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Abstract—The objective of this paper is to compare different 

classifiers’ recognition accuracy for the 28 Arabic alphabet 

letters gestured by participants as Sign Language and captured 

by two depth sensors. The accuracy results of three individual 

classifiers: (1) the support vector machine (SVM), (2) random 

forest (RF), and (3) nearest neighbour (kNN), using the original 

gestured dataset were compared with the accuracy results using 

an ensemble of the results of each classifier, as recommended by 

the literature. SVM produced higher overall accuracy when 

running as an individual classifier regardless of the number of 

observations for each letter. However, for letters with fewer than 

65 observations each, which created a far smaller dataset, RF 

had higher accuracy than SVM did when using the ensemble 

approach. Although RF produced higher accuracy results for 

classes with limited class observation data, the difference 

between the accuracy results of RF in phase 2 and SVM in phase 

1 was negligible. The researchers conclude that such a difference 

does not warrant using the ensemble approach for this 

experiment, which adds more processing complexity without a 

significant increase in accuracy. 
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I. INTRODUCTION 

Researchers in the Arab world, as well as researchers 
worldwide, are always investigating the use of assistive 
communication tools that could help the hearing-impaired in 
their daily lives when using their local languages and dialects. 
Although research has been done on using sign language 
recognition systems, limited research has addressed gesture 
recognition of Arabic Sign Language (ArSL). Also, few 
attempts have been made to develop a recognition system that 
can use a machine learning approach to interpreting ArSL 
letters [1].  

Machine learning is ―an evolving branch of computational 
algorithms that are designed to emulate human intelligence by 
learning from the surrounding environment‖ [2] [3]. Machine 
learning is more than just calculating averages or performing 
data manipulation; it involves creating predictions about 
observations based on previous information [3]. Using machine 
learning in gesture recognition involves four steps: 1) choosing 
appropriate sensors for collecting the gestured letters; 2) 

analysing and extracting features from the data, which are 
values related to describing the gestured letters; 3) classifying 
the data by recognizing and interpreting the gestures using one 
or multiple algorithms; and 4) displaying the recognised 
gesture’s name by text or audio [4].  

Also, machine learning can use either supervised or 
unsupervised learning to transfer sign language gestures into 
text format [5]. The supervised learning term refers to the fact 
that the algorithm was fed by a dataset in which the correct 
answers were given; then, the dataset was divided into two 
subsets: a ―training dataset,‖ which is used to build predictive 
models, and a ―testing dataset,‖ which is used to assess the 
performance of the model in the training step [6]. On the other 
hand, in unsupervised learning, the machine is not provided 
with knowledge about the model. The implemented algorithms 
classify the data to any instantaneous incoming hand or finger 
features [5]. 

In classifying segments, the observed gestured letters are 
placed into different classes based on the same or related 
values [7]. The collected data are divided into two sets: training 
and a testing set [7]. Therefore, classification is the process of 
assigning a new gestured letter to a specific class on the basis 
of training set values.  

Many classifier algorithms exist, such as the neural 
network, support vector machine (SVM), nearest neighbour 
(kNN), and random forest (RF). Each has a different method 
for predicting or choosing the set to which a particular 
observation belongs [5].  

Classifying data in machine learning can use either raw 
data with one algorithm or a combination of the results 
(predictions) of multiple algorithms, called ―an ensemble,‖ 
which is fed into an algorithm. Different ensemble models are 
available, with the most popular being: majority voting, 
bagging, boosting, and stacking [5]. 

Majority voting, considered the simplest, is a decision rule 
that chooses alternatives that have popular or majority votes [8] 
[9]. Bagging is a method of decreasing the variance of a 
prediction, boosting is a method of decreasing the bias of a 
predictive model and improving the predictive force, and 
stacking is similar to boosting by applying several models on 
the original data [9]. However, stacking takes the final 
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prediction using functions such as the sum, the average, or the 
weight of the predictions that other algorithms have generated 
[10]. 

Different types of stacking exist: some types use the 
original data together with classifiers as input to an ensemble 
model, whereas some do not. In addition, some use hard labels 
from classifiers, whereas others use probabilities [10]. 
Although using the ensemble approach requires mathematical 
complexity, it may increase the accuracy of the recognition. To 
classify gestures, one can use an individual classifier or an 
ensemble of the output of multiple classifiers. Results within 
the literature of classification using multiple learning 
algorithms or an ensemble model usually had higher accuracy 
rates, yielding better predictive performance than those 
obtained from the other formed learning algorithms [5]. 

Despite the complexity, the possible reasons for using an 
ensemble approach are: the data volume is too large or small, 
or not enough data are available to divide and conquer the data 
or for data fusion [11]. Therefore, in some cases, if the data to 
be analysed are too large, the use of one classifier may not 
effectively process the data. Similarly, ensemble systems can 
be used to address the exact opposite problem of not having 
enough data [12]. 

Analogically speaking, creating an additional step by 
feeding a classifier an ensemble of the data is like seeking a 
second and third opinion when it comes to a medical 
consultation: it increases reliability and reduces the risk of a 
wrong diagnosis [12]. 

The research methodology of Al-Masre and Al-Nuaim for 
gesture recognition used only one classifier (SVM) as a 
supervised machine learning hand-gesturing model [13] to 
classify the 28 letters (considered classes) of the Arabic 
alphabet ―Figure 1.‖ In addition, to overcome the time 
complexity of interpreting the data for their model, the 
researchers used the principle component analysis (PCA) 
algorithm to simplify the large dataset by reducing features. 
Recognition results were at 86% for the ArSL letters tested in 
their experiment [13]. 

Although this research also used SVM to classify the 28 
ArSL letters as in Al-Masre and Al-Nuaim [13], and to 
overcome the limitation of using the PCA algorithm,  the 
proposed model focused on including all of the features of the 
collected data while adding a classification step, as 
recommended by the literature, to produce higher recognition 
accuracy.  The extra step used the same classifiers that used the 
original dataset to classify the combined results (ensemble). 

Therefore, it is the objective of this research to compare the 
recognition accuracy of three different popular individual 
classifiers using the original gestured dataset with the accuracy 
results of the same three classifiers using an ensemble of the 
results of the same classifiers. 

In an attempt to investigate if adding a classification step 
produces higher accuracy, this research combined the results 
from three individual classifiers that used raw gestured data. 
The extra step would classify the combined (ensemble) data 
using the same three classifiers that used the original data.  

The rest of the paper is organised as: Section 2 and 3 
present the literature surveying the overview of relevant work 
and the three classification algorithms used. Section 4 presents 
the research design and methodology used to complete the 
experiment. Finally, Section 5 discusses the results and 
presents the conclusion. 

 
Fig. 1. the 28 Arabic Sign Language Alphabet 

II. LITERATURE REVIEW 

Many researchers have investigated the combination of 
voting schema since 1998, such as Kearns and Valiant [14], 
Rob Schapire, and others [15]. Schapire (1999) came up with 
an algorithm to apply such a combination called boosting, 
which is used with machine learning [15]. 

Ensemble learning has attracted considerable attention due 
to its good generalisation performance. The main issues in 
constructing a powerful ensemble include training a set of 
diverse and accurate base classifiers outputs and effectively 
combining them [12].   

Ensemble majority vote, computed as the difference 
between the vote numbers that the correct class received and 
those of another class that received the most votes, is widely 
used to explain the success of ensemble learning. This 
definition of the ensemble margin does not consider the 
classification confidence of base classifiers [12]. 

Other ensemble algorithms appeared within the literature 
and were used in the machine learning field, such as boosting, 
AdaBoost, bagging, a mixture of experts, and stacked 
generalisation [16]. 

Using the stacking method, one can train a learning 
algorithm to combine the predictions of other learning 
algorithms. Firstly, all of the used algorithms are trained using 
the original data. Then, one makes a final prediction using all 
the predictions of the other algorithms (re-sampling) as inputs. 
The re-sampling method can be one of the following: sum, 
maximum, minimum, and weighted majority voting of the 
predictions that the other algorithms have generated as extra 
inputs [17]. 

The basis of ensemble methodology is simply creating a 
predictive model by integrating multiple models. It can be used 
to improve prediction performance; for example, researchers 
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from various disciplines, such as statistics, computer vision, 
and artificial intelligence, can use it [12]. 

Li, Hu, Wu, and Yu (2014) explored the influence of the 
classification confidence of the base classifiers in ensemble 
learning and had some interesting conclusions. First, they 
extended the definition of an ensemble margin based on the 
classification confidence of the base classifiers. Then, an 
optimisation objective was designed to compute the weights of 
the base classifiers by minimizing the margin-induced 
classification loss. They attempted several strategies to use the 
classification confidences and the weights. They observed that 
weighted voting based on classification confidence is better 
than simple voting if all of the base classifiers are used [17]. 

Farooq and Sazonov (2016) studied the ensemble 
performance of three classifiers—logistic regression, linear 
discriminant analysis, and decision trees—using three different 
ensemble approach: (1) boosting, (2) stacking, and (3) bagging. 
According to their results, the ensemble performance was 
enhanced by 4% compared to the individual algorithms [18]. 

In addition, Woźniak, Graña, and Corchado (2014) 
presented the idea of creating a multiple classifier system 
(MCS). They stated that no single classifier modelling 
approach that is optimal for all pattern-recognition tasks exists. 
Thus, MCS exploits the strengths of the different classifier 
models to create a high-quality compound recognition system, 
thus overcoming the performance of separate classifiers [19]. 

Ensembling is also known under various other names, such 
as multiple classifier systems, a mixture of experts, or a 
committee of classifiers [11]. Ensemble systems have shown to 
have higher performance in many applications compared to a 
single classifier’s performance [11]. 

Most of the ensemble methods use a special mathematical 
model. Moreover, in applying the stacking method, researchers 
can use different types or scenarios—for example, combining 
the results of classifiers as a class label name, combining them 
as class prediction values, or combining the original dataset 
with class prediction values [20]. 

III. CLASSIFICATION ALGORITHMS 

A. Support Vector Machine (SVM) 

The SVM algorithm is used to classify data by drawing a 
clear line between observation data, which are actually points 
on a plane. The margin space around the line should be as wide 
as possible to avoid the misclassified values of a testing set 
[21]. In addition, the SVMs can efficiently perform non-linear 
classification using what is called the kernel function, 
implicitly mapping its inputs into high-dimensional feature 
spaces [22].  

Predicting the values and setting the kernel function 
parameters with correct values are the main objective of the 
SVM learning algorithm. Many statistical packages establish 
those parameters to give the best prediction, such as the R 
studio statistical package [23].  

Using SVM requires choosing the parameter C (cost 
function) or a penalty term. It is used because SVM relies on 
predictions to make a decision about the best boundary that 

could cause an error. If the value of C is very large, then the 
decision boundary will be close to the data points nearest the 
support vectors. That means the misclassification probability 
increases as the value of C decreases [23].  

B. k Nearest Neighbor (kNN) 

The Nearest Neighbour (NN) algorithm for learning has 
worked on numeric feature values. NN treats values as distance 
metrics and uses them as standard definitions between 
instances [24]. A k-Nearest Neighbours algorithm (kNN) is a 
non-parametric method used for classification where the input 
consists of the k closest training examples in the feature space 
[25]. As a classifier, kNN allocates a pattern to the class of the 
nearest pattern value [26]. It starts with every observation in 
the training set as a prototype and then successively merges 
any two nearest patterns of the same class as long as the 
recognition rate is not reduced [27].  

C. Random Forest (RF) 

The term ―random forest‖ refers to a collection of many 
decision trees (forest) where, when building at each node, there 
is some randomness in selecting the attribute to split. Thus, the 
RF breaks down a dataset into smaller and smaller subsets 
while an associated decision tree is incrementally developed at 
the same time [28] 

To build a decision tree, two types of entropy need to be 
calculated using frequency tables. Entropy refers to the 
probability distribution of the information contained in each 
observation (gain). Thus, the main RF algorithm steps in Biau 
[29] show that after calculating the entropy of the observations, 
the dataset is then split into the different attributes (trees). In 
choosing the attribute with the largest information gain as the 
decision node (root) and as the left node, which has an entropy 
of 0, the remaining nodes require further splitting. Thus, the 
algorithm is run recursively on the non-leaf branches until all 
data are classified [29]. 

Various methods exist for evaluating the quality of 
algorithm prediction to guarantee the selection of the best-
performing classification algorithm. Among these are [30]: 

 Confusion matrix (CM): shows the number of accurate 
and inaccurate predictions that the classification model 
makes compared to the actual outcomes (actual value) 
in the dataset. 

 Receiver Operating Characteristic (ROC): also used for 
evaluation. ROC is a chart that shows a false positive 
rate (1-specificity) on the X-axis against a true positive 
rate (sensitivity) on the Y-axis.  

 The area under the curve (AUC): determined by 
calculating the area under ROC curves; the quality of 
the classification model is measured, where the AUC 
should be between (0.5 and 1). When the area is close 
to one, it means that the classifier performance is 
acceptable; otherwise, if the area is less than 0.5, then 
the classifier performance is unacceptable because the 
classifier cannot distinguish between classes [31]. 
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IV. THE PROPOSED MODEL 

A. Hardware and Software 

Applying machine learning to classification becomes easier 
with the development of depth cameras and sensors to provide 
more accuracy in identifying the individual body parts of a 
naturally looking human [32]. Sign language relies on different 
body parts, which necessitates the use of multiple sensors. In 
this research, Kinect™ and Leap Motion Controller (LMC) 
sensors were used to create a model for recognizing ArSL 
gestures. Microsoft Kinect Version 2.0—which Microsoft 
released—has a Red Green Blue (RGB) depth camera and a 
human skeletal tracking algorithm that offers information about 
human body joints [33]. Meanwhile, LMC Version 2.0 
provides a skeletal-tracking algorithm that offers information 
about hands and fingers as well as overall hand-tracking data, 
even if the hands cross over each other. ―Figure 2.‖ presents 
the 11 joints that needed to be retrieved via Kinect and the 12 
points that needed to be retrieved via LMC in this research. 

 

Fig. 2. Depth sensors’ joint points detect based on Cartesian coordinate 

system 

The Microsoft Kinect and LMC open-source software 
development kit (SDK) library were used to develop the 
proposed prototype with options for reading and managing 
visual depth information [34]. Visual Studio 2013 with C# was 
also used to calibrate the two devices, and the SQL Server 
Management Studio 2010 was used to create a relational 
database. 

B. Data Collection 

A prototype system was developed to collect data using the 
two sensors. The main window interface in the prototype 
provides real-time joint detection by representing the user’s 
joint points as well as a histogram to give visual sign 
indications.  

As participants gesture each letter they can individually 
click a button to save the body pose for each gesture.  

―Figure 3‖ provides an example of a three-dimensional 
(3D) human skeleton where a line between each corresponding 
point was drawn (vector). To standardise the distance or depth 
metrics between the two devices, the length of each vector was 
converted from meters—which Kinect uses—to millimetres, 
which LMC uses, to standardise the length units in millimetres.  

 
Fig. 3. Window in the prototype 

Windows Media 3D from the Microsoft Development 
Network (MSDN) was used to visualise the captured data in 
the 3D space of human body joints by drawing one skeleton 

from the details retrieved from the two devices. 

C. Feature Extraction 

A feature represents a piece of information in any 
multimedia type, such as image, text, and video. It could be the 
direction of a certain object, such as the hand bones’ direction 
[39]. For this research, the depth values that the two sensors 
captured were used to create two feature types, as seen in 
―Figure 4.‖ Type one was denoted as ―H‖ in the database; it 
included three angles for each hand bone, which were angles 
between the bone and the three axes of the coordinate system 
(X,Y,Z). Type two was denoted as ―A‖ in the database; it 
included one angle between each of the two bones.  

 

Fig. 4. Example of three angles for one joint (three angles) and one angle 
between two bones 

These angles are the main factor for a comparison between 
the two gestures. Then, the prototype was considered ready to 
use in the experimental environment, as seen in ―Figure 5.‖  
Twenty participants were asked to gesture the 28 Arabic 
alphabet letters. Each participant stood in front of the devices, 
which were connected to a personal computer, and he or she 
made around 28 to 40 gestures and mimicked sign gestures 
spanning seven days. Around 200 right gestures were collected 
daily for different letters from different participants. 
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Fig. 5. The test environment with dimensions 

Therefore, the number of gestured letters (observations) 
also varied between participants; for example, some 
participants gave five or more gestures for a specific letter. 
Table 1 shows the number of observations for each class 
(letter) in descending order. 

TABLE I.  NUMBER OF OBSERVATIONS IN EACH CLASS 

Class  

Name 

Observ

ations# 

Class 

Name 

Obser

vation

s # 

Class 

Name 

Obser

vation

s# 

Ta 79 Shien 60 Waw 37 

Kaf 74 Dal 55 Fa 36 

Ba 71 Ha 48 Zay 36 

Jiem 70 Alef 47 Ya 34 

Sien 70 He 47 Ghayn 29 

Qaf 68 Noon 47 Thal 19 

Lam 68 Sad 47 Tah 14 

Ra 68 Tha 45 Thah 12 

Dhad 65 Ayn 44   

Miem 64 Kha 44   

The collected dataset had 235 features, presented in ―Figure 
6‖ as columns: the values of H0 to H180 were from type one, 
and the values of A1 to A54 were from type two. The dataset 
was reduced by selecting the body parts on which each gesture 
relied while removing all values that would not affect the 
interpretation of the ArSL letters. For example, the feature 
―A1‖ was an angle between the shoulder and right hand and 
would not affect the recognition of any ArSL letter depending 
on the hand bones only (at this point, the features became 102 
values). In addition, the features with zero variance were 
removed; for example, when the variance of all values in 
feature ―A9‖ was calculated, the result was zero, so that did not 
affect the recognition either (the features became 90 values).  

The dataset observations are presented in ―Figure 6‖ as 
rows, which include 1456 observations. Certain observations 
were removed as well, such as: 1) the rows that had the same 
values and 2) the rows that had multiple missing values (null 
values, where the device did not capture observation values 
well). The dataset was cleaned out for the 90 features’ values, 
and the number of observations was changed to 1398. 

―Figure 6‖ shows the dataset structure, where each 
observation was considered a letter from a specific participant 
and contained many features.  

 
Fig. 6. Original dataset structure 

D. Classification Implementation 

A dataset of 1456 gestured letters (observations) of the 
ArSL was collected. This original dataset was passed through 
three individual classifiers: 

 SVM, which gave the highest accuracy results of ArSL 
letter classification in the experiments [13]  

 RF, which many researchers recommend for its high 
accuracy [36] 

 kNN, which is commonly used for its ease of 
interpretation and low processing time [25] 

The results of the three classifiers were combined, and 
results were reused as a new dataset to train the same 
classifiers. The result of this combination is called an 
―ensemble schema dataset.‖ Therefore, the training datasets 
were classified as an original dataset and an ensemble schema 
dataset. 

The stacking schema was used for this research with only 
the classifiers’ predictions (class labels were the letter names) 
as input for the ensemble model, without the original data, as 
seen in ―Figure 7.‖ 

 

Fig. 7. Diagram of ensemble using stacking concept 

In stacking’s simplest form, the results from three different 
classifiers generated a new dataset named the ―ensemble 
schema dataset.‖ Classification passed two phases 
implementing the following steps:  

1) The database was divided into two sets, training and 

testing set.  

2) The training set was fed into classifiers to train them to 

recognise the class labels (letters). 
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3) The testing set was used to evaluate the classifiers’ 

prediction ability (if it could recognise letters in the testing set 

accurately).  

4) The CM showed the number of accurate and inaccurate 

predictions that the classifier made compared to the actual 

outcomes (actual value) in the testing set. Then, all classifiers’ 

performance was evaluated by calculating the area under the 

ROC curves. 
The implementation details of each phase are as follows in 

―Figure 8‖ and ―Figure 9‖:  

Phase 1: The raw database of 1456 observations 
(considered the letters) became 1398 after removing the rows 
that had the same values. The dataset was separated into a 
splitting ratio of a 75% to 25% training set with 1047 
observations and a testing set with 351 observations. This 
training set was divided once more with the same splitting ratio 
into observations, such that: 

 by using 730 observations, the model was trained to 
learn individually along with the right letter; and  

 by using 317 observations, the model had to predict 
(classify) letters using the SVM, kNN, and RF 
algorithms. 

Then, the prediction results from all three algorithms (317 
predictions for each) were combined to become the training set 
of the three classifiers in phase 2. In addition, by using 351 
observations, the model had to predict (classify) letters using 
the SVM, kNN, and RF algorithms as well. Then, the 
prediction results were combined to become the testing set of 
the three classifiers in phase 2. 

Phase 2: The prediction data produced from phase 1 were 
used for the training step and then for the testing set of the 351 
observations. 

 
Fig. 8. Proposed model implementation structure in phase 1 

 
Fig. 9. Proposed model implementation structure in phase 2
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E. Classification Results 

The results of the classification in phase 1 for each 
classifier in detail are (Table 2): 

1) kNN’s parameter k was assigned a value equal to the 

square root of the available total number of observations. The 

value of k could be adjusted from 1 to 10. The value of k=1 

was chosen for less computation and an accuracy of 85.484%. 

2) SVM’s two parameters—cost and gamma—were set to 

2 and 0.01, respectively, to get the highest accuracy. In 

addition, kernel = ―radial‖ because it uses curves instead of 

straight lines to separate the different labels; accuracy was 

88.803%. 

3) RF’s two parameters: n(tree) (total number of trees to 

build) was set to 2000 and the node size (maximum children 

each tree can have) was set to five, which achieved an accuracy 

of 86.809%.  
The results of the classification in phase 2 for each 

classifier in detail are (Table 2): 

1) kNN had an accuracy of 87.151%, where the parameter 

k=1. 

2) SVM had an accuracy of 86.880%, where the kernel = 

―linear‖; and SVM’s two parameters, cost and gamma, were set 

to 1 and 0.01, respectively. 

3) RF had an accuracy of 88.048%, with RF’s two 

parameters of n (tree) and node size, set to 200 and 1 

respectively. 

TABLE II.  OVERALL ACCURACY 

Classifier 
Phase 1, 

Original dataset 

Phase 2, 

Ensemble dataset 

kNN 85.484% 87.151% 

SVM 88.803% 86.880% 

RF 86.809% 88.048% 

The classifiers’ performance in the two phases was 
evaluated using AUC for individual letter accuracy; these 
results are shown in ―Figure 10‖ and ―Figure 11.‖ 

 
Fig. 10. The area under curve (AUC) for each classifier in phase 1 

 
Fig. 11. The area under curve (AUC) for each classifier in phase 2

SVM achieved optimum results for this experiment when 
trained on the original dataset and not on the ensemble schema 
dataset, and this could be attributed to the variation in the 
number of observations for each class (Table 1). However, the 
devices had a low-speed response compared to human 
movement and a low precision of capturing the frames of a 
specific gestured letter. This was especially true for complex 
letters such as the following:   ذ (Thal),  ط (Tah), and ظ (Thah), 

where fingers overlapped, and the participant had to repeat the 
gesture or drop it altogether. This ultimately resulted in the 
variance between the numbers of observations for each class.  

The variations in observation numbers were examined to 
assess if they affected the results. The discrepancy between the 
overall results of the algorithms used was investigated when it 
was trained on the original dataset and on the ensemble schema 
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dataset. The researchers proposed that the SVM could have 
achieved better results when applied to the original dataset due 
to the variance between the numbers of observations for each 
class. This was sometimes less than 10 in the training set, such 
as  ذ (Thal),  ط (Tah), and ظ (Thah), which had fewer than 20 
observations. Running the three classifiers on these 
observations could have affected the overall results. 

The three classifiers, kNN, SVM, and RF, were run on 
classes that had more than 65 observations each. The selection 
of 65 as a number is statically justified because the 
observations for each class were divided into training and 
testing sets, with the former requiring no fewer than 50 
observations so that the model—which was based on the 
training set—would be satisfactory. In this particular case, it 
covered the highest observations under eight classes (letters), 
which are as follows: ت  (Ta) with 79 observations,  ك (Kaf) 
with 74 observations, ب  (Ba) with 71 observations,  ج (Jiem) 
with 70 observations,  س (Sien) with 70 observations,   ق (Qaf) 
with 68 observations, ل  (Lam) with 68 observations, andر  
(Ra) with 68 observations.  

Moreover, the three classifiers (kNN, SVM, RF) were also 
re-run on the remaining 20 classes with fewer than 65 
observations. Table 3 and Table 4 demonstrate the discrepancy 
noted earlier, which shows how the classifiers have changed in 
their overall accuracy results.  

The eight ArSL letters that had more than 65 observations 
for each letter were analysed (Table 3). It was concluded that 
all of the classifiers’ performance was enhanced when using a 
high number of observations. The accuracy results in phase 1 
for kNN, SVM, and RF were 93.566%, 96.119%, and 
93.846%, respectively. The results in phase 2 for kNN, SVM, 
and RF were 95.524%, 94.336%, and 95.699%, respectively. 

TABLE III.  CLASSIFICATION OVERALL ACCURACY 8 CLASSES 

(OBSERVATION NUMBERS >65) 

Classifier 
Phase 1, 

Original dataset 

Phase 2, 

Ensemble dataset 

kNN 93.566% 95.524% 

SVM 96.119% 94.336% 

RF 93.846% 95.699% 

The remaining 20 classes of the ArSL Arabic alphabet, 
which had fewer than 65 observations for each letter, were also 
analysed (Table 4). The accuracy results in phase 1 for kNN, 
SVM, and RF were 85.216%, 88.221%, and 86.178%, 
respectively, and in phase 2, the results were 87.163%, 
87.500%, and 88.413%, respectively. 

TABLE IV.  CLASSIFICATION OVERALL ACCURACY 20 CLASSES 

(OBSERVATION NUMBERS <65) 

Classifier 
Phase 1, 

Original dataset 

Phase 2, 

Ensemble dataset 

kNN 85.216% 87.163% 

SVM 88.221% 87.500% 

RF 86.178% 88.413% 

Recognition accuracy results for each phase is as follows 
(Table 5):  

1) Among individual classifiers, overall, SVM had higher 

accuracy in phase 1. 

2) For the ensemble approach, overall, RF had higher 

accuracy in phase 2.   

3) For all classes and classes with more than 65 

observations, SVM had a higher accuracy in phase 1 than RF 

did in phase 2.  

4) RF achieved higher accuracy in phase 2 for classes with 

fewer than 65 letters compared to SVM in phase 1, but the 

difference was negligible. 

TABLE V.  ALL RESULTS IN PHASE 1: ORIGINAL DATASET AND PHASE 2: 
ENSEMBLE DATASET 

 
All classes 8 classes > 65 20 classes < 65 

Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 

 kNN 85.484% 87.151% 93.566% 95.524% 85.216% 87.163% 

SVM 88.803% 86.880% 96.119% 94.336% 88.221% 87.500% 

RF 86.809% 88.048% 93.846% 95.699% 86.178% 88.413% 

V. DISCUSSION AND CONCLUSION 

This research used two depth sensors to capture all upper 
human skeleton joints, upon which most sign-language 
gestures rely. The supervised machine learning algorithms of 
kNN, SVM, and RF classified the depth values of gestures 
representing all ArSL letters.  

It is essential to enhance the recognition accuracy of ArSL 
when using a supervised machine-learning approach, as it is 
important to get more accurate recognition results while 
avoiding complexity schema (the ensemble needs results from 
the three classifiers to classify the dataset), which requires 
more computation time.  

The classification was performed using R packages, where 
three classifiers, SVM, kNN, and RF, were used to implement 
the general classification implementation process in two phases 
to recognise and interpret incoming gestures. In phase 1, the 
three classifiers of kNN, SVM, and RF were trained on the 
original dataset, whereas, in phase 2, the three classifiers were 
trained on an ensemble dataset, where the results of these three 
classifiers were combined into an ensemble schema dataset to 
classify the classes again. In addition, the various numbers of 
observations for each letter were analysed to check if various 
numbers affected the classifiers’ accuracy performance.  

As shown in Table 5, the recognition accuracy results were 
different among the three classifiers and among the two phases 
and for the different number of observations (classes with all 
observations, classes with fewer than 65 observations, and 
classes with more than 65 observations).  

The researchers concluded that the implementation of SVM 
produced a higher overall accuracy when running as an 
individual classifier, no matter the number of observations. 
However, for small datasets, RF’s ensemble approach could be 
used, as it had higher accuracy than SVM did in phase 1.  

Although RF produced higher accuracy results for classes 
with limited class observation data, the difference between the 
accuracy results of RF in phase 2 and SVM in phase 1 was 
negligible. Such a difference does not warrant using an 
ensemble approach, which adds more processing complexity, 
as required with the ensemble approach. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 5, 2017 

315 | P a g e  

www.ijacsa.thesai.org 

With such a result, SVM used as an individual classifier 
would be the more efficient choice because it produces higher 
recognition accuracy with less complexity. 

Future work on this subject could address how this 
prototype can be used to collect and classify dynamic gestures 
(multiple frames) that represent the sign of one word or phrase. 
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