
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

300 | P a g e

www.ijacsa.thesai.org

An RTOS-based Fault Injection Simulator for

Embedded Processors

Nejmeddine ALIMI

University of Tunis El Manar

Faculty of Sciences of Tunis

2092, Tunis, Tunisia

Younes LAHBIB

University of Carthage

National Engineering School of Carthage

2035, Ariana, Tunisia

Mohsen MACHHOUT

University of Monastir, EµE Laboratory

Faculty of Sciences of Monastir

 5000, Monastir, Tunisia

Rached TOURKI

University of Monastir, EµE Laboratory

Faculty of Sciences of Monastir

 5000, Monastir, Tunisia

Abstract—Evaluating embedded systems vulnerability to

faults injection attacks has gained importance in recent years due

to the rising threats they bring to chips security. The task is

particularly important for micro-controllers since they have

lower resistance to fault attacks compared to hardware-based

cryptosystems. This paper reviews recent embedded fault

injection simulators from literature and presents an embedded

high-level fault injection mechanism based on a Real-Time

Operating System (RTOS). The approach aims to be

architecture-independent and portable to 32-bit micro-

controllers and embedded processors. The proposed mechanism,

primarily targets realistic fault attack scenarios on memory

locations, is adapted to timed and event-based fault injection. A

Differential Fault Attack (DFA) was mounted on a popular

ARM-based micro-controller running FreeRTOS to illustrate the

proposed mechanism. The aim is also to bridge the embedded

fault injection simulation mechanism efficiently to a computer-

based cryptanalysis and to highlight the importance of physically

protecting the memory and integrating data-specific

countermeasures.

Keywords—Cryptography; DFA; Fault Injection; Simulator;

RTOS; ARM; Microcontroller; MATLAB

I. INTRODUCTION AND BACKGROUND

In the Internet of Things era, personal and sensitive data
exchanges have been made common between embedded
systems. However this evolution must be accompanied by
adequate security mechanisms. Depending on the level of
secrecy of the data and the available resources, an embedded
system may encrypt or decrypt data using software routines or
rely on a distinct cryptographic hardware accelerator.

In fact, data that should be kept a secret is potentially
subject to physical attacks where a malicious attacker tries to
retrieve it partially or entirely (i.e. the secret key used to
encrypt and decrypt). Physical attack aims to break security
functionalities of any cryptographic scheme by targeting its
implementations rather than trying to break its mathematical
security which is generally unbreakable if recommended
design parameters are used. There exist two main families of
physical attacks: Side Channel Analysis (SCA) and Fault

Analysis (FA). Side-Channel Analysis is a family of passive
attacks comprising various types of attacks but mainly
dominated by the power-monitoring attacks and
electromagnetic attacks. The first consists in analysing power
consumption of circuits while the second analyses their
electromagnetic (EM) emissions. Over the years, several SCA
techniques have been reported in the literature for power-
monitoring attacks (Simple Power Analysis and Differential
Power Analysis) [1], Electromagnetic Analysis Attacks [2],
and Timing Attacks [3], etc. On the other side, fault attacks are
active attacks which were first introduced by Boneh et al. on a
microcontroller [4]. In a fault attack scenario, an attacker, with
a physical access to a device, running a known program, tries
to perturb its operation to induce faults using laser beam,
voltage glitch, under powering, clock glitching,
electromagnetic emissions, heating, etc., and then analyses the
output to retrieve the secret data. Several fault attacks
techniques exist and the most widely used technique is called
the Differential Fault Analysis (DFA) [5]. This technique is
based on comparing a certain number of faulty and fault-free
outputs to derive information about the secret key. Research on
FA techniques has been very active in both academic and
industrial communities in the past twenty years and has
revealed many exploitable design weaknesses for almost all
cryptosystems families [6]. This has contributed to introducing
new design practices to secure implementations against fault
attacks for hardware designs [7] as well as software for
embedded processors [8].

A. Fault Injection Attacks on Microcontrollers

Cryptographic software routines running on embedded
processors and microcontrollers can integrate effective
software countermeasures against SCA [9]. However, they are
more vulnerable to FA [10] [11] [12] compared to
cryptographic chips. In fact, the latter have a specific
architecture with specifically designed countermeasures to FA.
In addition, they are a black-box target from attacker’s
perspective. On the other side, software routines generally run
on a known microcontroller’s architecture where protection
against fault injection attacks is limited to the microcontroller’s
default hardware countermeasures and the scheme-specific

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

301 | P a g e

www.ijacsa.thesai.org

software countermeasures [13]. Recent works, try to fill this
gap by combining software SCA and FA countermeasures in
general purpose microcontroller [14].

Developing tools and methods to evaluate vulnerabilities
on embedded processors is a well-established field of research
particularly for constrained devices. Memory is in particular
subject to FA as it holds sensitive data and due to the fact that
it can be accurately faulted using devices like laser [15] [16].

B. Fault Injection Simulation

While no standard testing approach can ensure resistance
against all attacks, the physical fault injection is of great
importance to characterize real fault effects on targeted chips.
However, the cost of an efficient fault injection equipment is
high (about 150,000 € for a standard laser fault injection
platform [11]). In addition to that, the process is risky (the
target chip may be damaged) and time-consuming.
Furthermore, physical fault injection has low controllability
and observability over faults and over the collected data which
reduces its effectiveness. On the other side, because the effects
of faults manifest themselves at the software level, faults have
been modelled in the literature.

1) Fault models
Fault effects on microcontroller basically consist on

tempering the value of a single or multiple bits. The fault
distribution (number of bits) depends on the type of attack, the
fault injection equipment and its accuracy. Fault targets either
control or data flow.

 Control flow : To model a fault on the control flow
(Program Memory), two fault models are commonly
considered: (1) instruction corruption and (2)
instruction skipping [17]. Based on bits tampering, the
fault model size depends on the microcontroller’s
architecture.

 Data flow: In literature, data flow fault refers to fault on
the processed data. Such faults can be modelled by
memory corruption fault model with a granularity of
bit, byte and multiple bytes [18].

With identified fault models, evaluation of robustness
against fault attacks has been made easier and optimized under
simulation. In fact, two families of simulation techniques have
been developed to supplement the physical fault injection
mechanism: Emulation-based techniques and Simulation-based
techniques. Such techniques try to replicate the effect of the
physical fault injection.

2) Fault injection simulation techniques
Emulation-based fault injection techniques are based on

using targeted hardware implemented on FPGA instead of a
computer-based simulation. This technique frees the simulation
from assumptions on fault models and allows rapid attacks.
Based on either reconfiguration [19] or instrumentation [20],
those techniques combine the speed of physical fault injection
and the flexibility of simulation. However, despite operating
very closely to the real target, they remain physically different.

On the other side, Simulation-based fault injection
techniques can be divided into three categories. First, the Full-

software simulation, a technique that doesn’t use specific target
architecture and considers complex fault models associated
with powerful attacks scenarios and where formal tools are
generally used [21]. Second, the Hardware-aware simulation , a
technique that relies on specific hardware models accuracy and
needs large development effort and long simulation times
[22][23]. The third category, the one on the scope of this paper,
is known as the Software-Implemented Fault Injection (SWIFI)
techniques. SWIFI techniques are a wide and diverse set of
software mechanisms and tools dedicated for testing
vulnerability to faults through software. SWIFI techniques are
known to be flexible and to have good observability and
controllability over injection of faults making them reliable
solutions to evaluate the countermeasures against FA. SWIFI
can be either used at compile-time or at run-time. For a broader
review of fault injection techniques and tools, including SWIFI
techniques, the reader may refer to the up-to-date surveys [24],
[25] and [26].

Embedding a fault injection simulator allows simulating
faults on the real target running real software and is
advantageous over other simulation techniques as it releases
the simulator from the assumption on the target model. The
task is particularly challenging due to the limited software and
hardware resources available in a chip to run the mechanism
while providing a realistic fault injection. The realism of the
fault attack simulation is also dependent on the fault model
accuracy.

The aim of this work is to propose an embedded program-
level, portable and run-time mechanism of fault injection
simulation for embedded processors and microcontrollers. The
mechanism takes advantage of an RTOS to manage a run-time
attack scenario when associated with a computer-based
cryptanalysis program in Matlab. The remainder of the paper is
organized as follows: A review and discussion of recently
embedded fault injection simulators and similar mechanisms
from literature, is presented in section II, followed by the
proposed mechanism in section III. A test case and results are
given in section IV to validate the proposed approach. Finally,
section V summarizes the paper and draws future works.

II. RELATED WORKS

Embedded Fault simulators are generally written in
machine language (i.e. assembler) but the higher level
language could still be used as a support. In [27], authors
carried out a simulation of fault injections attack after
experimentally characterizing fault effects on control flow
(instruction skipping and instruction corruption fault models)
on a 32-bit microcontroller (ARMv7 core). Close to the
hardware level, the fault models proved to be realistic. A semi-
manual embedded simulation process was applied in
debugging mode using a specific program based on Keil
UVSOCK library[28]. Due to writing protection on Flash
Memory, the latter’s content was shifted to RAM. The fault
injection process needed frequent stops and restarts of the
processor, which altered measuring correct latencies within the
target and run-time fault injection simulation.

In [29], an architecture-specific fault injection attack
strategy was presented. The attack consists of modifying a load

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

302 | P a g e

www.ijacsa.thesai.org

instruction to load externally controlled values into the
Program Counter (PC). Authors target is a feature rich
ARMv7-based SoC (1GHz, DDR3/400Mhz RAM, Gigabit
Ethernet, etc.) in which an operating system (Ubuntu 12.04)
was installed to simulate the fault injection. The corruption of
the program’s instructions, running on a shell code inside a
Linux application, was done the function of flipped bits in a
Python wrapper. The run-time simulation was very fast and
fault injection results were immediately printed on the
terminal. However, the embedded simulator largely depends on
the SoC and the OS features, making the reproduction of the
same mechanism on lower range hardware yet to demonstrate.

In [30], authors presented an Embedded Fault Simulator
(EFS) dedicated to smartcards. The simulator consists of two
complementary modules: one, written in C, to integrate the
EFS as a service in the smartcard OS, the other, in assembly, is
the fault injection mechanism. The reachable fault models of
the EFS are: instruction skipping, instruction alternation and
data modification with a granularity of bit, byte and word. The
EFS is highly configurable for each fault model. The injection
mechanism basically relies on predetermined interruption
routines triggered by the microcontroller’s timer. The EFS was
tested on an ARMv7-M architecture. Although having many
exploitation possibilities, the EFS injection mechanism is
architecture-dependent and relies on timer’s availability within
the target, limiting therefore its portability.

On the other side, high-level fault injection simulation is
generally praised for its speed compared to low-level
counterpart and benefits from using the programming language
to inject faults. In [31], authors presented a methodology to
secure any application with formally verified countermeasures
at C-level automatically. To evaluate the efficiency of the
proposed methodology, a computer-based simulation of a
realistic C-level fault attack (jump attack), using a Python C
parser was conducted. The simulation was much faster than
equivalent assembly-level exhaustive jump fault attack on an
AES encryption function. The latter took 3 weeks on ARMv7-
M architecture, using Keil ARM-MDK compiler and Keil
simulator. The countermeasures added upon C-level fault
injection campaign enabled to defeat 60% of the attacks
at the assembly level. The C-level fault model doesn’t have
the same fault coverage of assembler-level but the number of
covered attacks-to-time (or to-test cases) ratio was much higher
[32] and helpful to detect many weaknesses at source code
level.

Simulating a fault attack generally requires three software
components: A simulator of the target architecture, a fault
injection mechanism, and a cryptanalysis program to provide
the fault parameters (time, location, fault granularity, etc.) to
the injection mechanism and process the received faulted
outputs according to the chosen FA scenario.

In the reported works, few details were given on the
software cryptanalysis process associated with the fault
injection mechanism.

This could be explained by the fact that some works were
limited to demonstrate the practicality of the approach without
running related cryptanalysis. Also, this is due to the fact that
the addressed attack models where control flow attack, which
doesn’t generally require processing several ciphers [33] [34].
However, for Data flow attacks, considering that the number of
samples needed for a successful attack is not negligible,
running an on-target data flow attack simulation requires
efficient communication between the target-based injection
mechanism and the computer-based cryptanalysis program.
While many works concentrated on simulating attacks on the
control flow, data flow wasn’t much addressed. I fact, despite
being more complex and expensive to set up physically,
compared to the control flow attack, the data flow attacks are
still feasible using optical fault platform (laser), and recently
using clock glitching [35] and voltage glitch [36] with different
fault model granularities.

In this paper, an embedded fault injection simulation on the
data flow was addressed. An ARM-based microcontroller
(Cortex-M4 core) was used where an RTOS was embedded to
manage the fault injection mechanism according to received
parameters (fault location, corrupted data value, etc.) from a
computer-based cryptanalysis program (in Matlab) applying an
FA attack scenario.

III. PROPOSED FAULT INJECTION SIMULATOR

A. Fault Injection Method

A benefit from working on RTOS instead of developing all
in application-level holds in the processing organization and
portability of the code. In fact, several working tasks sharing
access to data (writing or reading) can run through sharing
mechanisms provided by the OS. In particular, FreeRTOS
which is a class of RTOS designed to be small enough to run
on a microcontroller although it is not limited to
microcontroller applications. FreeRTOS, written in C,
provides the core real time scheduling functionality, inter-task
communication, timing and synchronization primitives [37]. In
addition, unless low-level (assembly) calls are made in the
program, the code will be portable between all supported
architectures, hard core and soft core processors families
(ARM Cortex-MX, Atmel AVR, Microchip PIC32MX, Free-
scale, PowerPC Xilinx Microblaze, Altera NIOS II, etc.).

In this work, FreeRTOS was used on the targeted hardware,
an STM32F4 MCU (ARM Cortex-M4 core), to provide run-
time execution and flexibility to the fault injection mechanism
and bridge it efficiently to the cryptanalysis program.

Fig. 1. Synoptic diagram of the FA platform

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

303 | P a g e

www.ijacsa.thesai.org

Because of the complex and time consuming computations
involved in cryptanalysis, the latter is not embedded on the
microcontroller and runs on a computer. Figure 1 shows a
synoptic diagram of the complete Fault Analysis (FA)
platform.

When setting up a fault injection environment, a Fault
Injection Policy should be defined. Table 1 gives the fault
injection policy followed in the FA platform.

TABLE I. FAULT INJECTION SIMULATION POLICY

Abstraction Level C

Considered fault model(s) Data corruption

Granularity bit, byte

Fault location Data flow

Injection time Event and time triggered

Fault duration Transient

Mean Data replacement

Input data for the system Random value

B. Fault Injection and attack mechanism

The simulator makes use of the RTOS to control the fault
injection and associated attack. The simulator provides
memory data manipulation fault and temporal triggers. Those
triggers are inserted with minimal modification on the target
application, and there is no need for running it in debugging
mode except the first run. In what follows, the steps used to set
up the fault injection mechanism and run an attack are given.

1) Debug mode run: Check the sensitive data to be

faulted (obtain memory addresses).

2) Golden run: It will serve to get the correct output for a

reference plaintext.

3) Triggers insertion in the cryptographic code: The

triggering code monitors a specific data depending on its

value, the cryptographic code is suspended.

4) Fault parameters reception: data address, faulted

value, etc. are received from the cryptanalysis program.

5) The fault Simulator starts the Application code

(Cryptographic algorithm).

6) Application code suspension: The fault simulator

suspends the Application code and injects a fault.

7) The cryptographic code is resumed.

8) The simulator sends the faulty outputs to the

cryptanalysis program.

9) New fault parameters are received.

10) Check if the cryptanalysis program recovered the secret

key, otherwise return to step 4.

C. FreeRTOS threads management for fault injetion

The FreeRTOS is a multitasking operating system using a
scheduler to decide on the task to execute. At every interrupt
from the system timer, the scheduler accord processing time to
the highest priority task. In the proposed mechanism, the fault
injection simulator was divided between three threads:

 Control Thread: Manages the communication with the
cryptanalysis computer (fault parameters reception,
faulty ciphertext sending, etc.).

 Injection Thread: The thread in charge of data
corruption.

 Application Thread: Encapsulates the C code target of
the fault injection.

The working of the simulator is based on a binary
semaphore that synchronizes the three threads. The
cryptographic code is encapsulated in the Application Thread.
A representation of the working of the threads is depicted in
Figure 2 where the steps 1-to-4 are explained as follows:

1) The Control Thread is the starting point of the fault

injection, and is the thread with the highest priority. Upon

receiving the fault parameters from a computer via UART, the

Control Thread stores the fault parameters, releases the

semaphore and suspends itself.

2) The Application Thread, having a lower priority, waits

for the semaphore. Once obtained, Thread2 starts the

cryptographic code. During its execution, the trigger monitors

a change in a specific data and consequently releases the

semaphore and suspends the Thread2. Furthermore, the extra

code (monitor and suspend the thread) does not modify the

targeted data location and allows resuming the Application

execution from the suspended state.

3) The Thread3, i.e. the injection Thread, has the lowest

Priority and obtains the semaphore after target code

suspension. In this thread, the sensitive data is corrupted

according to the received parameters. Then, Thread3 permutes

the priorities of Thread1 and Thread2 so that the latter obtains

the next semaphore. Finally, Thread3 releases the semaphore

and suspends itself.

Fig. 2. Semaphore-based threads synchronization of the Simulator

 Inject ion Cont rol Applicat ion

21

34

Thread1 Thread2 Thread3

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

304 | P a g e

www.ijacsa.thesai.org

4) The Thread2 resumes from where it was suspended

with its sensitive data now corrupted. The calculations are

done and a faulty ciphertext is generated. Then, the thread

releases the semaphore and suspends itself.
At the next passage by the Control thread, the latter sends

the faulty output to a computer via UART and waits for new
parameters. Once received, the priorities of Thread1 and
Thread2 have permuted again (original priorities are restored).
Then, a new round of fault injection is started from step 1 until
no new parameters are received meaning that the secret data
(i.e. secret key) was successfully retrieved by the cryptanalysis
program.

IV. TEST CASE AND ANALYSIS

The Simulator has been implemented on a development
board (STM32F4 Discovery) build around the ARM Cortex-
M4 processor. STM32 Family of microcontrollers features
some integrity and safety mechanisms. In particular, for fault
Injection attacks some hardware countermeasures exist like the
Error Correction Code (ECC) and the Parity check. Both
mechanisms, according to the constructor [38], ensure robust
memory integrity and harden the protection against fault
injection attacks. ECC protection is integrated with Flash
memory controller while Parity Check is intended for the
SRAM memory. However, such protections are only available
in some chips (F0, F3, L0, L1 and L4 families). In another
hand, software countermeasures against data corruption attack
were successfully bypassed by multiple faults injections in [39]
on an ARM Cortex-M3 using laser and in [35] on an
ATmega163 microcontroller using clock glitching.

A. Attack Scenario

Dusart attack [34], a DFA attack on the popular and widely
used Advanced Encryption Standard (AES) [40] was selected
to be implemented in the platform. This attack demonstrates
that using a fault on one byte anywhere between the 8

th
 round

MixColumn and 9
th
 round MixColumn, an attacker would be

able to retrieve the secret key using less than 50 faulty
ciphertexts. The cryptanalysis program, i.e. the main part of the
Dusart attack scenario, was written in Matlab based on the
original algorithm [34]. As a target, an implementation of an
AES-128 ECB encryption algorithm written in C and
optimized for ARM architecture was used [41]. In AES-128,
the “State” is a 4x4 array of coefficients in bytes (0-255)
holding a portion of the data to be encrypted. The State goes
through 4 transformations (SubBytes, ShiftRows, MixColumn
and AddRoundKey) for 10 rounds (except the MixColumns
operation which is not used in the 10

th
 round) to generate the

encrypted data.

In the Dusart attack, one of the bytes of the State array
before the MixColumn transformation of the 9

th
 round is

replaced by a faulty value (Figure 3). The faulty byte will then
be propagated by the MixColumn and spread over four bytes of
the State. There is a linear relation between the four induced
faults. For each byte, it is possible to find a set of possible
value of induced fault, and then a set of possible values for the

round key 10 (K10). Finally, once K10 is found, it the entire
secret key can be recovered.

Fig. 3. Fault propagation in the State array in the Dusart attack[34]

According to the attack scenario, the State array is the
target data of the fault injection. The Dusart attack on the FA
platform was applied following the steps detailed in III.B. The
attack simulation was performed using the setup that follows:

Computer-based cryptanalysis: A Matlab program of
Dusart DFA running on an Intel i7-3770 at 3.40 GHz and
connected to the microcontroller through a PL2303 UART
Adapter.

Microcontroller: An STM32F407VG (Cortex-M4 ARM
core). The fault injection trigger is a conditional statement on
the round counter to inject faults in the 9

th
 round and before the

MixColumn transformation.

B. Results and discussion

Retrieving the correct 10
th
 RoundKey required 50 random

fault injections on array positions number: 1, 5, 9 and 13 and
took 490 seconds (~8:12 min). The Fault mechanism, including
the Application code, occupied 18 Kbytes of Flash memory
and 14 Kbytes of RAM. This represents only 1.8 % of the total
flash memory and 7% of available RAM.

Table 2 shows a comparison of the proposed fault injection
simulator with the similar fault injection mechanisms that were
discussed in section II. The proposed simulator has the
advantage of portability to different architectures and the very
low memory overhead that comes with it. Also, using a high-
level programming language brings a significant flexibility to
the simulator though at the expense of covering control flow
attacks which are generally modelled in assembler. One
cryptanalysis algorithm was tested, but other algorithms
targeting data flow are also applicable like those proposed by
Giraud [33] and Tunstall [42], among others.

After ShiftRows 9
Fault injected (1 byte) After Mixcolumn 9 K9

Value of K10After AddRoundKey 9 After SubBytes 10 After ShiftRows 10

Output with Faults

87 F2 4D 97

6E 4C 90 EC

46 E7 4A C3

A6 8C D8 95

99 F2 4D 97

6E 4C 90 EC

46 E7 4A C3

A6 8C D8 95

7B 40 A3 4C

29 D4 70 9F

8A E4 3A 42

CF A5 A6 BC

AC 19 28 57

77 FA D1 5C

66 DC 29 00

F3 21 41 6E

D0 C9 E1 B6

14 EE 3F 63

F9 25 0C 0C

A8 89 C8 A6

D7 59 8B 1B

5E 2E A1 C3

EC 38 13 42

3C 84 E7 D2

0E CB 3D AF

58 31 32 2E

CE 07 7D 2C

EB 5F 94 B5

0E CB 3D AF

31 32 2E 58

7D 2C CE 07

B5 EB 5F 94

DE 02 DC 19

25 DC 11 3B

84 09 C2 0B

1D 62 97 32

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

305 | P a g e

www.ijacsa.thesai.org

TABLE II. COMPARAISON OF THE EMBEDDED FAULT INJECTION SIMULATOR WITH SIMILIAR WORKS

Reference
Abstraction

Level
Fault Target

Runtime

attack

Granu-

larity
Embedded

OS

Support
Tool set

Target

core

Architecture

specific

[27] Low Level1 Control flow
No

(manual)
instruction No -

Program based on

Keil UVSOCK
library

ARMv7m

Cortex-M3
Yes

[31] High Level2 Control flow Yes C Line No -

Keil ARM-MDK

compiler and
simulator

ARM-v7m No

[30]
High Level2

Low Level1

Data flow,

Control flow
Yes Byte Yes

Smart-

Card OS

Embedded as an

OS service.

ARMv7-M

Cortex-M4

Yes

(ASM part)

[29] Low Level1 Control flow No instruction Yes
Ubuntu
12.04

ARM Simulator

(C+ Python +

shellcode)

ARMv7-A Yes

This Work High Level2 Data flow Yes C variable Yes
Free-
RTOS

RTOS + Matlab
Cryptanalysis

ARMv7-M
Cortex-M4

No

V. CONCLUSION

In this paper, a novel high-level embedded simulator for
fault injection attacks on microcontrollers was proposed. The
simulator relies on a real-time operating system (FreeRTOS) to
accurately inject simple or multiple faults on data flow and
carries out a complete attack scenario with the support of a
computer-based cryptanalysis program. The proposed
mechanism was tested for fault attack on data flow (Dusart
attack) and can be applied to other attack scenarios. A number
of improvements can still be made to the simulator like how to
monitor and tamper sensitive data when using a proprietary
code with a read-out protection. Another prospect of this work
could be investigating on high level simulation of control flow
fault injection attack with a realistic fault model. Similar to
[30], combining FA attack with SCA to bypass the embedded
hardware countermeasure can be investigated as well. A
different perspective of this work could be in countermeasure
integration. In fact, the OS can be used to integrate software
countermeasures like dummy threads execution to mask the
power traces or other physical signals that may leak exploitable
information about the secret key.

REFERENCES

[1] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in
Proceedings of the 19th Annual International Cryptology Conference on
Advances in Cryptology, 1999, pp. 388–397.

[2] W. van Eck and Wim, “Electromagnetic radiation from video display
units: An eavesdropping risk?,” Computers & Security, vol. 4, no. 4, pp.
269–286, Dec. 1985.

[3] P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems,” in Proc. of Advances in Cryptology
(CRYPTO 1996), Lecture Notes in Computer Scicence 1109, 1996, pp.
104–113.

[4] D. Boneh, R. A. Demillo, and R. J. Lipton, “On the importance of
checking cryptographic protocols for faults,” in International Conference
on the Theory and Applications of Cryptographic Techniques, 1997, vol.
1233, pp. 37–51.

[5] E. Biham and A. Shamir, “Differential fault analysis of secret key
cryptosystems,” in Proc. of Advances in Cryptology (CRYPTO 1997),
Lecture Notes in Computer Scicence, 1997, vol. 1294, pp. 513–525.

[6] M. Joye and M. Tunstall, Fault Analysis in Cryptography. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012.

[7] D. Karaklajic, J.-M. Schmidt, and I. Verbauwhede, “Hardware
Designer’s Guide to Fault Attacks,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 21, no. 12, pp. 2295–2306, Dec.
2013.

[8] N. Theissing, D. Merli, M. Smola, F. Stumpf, and G. Sigl,
“Comprehensive Analysis of Software Countermeasures against Fault

1Assembler,2C Language

Attacks,” in Design, Automation & Test in Europe Conference, 2013,
pp. 404–409.

[9] G. Agosta, A. Barenghi, G. Pelosi, and M. Scandale, “The MEET
Approach: Securing Cryptographic Embedded Software Against Side
Channel Attacks,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 34, no. 8, pp. 1320–1333, Aug.
2015.

[10] T. Korak and M. Hoefler, “On the effects of clock and power supply
tampering on two microcontroller platforms,” in Proceedings - 2014
Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC
2014, 2014, pp. 8–17.

[11] J. Breier and D. Jap, “Testing Feasibility of Back-Side Laser Fault
Injection on a Microcontroller,” in Proceedings of the WESS’15:
Workshop on Embedded Systems Security - WESS’15, 2015, pp. 1–6.

[12] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz,
“Electromagnetic fault injection: Towards a fault model on a 32-bit
microcontroller,” in Proceedings - 10th Workshop on Fault Diagnosis
and Tolerance in Cryptography, FDTC 2013, 2013, pp. 77–88.

[13] N. Moro, K. Heydemann, A. Dehbaoui, B. Robisson, and E. Encrenaz,
“Experimental evaluation of two software countermeasures against fault
attacks,” in Proceedings of the 2014 IEEE International Symposium on
Hardware-Oriented Security and Trust, HOST 2014, 2014, pp. 112–117.

[14] J. Breier and X. Hou, “Feeding Two Cats with One Bowl: On Designing
a Fault and Side-Channel Resistant Software Encoding Scheme,” in
RSA Conference Cryptographers’ Track (CT-RSA 2017), 2017.

[15] M. Agoyan, J. M. Dutertre, A. P. Mirbaha, D. Naccache, A. L. Ribotta,
and A. Tria, “How to flip a bit?,” in Proceedings of the 2010 IEEE 16th
International On-Line Testing Symposium, IOLTS 2010, 2010, pp. 235–
239.

[16] B. Selmke, S. Brummer, J. Heyszl, and G. Sigl, “Precise Laser Fault
injections into 90nm and 45nm SRAM-cells,” in International
Conference on Smart Card Research and Advanced Applications
(CARDIS 2015), 2015, pp. 193–205.

[17] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz,
“Electromagnetic fault injection: Towards a fault model on a 32-bit
microcontroller,” in Proceedings - 10th Workshop on Fault Diagnosis
and Tolerance in Cryptography, FDTC 2013, 2013, pp. 77–88.

[18] M. Agoyan, J. M. Dutertre, A. P. Mirbahat, D. Naccache, A. L. Ribottat,
and A. Tria, “Single-bit DFA using multiple-byte laser fault injection,”
in 2010 IEEE International Conference on Technologies for Homeland
Security, HST 2010, 2010, pp. 113–119.

[19] L. Sterpone and M. Violante, “A new partial reconfiguration-based
fault-injection system to evaluate SEU effects in SRAM-based FPGAs,”
in IEEE Transactions on Nuclear Science, 2007, vol. 54, no. 4, pp. 965–
970.

[20] S. A. Hwang, J. H. Hong, and C. W. Wu, “Sequential circuit fault
simulation using logic emulation,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 17, no. 8, pp.
724–736, 1998.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

306 | P a g e

www.ijacsa.thesai.org

[21] [21] M. Puys, L. Rivière, J. Bringer, and T. H. Le, “High-level
simulation for multiple fault injection evaluation,” in Data Privacy
Management, Autonomous Spontaneous Security, and Security
Assurance, 2015, vol. 8872, pp. 293–308.

[22] A. Papadimitriou, M. Tampas, D. Hely, V. Beroulle, P. Maistri, and R.
Leveugle, “Validation of RTL laser fault injection model with respect to
layout information,” in Proceedings of the 2015 IEEE International
Symposium on Hardware-Oriented Security and Trust, HOST 2015,
2015, pp. 78–81.

[23] S. Nimara, A. Amaricai, O. Boncalo, and M. Popa, “Multi-Level
Simulated Fault Injection for Data Dependent Reliability Analysis of
RTL Circuit Descriptions,” Advances in Electrical and Computer
Engineering, vol. 16, no. 1, pp. 93–98, 2016.

[24] M. Kooli and G. Di Natale, “A survey on simulation-based fault
injection tools for complex systems,” in Proceedings - 2014 9th IEEE
International Conference on Design and Technology of Integrated
Systems in Nanoscale Era, DTIS 2014, 2014, pp. 1–6.

[25] M. Kooli, A. Bosio, P. Benoit, and L. Torres, “Software testing and
software fault injection,” in 2015 10th International Conference on
Design & Technology of Integrated Systems in Nanoscale Era (DTIS),
2015, pp. 1–6.

[26] R. Piscitelli, S. Bhasin, and F. Regazzoni, “Fault Attacks, Injection
Techniques and Tools for Simulation,” in Hardware Security and Trust,
Cham: Springer International Publishing, 2017, pp. 27–47.

[27] N. Moro, “Securing assembly programs against attacks on embedded
processors (Sécurisation de programmes assembleur face aux attaques
visant les processeurs embarqués),” PhD Thesis, UPMC (France), 2014.

[28] Keil, “Application Note 198: Using the uVision Socket Interface,” 2016.
[Online]. Available: http://www.keil.com/appnotes/docs/apnt_198.asp.
[Accessed: 01-May-2017].

[29] N. Timmers, A. Spruyt, and M. Witteman, “Controlling PC on ARM
Using Fault Injection,” in 2016 Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC), 2016, pp. 25–35.

[30] L. Rivière, J. Bringer, T. H. Le, and H. Chabanne, “A Novel Simulation
Approach for Fault Injection Resistance Evaluation on Smart Cards,” in
2015 IEEE 8th International Conference on Software Testing,
Verification and Validation Workshops, ICSTW 2015 - Proceedings,
2015, pp. 1–8.

[31] J. F. Lalande, K. Heydemann, and P. Berthomé, “Software
countermeasures for control flow integrity of smart card c codes,” in
19th European Symposium on Research in Computer Security
(ESORICS), 2014, vol. 8713 LNCS, no. PART 2, pp. 200–218.

[32] P. Berthome, K. Heydemann, X. Kauffmann-Tourkestansky, and J.-F.
Lalande, “High Level Model of Control Flow Attacks for Smart Card
Functional Security,” in 2012 Seventh International Conference on
Availability, Reliability and Security, 2012, pp. 224–229.

[33] C. Giraud, “DFA on AES,” in Proceedings of the 4th international
conference on Advanced Encryption Standard, 2004, pp. 27–41.

[34] P. Dusart, G. Letourneux, and O. Vivolo, “Differential Fault Analysis on
A.E.S,” in Applied Cryptography and Network Security, First
International Conference, ACNS 2003. Kunming, China, October 16-19,
2003, Proceedings, 2003, vol. 2846, pp. 293–306.

[35] S. Endo, N. Homma, H. Yu-ichi, J. Takahashi, H. Fuji, and T. Aoki, “An
Adaptive Multiple-Fault Injection Attack on Microcontrollers and a
Countermeasure,” IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, vol. E98.A, no. 1, pp. 171–
181, 2015.

[36] C. O’Flynn, “Fault Injection using Crowbars on Embedded Systems,”
Cryptology ePrint Archive, Report 2016/810, 2016.

[37] [37] “FreeRTOS.” [Online]. Available:
http://www.freertos.org/index.html. [Accessed: 20-Apr-2017].

[38] A. Programming, “Announcing Stack Overflow Documentation
Strategies to develop STM32 in application programming,” pp. 8–9,
2016.

[39] E. Trichina and R. Korkikyan, “Multi fault laser attacks on protected
CRT-RSA,” in Fault Diagnosis and Tolerance in Cryptography -
Proceedings of the 7th International Workshop, FDTC 2010, 2010, pp.
75–86.

[40] NIST, “Announcing the Advanced Encryption Standard (AES),”
Processing Standards Publication 197, 2001.

[41] Kokke, “Tiny AES128 in C,” GitHub repository, 2016. [Online].
Available: https://github.com/kokke/tiny-AES128-C. [Accessed: 11-
Nov-2016].

[42] M. Tunstall, D. Mukhopadhyay, and A. Subidh, “Differential Fault
Analysis of the Advanced Encryption Standard using a Single Fault,” in
Proceedings of WISTP’11, 2011, pp. 224–233.

