLE XIV.  QUASI-RANDOM COLORING PROBLEM GRAPHS TEST RESULTS 

Instance Vertices (V)  Edges (E) Colours (K) Time (s) 

flat1000_50_0 1000 245000 125 698.714 

flat1000_60_0 1000 245830 125 697.875 

flat1000_76_0 1000 246708 128 642.514 

flat300_28_0 300 21695 45 5.954 

R50_1g 50 108 5 0.047 

R50_1gb 50 108 5 0.047 

R50_5g 50 612 15 0.093 

R50_5gb 50 612 15 0.124 

R50_9g 50 1092 25 0.265 

R50_9gb 50 1092 25 0.251 

R75_1g 70 251 6 0.063 

R75_1gb 70 251 6 0.078 

R75_5g 75 1407 16 0.234 

R75_5gb 75 1407 16 0.281 

R75_9g 75 2513 39 0.577 

R75_9gb 75 2513 39 0.593 

N. Geometric Random Graphs Results 

Geometric random graphs test result on proposed algorithm 
is shown in Table 14. 

TABLE XV.  GEOMETRIC RANDOM GRAPHS TEST RESULTS 

Instance Vertices (V)  Edges (E) 
Colours 

(K) 
Time (s) 

r1000.1c 1000 485090 124 1220.47 

r1000.5 1000 238267 411 2035.23 

r250.5 250 14849 101 7.327 

O. Geometric Graph with Bandwidth and Node Weights 

Graphs Results 

In these graph instances bandwidth of each edge and 
weights of nodes are given. Proposed algorithm tested by 
ignoring edges bandwidth and nodes weight. Results of 
geometric graphs are shown in Table 15. 

TABLE XVI.  GEOMETRIC GRAPHS WITH BANDWIDTH AND NODE WEIGHT 

TEST RESULTS 

Instance Vertices (V)  Edges (E) 
Colours 

(K) 
Time (s) 

GEOM100 100 647 10 0.14 

GEOM100a 100 1092 16 0.219 

GEOM100b 100 1150 20 0.234 

GEOM110 110 748 11 0.171 

GEOM110a 110 1317 19 0.234 

GEOM110b 110 1366 21 0.281 

GEOM120 120 893 11 0.187 

GEOM120a 120 1554 21 0.312 

GEOM120b 120 1611 23 0.328 

GEOM20 20 40 5 0.016 

GEOM20a 20 57 6 0.031 

GEOM20b 20 52 4 0.032 

GEOM30 30 80 6 0.031 

GEOM30a 30 111 7 0.046 

GEOM30b 30 111 6 0.031 

GEOM40 40 118 6 0.047 

GEOM40a 40 186 8 0.062 

GEOM40b 40 197 7 0.093 

GEOM50 50 177 6 0.062 

GEOM50a 50 288 11 0.078 

GEOM50b 50 299 10 0.094 

GEOM60 60 245 7 0.062 

GEOM60a 60 399 11 0.093 

GEOM60b 60 426 12 0.124 

GEOM70 70 337 9 0.078 

GEOM70a 70 529 12 0.125 

GEOM70b 70 558 12 0.156 

GEOM80 80 429 8 0.125 

GEOM80a 80 692 14 0.156 

GEOM80b 80 743 15 0.172 

GEOM90 90 531 10 0.125 

GEOM90a 90 879 16 0.234 

GEOM90b 90 950 18 0.219 

P. Book Graphs Results 

Book graphs are created where each node represents a 
character. Two nodes are connected by an edge if the 
corresponding characters encounter each other in the book. 
Proposed algorithm test result of book graphs are shown in 
Table 16. 

TABLE XVII.  BOOK GRAPHS RESULTS 

Instance Vertices (V)  Edges (E) Colours (K) Time (s) 

anna  138 986 12 0.202 

david 87 812 12 0.204 

huck 74 602 11 0.109 

jean 80 508 10 0.078 

Q. Game graph results 

Game graph representing the games played in a college 
football season can be represented by a graph where the nodes 
represent each college team. Two teams are connected by an 
edge if they played each other during the season. Test results of 
the game graph are shown in Table 17. 
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TABLE XVIII.  GAME GRAPH RESULTS 

Instance Vertices (V)  Edges (E) 
Colours 

(K) 
Time (s) 

games120 120 1276 9 0.281 

VI. RESULT ANALYSIS 

In this section certain facts are extracted from the test 
results of section 5. The time complexity of proposed 
algorithm is also compared with some well known graph 
colouring algorithms. 

Proposed edge cover based graph colouring algorithm is 
tested on many large graphs. Table 18 shows graph instances 
with their execution time (in Seconds) and a number of colours 
required to colour graphs.  

TABLE XIX.  LARGE GRAPH INSTANCES  

Instance Vertices (V)  Edges (E) Colours (K) Time (s) 

C2000.5 2000 999836 239 19091.7 

qg.order100 10000 990000 128 20540.531 

DSJC1000.9 1000 449449 307 4025.27 

latin_square_10 900 307350 152 1095.714 

wap03a 4730 286722 86 1100.153 

wap04a 5231 294902 70 1158.958 

DSJC1000.5 1000 249826 127 684.343 

qg.order60 3600 212400 82 978.151 

DSJC500.9 500 224874 168 209.882 

wap02a 2464 111742 59 206.283 

wap01a 2368 110871 59 188.199 

wap08a 1870 104176 68 150.603 

wap07a 1809 103368 65 149.708 

DSJR500.1c 500 121275 103 102.53 

DSJR500.5 500 58862 197 98.664 

qg.order40 1600 62400 60 96.171 

Implementation results of proposed edge cover based 
algorithm are compared with a well-known Ant-based 
algorithm for colouring graphs (ABAC) [13]. Table 19 shows 
the comparison results of both algorithms. The table also 
shows the results chromatic number (K) of both algorithms.  

TABLE XX.  COMPARISON OF PROPOSED ALGORITHM AND ANT-BASED 

ALGORITHM (ABCA) 

Instance 
Proposed ABCA 

K Time (s) K Time (s) 

2-Insertions_3 4 0.016 4 0.02 

3-Insertions_3 4 0.031 4 0.07 

1-Insertions_4 5 0.063 5 0.1 

4-Insertions_3 4 0.078 4 0.17 

mug88_25 4 0.078 4 0.16 

mug88_1 5 0.062 4 0.17 

1-FullIns_4 5 0.14 5 0.31 

myciel6 7 0.188 7 0.56 

mug100_25 4 0.125 4 0.35 

mug100_1 4 0.078 4 0.25 

4-FullIns_3 8 0.187 7 0.73 

miles250 10 0.18 8 0.57 

miles500 26 0.422 20 1.53 

miles750 39 0.953 31 1.95 

2-Insertions_4 5 0.161 5 0.74 

5-FullIns_3 8 0.188 8 1.38 

myciel7 10 0.422 8 2.49 

1-Insertions_5 6 0.219 6 1.64 

2-FullIns_4 6 0.252 6 2.03 

3-Insertions_4 5 0.219 5 4.69 

4-Insertions_4 5 0.406 5 12.9 

2-Insertions_5 8 0.75 6 17.82 

1-Insertions_6 7 0.953 7 18.6 

4-FullIns_4 9 0.985 8 22.53 

2-FullIns_5 8 1.484 7 29 

5-FullIns_4 10 1.422 9 33.5 

3-Insertions_5 7 1.858 6 36.68 

Figure 2 shows the execution time of proposed and ABCA 
algorithm for different size of graphs. X axis is representing a 
number of vertices in graph and Y axis is representing 
execution time in seconds of the algorithm. Figure 2 is 
generated by the data available in Table 19. Figure 2 clearly 
shows that execution time of proposed algorithm is less then 
ABCA algorithm, especially for the large graphs. 

Table 20 present the comparison of execution time (in 
seconds) and a chromatic number of proposed algorithm and 
Genetic algorithm with multipoint guided mutation algorithm 
(MSPGCA) [8].   

Figure 3 generated from graph instances their execution 
time available in Table 20. It has been observed that proposed 
algorithm execution completed in optimum time. 

In Table 21 Parallel genetic algorithm based on CUDA 
(PGACUDA) [13] is compared with proposed algorithm. 
Figure 4 shows execution time behaviour of both algorithms. 
By Figure 4 it is clear that for the larger graphs execution time 
of proposed algorithm is optimum compared to PGACUDA.  

 
Fig. 2. Execution time comparison of proposed algorithm and ABAC 

algorithm 

TABLE XXI.  COMPARISON OF PROPOSED AND GENETIC ALGORITHM WITH 

MULTIPOINT GUIDED MUTATION ALGORITHM (MSPGCA) 

Instance 
Proposed MSPGCA 

K Time (s) K Time (s) 

mug88_25 4 0.08 4 15 

myciel6 7 0.19 7 4 

mug100_25 4 0.13 4 18 

4-FullIns_3 8 0.19 7 2 

miles750 39 0.95 31 69 

2-Insertions_4 5 0.16 5 3 

5-FullIns_3 8 0.19 8 3 

myciel7 10 0.42 8 3 
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1-Insertions_5 6 0.22 5 148 

2-FullIns_4 6 0.25 6 96 

3-Insertions_4 5 0.22 5 6 

4-Insertions_4 5 0.41 5 1071 

2-FullIns_5 8 1.48 7 450 

 
Fig. 3. Execution time comparison of proposed algorithm and MSPGCA 

algorithm 

TABLE XXII.  COMPARISON OF PROPOSED AND PARALLEL GENETIC 

ALGORITHM BASED ON CUDA (PGACUDA) 

Instance 
Proposed PGACUDA 

K Time (s) K Time (s) 

2-Insertions_3 4 0.02 4 0.018 

3-Insertions_3 4 0.03 4 0.043 

1-Insertions_4 5 0.06 5 0.029 

4-Insertions_3 4 0.08 4 0.013 

mug88_25 4 0.08 4 0.063 

mug88_1 5 0.06 4 0.059 

1-FullIns_4 5 0.14 5 0.053 

myciel6 7 0.19 7 0.174 

mug100_25 4 0.13 4 0.084 

mug100_1 4 0.08 4 0.085 

4-FullIns_3 8 0.19 7 0.133 

miles250 10 0.18 8 0.174 

miles500 26 0.42 20 0.591 

miles750 39 0.95 31 1.207 

2-Insertions_4 5 0.16 5 0.151 

5-FullIns_3 8 0.19 8 0.137 

myciel7 10 0.42 8 0.496 

1-Insertions_5 6 0.22 6 0.365 

2-FullIns_4 6 0.25 6 0.313 

3-Insertions_4 5 0.22 5 0.316 

4-Insertions_4 5 0.41 5 0.947 

2-Insertions_5 8 0.75 6 2.225 

1-Insertions_6 7 0.95 7 3.495 

4-FullIns_4 9 0.99 8 4.948 

2-FullIns_5 8 1.48 7 8.475 

5-FullIns_4 10 1.42 9 14.925 

3-Insertions_5 7 1.86 6 20.419 

Modified cuckoo optimisation algorithm (MCOACOL) [4] 
is modified algorithm of the cuckoo optimisation algorithm for 
graph colouring algorithm. Cuckoo optimisation well knows 

graph colouring algorithm based on  u  oo b  d’s b h v our. 
This paper also compared the results of MCOACOL algorithm 
to proposed algorithm results. Table 22 has the comparison 
proposed and MCOACOL algorithm. To analyse the Figure 5 
it has been observed that time complexity of proposed 
algorithm is better than MCOACOL. The time complexity of 
proposed algorithm is highly expectable for the large graphs. 

 
 

Fig. 4. Execution time comparison of proposed algorithm and PGACUDA 

algorithm 

TABLE XXIII.  COMPARISON OF PROPOSED AND MODIFIED CUCKOO 

OPPTIMIXATION ALGORITHM (MCOACOL) 

Instance 
Proposed MCOACOL 

K Time (s) K Time (s) 

2-Insertions_3 4 0.02 4 0.4 

3-Insertions_3 4 0.03 4 0.5 

1-Insertions_4 5 0.06 5 0.5 

4-Insertions_3 4 0.08 4 0.6 

mug88_25 4 0.08 4 1.3 

mug88_1 5 0.06 4 1.1 

1-FullIns_4 5 0.14 5 0.5 

myciel6 7 0.19 7 0.5 

mug100_25 4 0.13 4 0.5 

mug100_1 4 0.08 4 0.8 

4-FullIns_3 8 0.19 7 0.7 

miles250 10 0.18 8 1.1 

miles500 26 0.42 20 1.2 

miles750 39 0.95 31 1.5 

2-Insertions_4 5 0.16 5 1.1 

5-FullIns_3 8 0.19 9 0.5 

myciel7 10 0.42 8 3.8 

1-Insertions_5 6 0.22 6 1.2 

2-FullIns_4 6 0.25 6 1.2 

3-Insertions_4 5 0.22 5 2.1 

4-Insertions_4 5 0.41 5 3.7 

2-Insertions_5 8 0.75 6 6.5 

1-Insertions_6 7 0.95 7 8.1 

4-FullIns_4 9 0.99 8 7.7 

2-FullIns_5 8 1.48 7 10.7 

5-FullIns_4 10 1.42 9 28 

3-Insertions_5 7 1.86 6 45 
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Fig. 5. Execution time comparison of proposed algorithm and MCOACOL 

algorithm 

VII. CONCLUSION AND FUTURE SCOPE 

Proposed edge cover based graph colouring algorithm is an 
exact graph colouring algorithm to solve the graph colouring 
problem. The algorithm is tested and evaluated on various 
categories of DIMACS graph instances. Results are also 
compared with some well-known graph colouring algorithms. 
Proposed edge cover based graph colouring algorithm is 
suitable for all size of graphs. Execution success rate is high of 
proposed algorithm. Execution time is optimum for large 
graphs. Proposed algorithm generates an optimum chromatic 
number for small and medium size graphs. 

There are certain areas of an algorithm, like calculating the 
degree of vertices and calculating edge sets in iterations. 
Parallel execution can be applied to make algorithm more time 
efficient. The algorithm can also enhance to get the more 
optimum chromatic number for large graphs by adding some 
more iteration.  
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