
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

381 | P a g e

www.ijacsa.thesai.org

Context-Aware Mobile Application Task Offloading

to the Cloud

Hanan Elazhary

Computer Science Department

Faculty of Computing & Information Technology

King Abdulaziz University, Jeddah, Saudi Arabia

Computers and Systems Department

Electronics Research Institute, Cairo, Egypt

Saja Aloraini and Roa’a Aljuraid

Computer Science Department

Faculty of Computing & Information Technology

King Abdulaziz University

Jeddah, Saudi Arabia

Abstract—One of the benefits of mobile cloud computing is

the ability to offload mobile applications to the cloud for many

reasons including performance enhancement and reduced

resource consumption. This paper is concerned with offloading of

context-aware mobile applications, in which actions or tasks are

executed in certain contexts and offloading those tasks needs to

be itself context-aware to be advantageous. The paper

investigates candidate techniques and development models in the

literature to identify suitable ones. Accordingly, the paper

proposes the practical Context-Aware Mobile applications

Offloading (CAMO) development model, which we developed in

Java for the Android platform. Programmers can exploit the

independency of the tasks of a typical context-aware mobile

application and use CAMO to profile each task in isolation on the

mobile and the cloud. The paper introduces the concept of a task-

offloading plan in which programmers specify a criterion and/or

an objective for offloading a task in a specific context. Offloading

criteria allow rapid offloading in case the mobile environment

does not change frequently. Based on the profiling results,

programmers can use the classes and methods of CAMO to

develop one or more custom offloading plans for each task or use

pre-specified plans, criterion and objectives. We provide three

example tasks with details of their profiling and analysis for

developing corresponding offloading plans. CAMO is general

and flexible enough for offloading any application partitioned

into independent modules. Empirical evaluation shows extreme

satisfaction of mobile application developers with its capabilities.

Keywords—Application offloading; Context awareness;

Distributed systems; Mobile application; Mobile cloud computing

I. INTRODUCTION

Context-aware mobile computing refers to developing
mobile applications whose behaviour depends on context. In
the broad sense, we can define context as the state of the
mobile, the application or the user [1]. Context is extracted
through internal mobile sensors and hardware features in
addition to other external sources. Such raw context is
typically, processed to a higher-level more understandable
form [2]. For example, the current readings of the GPS system
can be converted into current city, country, or continent. An
example of a context-aware mobile application is an
application that reduces the brightness of the screen in bright
light and vice versa.

Mobile cloud computing [3] refers to mobile computing
that exploits the theoretically infinite cloud resources to make
up for the limited mobile phone resources. One approach
involves saving data and especially Big Data on the cloud [4, 5,
6]. Another approach involves offloading execution of a
mobile application to the cloud [7]. Researchers have proposed
many techniques, frameworks, and development models for
this purpose. Nevertheless, they mainly consider large
applications that require partitioning to determine partitions
they should offload or migrate to the cloud in order to resume
execution.

This paper is concerned with offloading of context-aware
mobile applications. A typical context-aware mobile
application is essentially partitioned into local partitions that
are responsible for checking the mobile context and tasks that
take place when specific contexts are satisfied. Such tasks may
run locally or remotely according to their requirements. For
example, tasks responsible for mobile adaptations should run
locally. Typically, those tasks are independent and start from
scratch when their corresponding contexts are satisfied. This
implies that complex offloading techniques might not be
necessary and that we can employ ones that are more efficient.
Towards our goal, we summarise the contributions of the paper
as follows:

 To the best of our knowledge, this paper is the first to
consider and study offloading of typical context-aware
mobile applications in a context-aware fashion.

 We provide a thoroughly investigation of different
techniques, frameworks, and development models
proposed in the literature to examine their suitability for
those applications.

 We propose (and developed) the Context-Aware
Mobile applications Offloading (CAMO) development
model in Java for the Android platform with several
classes and methods that help programmers in
developing off-loadable context-aware mobile
applications. For example, programmers can exploit the
independency of the tasks of such applications and use
CAMO to profile each task in isolation on the mobile
and the cloud.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

382 | P a g e

www.ijacsa.thesai.org

 We propose the concept of task offloading plans, where
programmers can use profiling results to determine
conditions under which CAMO would offload each
task, rather than merely whether it should offload the
task as in most research studies.

 Using CAMO, the programmers can develop custom
task-offloading plans, in which an offloading criterion
(such as maximum or minimum data size) allows rapid
offloading in case the mobile environment does not
frequently change. The programmer can also specify an
objective that should be satisfied by the criterion (such
as maximum delay) and how to update the criterion
otherwise. This opposes similar research studies in the
literature that rely merely on the objective for making
the offloading decision.

 CAMO provides pre-specified task-offloading plans,
criteria, and objectives to the programmers to help them
in developing their off-loadable applications.

 CAMO is general enough to be used for any mobile
application partitioned into independent modules.

The following section provides a thorough investigation of
mobile application offloading techniques, frameworks and
development models in addition to corresponding challenges. It
also discusses requirements of context-aware mobile
application offloading. This is followed by a description of the
details of the proposed development model, CAMO.
Experiments based on CAMO are then provided accompanied
by discussion. The last two sections provide results of the
empirical evaluation of CAMO and the conclusion and
directions for future research.

II. MOBILE APPLICATION OFFLOADING

Mobile application offloading to the cloud has drawn
researchers’ attention due to the limited resources of
smartphones (such as computing power, memory size, storage
capacity and battery capacity) and the virtually infinite
resources offered by the cloud. We can broadly classify
application-offloading techniques into partitioning techniques,
migration techniques and replay techniques, possibly coupled
with context-awareness. Some research studies merely propose
offloading techniques while others propose development
models and frameworks for off-loadable mobile applications.

A. Partitioning Techniques

Partitioning techniques are concerned with how to partition
an application and how to decide which of the resulting
partitions should run locally (such as partitions that require
user interactions and mobile interactions to obtain GPS
information for example) and which should run remotely (such
as resource-intensive partitions) on which cloud. We can
broadly classify partitioning techniques into graph-based,
linear programming-based and annotation-based techniques
[7].

Graph-based techniques represent the parameters of a given
mobile application using a graph and seek to partition the
application and decide which partitions would be offloaded to

which clouds [8, 9, 10]. For example, in CloneCloud [9], a
graph represents the modules of the mobile application. An
analyser is responsible for determining possible methods to
partition the graph representation of the application between
the mobile and the cloud. A profiler generates a cost model for
the application (in terms of execution time and power
consumption), under different possible partitioning methods
via executions on both the mobile and the clone cloud with a
random set of inputs. Finally, the optimisation solver
determines the best partitioning method (among those
generated by the analyser) that optimises an objective function
(using the cost model generated by the profiler) to be used at
runtime. It is worth noting that the graph-partitioning problem
is Non-deterministic Polynomial Complete (NPC) and so most
efficient techniques require manual annotations to the
application by the developers to provide cues to guide the
partitioning process [7].

Linear-programming based techniques [11, 12] on the other
hand, represent the partitioning problem as a mathematical
optimisation problem and use linear programming methods to
optimise application partitioning. For example, the Mobile
Augmentation Cloud Services (MACS) middleware [11]
assumes an application is partitioned into modules. A cost
function is defined in terms of the computing cost and the
memory cost of each application module on the mobile and its
transmission cost to the cloud in addition to a Boolean variable
indicating whether it would be offloaded. Each of the three
above costs is given a corresponding weight, and linear
programming methods are used to optimise the cost function to
determine whether to offload each module.

Some research studies in the literature [13, 14] combine
features from both graph-based techniques and linear
programming-based techniques. For example, Sinha and
Kulkarni [14] proposed representing the mobile application
environment (such as the available clouds, the computing
powers, the memory sizes and the communication links
capacities) using a graph and then using linear programming
methods to determine how to partition the application such that
an objective cost function is minimised.

Annotation-based techniques such as Cyber Foraging [15,
16] and J-Orchestra [17] require extensive annotations to the
mobile applications by the developers to guide the partitioning
process using alternative methods. For example, in Cyber
Foraging [15, 16], a language called Vivendi is used by the
developer to describe the fidelity and tactics of a mobile
application. The fidelity of an application is a normalised
measure of its quality expressed as a number between zero and
one, while the tactics are the possible partitions of the
application. Finally, a Chroma scans the available tactics and
selects the best partitioning plan that maximises the ratio
between the application fidelity and latency.

It is clear that a major problem with such techniques is that
they require either manual annotations or complex
representations, which may be hindering to most mobile
application programmers. Fortunately, as previously noted, a
typical context-aware mobile application is inherently
partitioned and so each task can be processed in isolation to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

383 | P a g e

www.ijacsa.thesai.org

determine conditions under which it would be offloaded rather
than merely whether it should be offloaded.

B. Migration Techniques

Migration techniques are used to migrating processes and
virtual machines over networks. Examples of such techniques
include the Zap system [18] in which a PrOcess Domain (pod)
is a virtual machine with a virtual operating system view
encapsulating a group of processes allowing them to migrate
between machines running different operating systems to
resume execution remotely. In the Internet Suspend/Resume
(ISR) system [19, 20], a parcel is a virtual machine that
encapsulates user-specified operating system settings,
applications, and documents such that the parcel can be
suspended before migration and resumed after migration.

Live virtual machine migration has been extensively
studied for cloud data centres by constantly conveying changes
from one virtual machine to another [21]. It is worth noting that
live virtual machine migration across a WAN is more
complicated due to inherent challenges such as long latency
and variable or restricted bandwidth [22].

It is clear that such techniques are not suitable for typical
context-aware mobile applications that start tasks from scratch
when corresponding contexts are satisfied.

C. Replay Techniques

The idea of replay techniques is to record an execution of
an application such that it can be later replayed. Deterministic
replay refers to replay that can be fully reproduced
deterministically. It has been shown to be useful for many
purposes such as fault tolerance [23], workload execution
tracing [24] and debugging [25]. Deterministic replay has also
been proposed for coarse-grained mobile application cloud
offloading without partitioning [26].

Non-deterministic replay, on the other hand, includes inputs
such as a keyboard input or a camera input. The opportunistic
replay technique [27] has been proposed to reduce the
overhead associated with virtual machine migration by
recording the non-deterministic events of user interactions with
the application via the keyboard or the mouse and using the
resulting interaction log to replay the application on the cloud.
Hung et al. [28] extended this idea by proposing a framework
in which programmers insert pseudo checkpoints in an
application to mark locations at which the application can
resume whenever it is paused. At each pseudo checkpoint, the
input events are recorded, and on pause, the state of the
application and the events are saved such that the application
can be resumed starting from the nearest pseudo checkpoint
and can be replayed using the recorded events until it reaches
the state at which it was paused. The authors proposed using
this technique to offload mobile applications to the cloud on a
virtual machine that is as close as possible to the mobile
environment provided that the machine holds a copy of both
the application and the corresponding data. Data can be
synchronised only upon the application request.

It is clear that such techniques, like migration techniques,
are not suitable for typical context-aware mobile applications
that start tasks from scratch when their contexts are satisfied.

D. Context Awareness

Context-awareness has been associated with mobile
application cloud offloading in many research studies to make
informed dynamic offloading decisions at runtime since
offloading is not always advantageous [29]. For example, Zhou
et al. [30] proposed a technique that enables making dynamic
offloading decisions of an independent mobile application
process at run time by selecting a suitable wireless channel and
cloud resources that satisfy a set of quality-of-service (QoS)
requirements while minimising cost and energy consumption.
Cuervo et al. [31], on the other hand, proposed the MAUI
system that requires code annotation by the programmer
specifying off-loadable methods or classes. At runtime, it
represents the offloading problem as a linear programming
problem based on the CPU cost, the communication cost (size
of the method state) and the bandwidth and latency of the
available channels and solves the problem by making an
offloading decision that maximises energy saving. Ellouze et
al. [32] proposed another technique for making dynamic
offloading decisions of independent mobile application
processes at runtime based on the CPU load and battery state
unless the offloading process itself is energy inefficient or
violates the user Quality of Experience (QoE). Possible context
measures include:

 The available resources (such as computing power,
memory size, storage capacity and battery capacity) on
the mobile versus the available cloud resources

 The execution time on the mobile versus the execution
time on the cloud in addition to the offloading time

 Local computing energy consumption versus offloading
energy consumption

 The specifications of the application and its objectives
and the satisfaction of its QoS and QoE requirements on
the mobile versus on the cloud

It is clear that the above techniques are more or less mobile
application partitioning techniques except that the decision is
made at runtime. In other words, they share the requirement of
complex representations and/or code annotations as well as
energy and storage space consumption and additional overhead
at runtime in order to make such excessive computations. As
previously noted CAMO considers this by allowing rapid
offloading based on criteria rather than based on objectives in
case the mobile environment does not frequently change.

E. Development Models and Frameworks

Some development models and frameworks have been
proposed for helping developers in integrating offloading
capability with mobile applications. For example, Zhang et al.
[33] developed an SDK that can be used by developers to build

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

384 | P a g e

www.ijacsa.thesai.org

weblets by extending a corresponding abstract class. A weblet
is an application partition that can change in state to be
running, paused (before migration) or resumed (after
migration). Application partitioning and the remaining
functionalities are left to the developer. Unfortunately, this
SDK is only suitable for migrating weblets. The Cuckoo
framework [34] helps developers in building smartphone
applications that can be offloaded dynamically at runtime. The
developers have to identify the compute intensive code
partitions and write both local and remote code
implementation. Nevertheless, this was merely a prototype that
employed very simple heuristics to make the offloading
decisions. The µCloud [35] is another SDK intended to help
developers in developing Java components that can be
executed by a cloud orchestrator or a mobile orchestrator, but
the developer has to partition the code to identify the different
components and on which orchestrator each should be
executed. The Uniport framework [36] is intended for
developing applications that can run remotely based on the
Model-View-Controller (MVC) architecture, but it only
considers network availability as the trigger for remote
execution of a replica of the application. The MobiByte system
[37] allows developers to specify objectives for offloading
each of the partitions of a given mobile application. Such
objectives include performance enhancement, energy
efficiency or merely execution under scarce resources.
Nevertheless, it requires examining offloading objectives at
runtime even if the mobile environment does not change
frequently. Besides, it is not flexible enough to allow
developing custom offloading plans or more than one
offloading plan for a single partition in different contexts.
CAMO addresses those drawbacks.

F. Challenges of Mobile Application Cloud Offloading

Many challenges face the success and adoption of mobile
application cloud offloading [29]. For example, the execution
time of a process (partition, independent module or an entire
application) depends on the mobile specifications and the cloud
specifications in addition to the input data size, which
complicates the profiling process. The offloading time depends
on the communication overhead on the mobile and the cloud
(request preparation, communication, and result integration) in
addition to the characteristics of the communication channel.
Both the computing energy consumption and the offloading
energy consumption depend on the mobile specifications, and
the latter depends on the communication link characteristics
too. Unfortunately, mobile vendors do not provide accurate
energy consumption information regarding computation and
communication. Energy consumption computation using, for
example, external hardware is only valid for the monitored
mobile model. Additionally, the offloading objective depends
on the process profiling results and its QoS or QoE
requirements and hence different offloading techniques with
different objectives are needed to suit various processes. Those
techniques need to be context aware. For example, it is not
unusual that the communication channel quality is unstable,
which affects profiling results. The mobile specification can
also change, for example when the user switches to a different
mobile than the one used for profiling. In other words, static

offloading decisions can easily fail in many scenarios [3].
Unfortunately, dynamic partitioning and profiling at runtime
can consume considerable computational power and needs to
be done in a timely fashion. In general, automated selection of
an appropriate offloading technique for each process is a
challenge. In addition, different mobile phones have different
specifications, and hence it is inevitable that the mobile
platform may differ from the cloud platform. CAMO exploits
the nature of typical context-aware mobile applications, which
involve independent tasks to address some of those challenges
as explained in the next section.

G. Discussion

To sum up, an inherent property of typical context-aware
mobile applications is that they are essentially partitioned into
local partitions that are responsible for checking the mobile
context or for effecting mobile adaptations and off-loadable
tasks that may run either locally or remotely on the cloud
according to their objectives and context. This implies that
complex application partitioning techniques (requiring
annotations and/or complex representations) are not required
for such applications. Additionally, programmers can profile
each off-loadable task in isolation on the mobile and the cloud
to determine conditions under which it would be offloaded
rather than merely whether it should be offloaded. There is also
no need for application migration and replay techniques since
those tasks are, typically initiated from scratch at runtime and
so do not call for suspending and resuming or replaying.
Nevertheless, offloading should be flexible enough to suit
various tasks with different objectives in different contexts. In
other words, offloading itself needs to be context-aware since
as previously noted, it is not always advantageous.
Programmers have to plan task offloading with care to avoid
unnecessary computations at runtime to save computing power,
memory, and energy and avoid delay. CAMO considers this as
explained in the following section.

III. CAMO DETAILS

In this section, we explain the details of CAMO showing
how it exploits the nature of typical context-aware mobile
applications to address some of their offloading challenges.

A. Difference between Mobile and Cloud Platforms

One of the challenges facing context-aware mobile
application task offloading is the inevitable possible difference
between the mobile specifications and the cloud specifications.
In a typical context-aware mobile application, the
independency of the tasks increases the chance of finding
suitable apps, classes, and libraries for executing them.
Accordingly, we accept this difference and do not enforce
similarity between the corresponding tasks on the mobile and
the cloud as long as the task is adequately executed on both
platforms. For example, we can use a mobile app to perform a
specific task on the mobile, and use code written in an
alternative language for an alternative operating system on the
cloud to perform the same task. We provide an example of
such a task in Section IV.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

385 | P a g e

www.ijacsa.thesai.org

B. Resource Consumption Estimation

Another challenge is the estimation of the resource
consumption of the tasks when running locally and when
running remotely. As previously noted, programmers can
exploit the nature of a typical context-aware mobile
application, which is composed of independent tasks and use
CAMO to profile each task in isolation on the mobile and the
cloud. Accordingly, programmers can obtain a rough estimate
of its resource consumption such as the execution time, storage
space, network usage, and energy consumed when executed
remotely and when executed locally under various possible
data sizes. Examples of tasks profiling are provided in Section
4.

C. Making Offloading Decisions

To make offloading decisions for each task, we draw a
decision tree based on the profiling results. An example
decision tree of a text-to-speech conversion task is provided in
Figure 1. According to this decision tree, offloading takes place
when the battery level is low. Even if remote execution fails,
local execution will not take place because the battery does not
allow it and merely an error message will be generated. The
same applies to the situation in which there are not enough
resources (other than energy) for local execution.

On the other hand, even when there are enough power and
resources, offloading can still take place to save mobile
resources such as the storage space provided that the data size
is less than n to avoid too much delay. Nevertheless, in the case
of an error in remote execution, local execution can take place
since there are enough power and resources for this purpose.
Finally, in the case of successful remote execution, we check
whether the offloading objective corresponding to the
offloading criterion is satisfied. In the current example, the
objective of considering only data size less than n is to avoid
intolerable delay. If the objective is unsatisfied due to changes
in the mobile environment such as the mobile specifications or
the Internet connection between the mobile and the cloud, the
criterion can be updated by reducing the value of n, for
example by a pre-specified percentage. Similarly, if the delay
is reduced, n may be increased by a pre-specified percentage
(provided that the cloud can handle execution with a larger data
size).

Fig. 1. An example decision tree

D. Task Offloading Plan

One of the challenges of task offloading is that different
tasks have various objectives and QoS or QoE requirements.
Additionally, each task can have different objectives in
different contexts. In this paper, we introduce the concept of
task-offloading plans. Figure 2 shows the flowchart of such a
plan. As previously noted, a task is triggered when its
corresponding context is satisfied. It is worth noting that the
application can continuously check the satisfaction of the
triggering context of each task as shown in the flowchart or
may request notification from CAMO when the context is
satisfied.

As shown in the figure, the offloading plan starts by
checking whether the programmer enabled offloading and
whether there is a connection between the mobile application

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

386 | P a g e

www.ijacsa.thesai.org

and the cloud. Next, the offloading criterion is checked. If it is
satisfied, the task can be offloaded. In the case of an error in
remote execution, one of two possible actions can take place.
Unless the reason behind offloading the task is that local
execution was impossible, we can replace remote execution by
local execution.

Fig. 2. Flowchart of a task-offloading plan

On the other hand, in the case of successful execution of
the task remotely, the objective behind the offloading criterion
may be checked to ensure that the criterion is still valid or to
update it if required. Given that a typical context-aware mobile
application is idle most of the time (when none of the contexts
of the different tasks is satisfied), this would have minimal
effect on the application.

It is obvious that a task-offloading plan is highly flexible

facilitating the development of custom plans that suit various

tasks and possibly more than one plan for each task. Table 1

shows the three offloading plans of the text-to-speech task

whose decision tree is depicted in Figure 1. In the first two

plans, the offloading objective is always true and so nothing is

checked. Programmers can use the classes and methods of

CAMO to develop such plans as needed. CAMO examines the

plans of each task one by one in order to decide whether

offloading should take place.

It is worth noting that programmers can replace the task-

offloading criterion by the offloading objective (so that CAMO

checks the objective directly rather than checking the criterion)

as in the case of MobiByte [37]. The side effect is that more

time (delay) and power will be wasted as runtime. Choice of

whether to check the criterion or the objective depends on the

frequency with which the mobile environment (such as the

specifications of the mobile and Internet connection) changes.

TABLE. I. THREE OFFLOADING PLANS OF THE TEXT-TO-SPEECH TASK

E. Discussion

To sum up, we developed CAMO in Java for the Android
platform providing classes and methods to allow developing
context-aware mobile applications with off-loadable tasks.
Programmers can exploit the independency of the tasks of a
typical context-aware mobile application and use CAMO to
profile each task independently on the mobile and the cloud.
They can use the profiling results to develop an offloading
decision tree and a corresponding set of offloading plans for
each task in different contexts of the mobile and the task. They
can then use CAMO to implement custom plans or exploit pre-
specified plans, criteria (such as a specific data size) and
objectives (such as a specific delay or merely execution
regardless of the adequacy of the mobile resources). At
runtime, CAMO checks the plans of each task one by one to
make informed, context-aware offloading decisions.

It is worth noting that changes in the mobile environment
may stem, for example from an unstable Internet connection,
difference in the Internet connection specifications from one
place to another, or difference in the mobile specifications,
when the application runs on a mobile different from the one
used for profiling. Programmers can consider such changes in
the criteria of the developed plans or by checking each
objective and updating the corresponding criterion in case of its
violation. Alternatively, in the case of frequent changes,
offloading objectives can replace offloading criteria at the
expense of additional overhead at runtime.

In CAMO, we exploit profiling results of a given task to
reserve cloud resources needed for successfully running it
under the largest off-loadable data size. The upper limit on size
can be set for example such that delay does not exceed t sec.
Since an inherent property of cloud computing is its ability to
offer customised resources, we should not worry about
fluctuation in performance when running the task remotely.

(a)

Offloading criterion: battery low

On error: error message
Offloading objective: true

(b)

Offloading criterion: inadequate resources

On error: error message

Offloading objective: true

(c)

Offloading criterion: size < n
On error: run locally

Offloading objective: delay < t

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

387 | P a g e

www.ijacsa.thesai.org

IV. EXPERIMENTS & DISCUSSION

In this section, we present the details of some experiments
based on CAMO. The specifications of the mobile used in the
experiments are as follows:

 Chipset: Qualcomm MSM8996 Snapdragon 820

 CPU: Quad-core (2x2.15 GHz Kryo & 2x1.6 GHz
Kryo)

 GPU: Adreno 530

 RAM: 4GB

 Storage: 64 GB

 OS: Android OS, v6.0.1 (Marshmallow)

The Internet connection used in the experiments was Wi-Fi
with a bandwidth of 500 KB/s. The cloud platform was
Amazon Web Services (AWS) Lambda with the default
memory size of 512 MB for executing the remote code and
Amazon S3 for storage. We experimented with three tasks of
different complexity levels. In those tasks, the execution time,
storage space and network usage were the resources of interest.

A. Text-to-Speech Task

The first task is a text-to-speech conversion task. On the
mobile, we used Android TextToSpeech class [38] while on
the cloud we used the IVONA text-to-speech library [39]. As
previously noted, we do not have to use the exact code on both
platforms as long as the task is adequately executed on both of
them. In order to profile the task, we examined the resource
consumption due to converting text that ranged in size, from 50
to 2000 words, to speech in the form of an MP3 file. The
results are shown in Figures 3, 4 and 5, respectively.

As shown in the figures, remote execution needs longer
time in comparison to local execution since the text entered by
the user is first converted into a text file that is uploaded to the
cloud where it is converted and stored as an MP3 file. In the
case of local execution, on the other hand, the entered text is
converted to an MP3 file right away. On the other hand, local
execution requires a larger storage space since it stores the
MP3 file in the mobile device as opposed to remote execution,
which requires local storage of only the text file that is
uploaded to the cloud. Concerning the network usage, it is zero
for the local execution that does not need any Internet
connection at all, but ranges from 1.6 KB (50 words) to 47.3
KB (2000 words) in the case of remote execution. Given that
offloading 2000 words, for example, requires 47.3 KB of
network usage and that the Internet connection bandwidth is
500 KB/sec, the offloading time is estimated to be 94.6 msec;
negligible in comparison to the total remote execution time.

Those profiling results helped in determining the offloading
plans depicted in Table 1. Since user QoE does matter in this
case, 20 volunteers monitored the delay, and according to their
assessment, the largest tolerable delay was 10 seconds
corresponding to 1450 words. This agrees with the findings of
research studies concerned with usability engineering [40].
This implies that text larger than 1450 words should not be
offloaded. It is worth noting that profiling also helped in

specifying the storage space that should exist on the cloud (in
addition to that needed for the remote code) for the application
to work smoothly in case offloading takes place.

Fig. 3. Execution time (including offloading overhead) of the text-to-speech

Fig. 4. Storage space of the text-to-speech task

Fig. 5. Network usage of the text-to-speech task

Fig. 6. Execution time (including offloading overhead) of the file download

task

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

388 | P a g e

www.ijacsa.thesai.org

Fig. 7. Storage space of the file download task

Fig. 8. Network usage of the file download task

B. File Download Task

The second task is a file download task. To profile the task,
we examined the resource consumption due to downloading
MP4 videos that ranged in size from 1 MB to 30 MB. The
results are shown in Figures 6, 7 and 8, respectively.

As shown in the figures, remote execution time is much
longer than local execution time. The former is roughly about
three times the latter. In other words, there is no gain in terms
of execution time. It is worth noting that remote code execution
uses Amazon Simple Notification Service (SNS) as a trigger to
start download. Concerning storage space, a large space is
consumed in the case of local execution, but none is required in
the case of remote execution, as opposed to the text-to-speech
task. The downloaded video is saved on Amazon S3.
Concerning network usage, in the case of remote execution, it
is no more than 5 KB required for sending the notification. In
the case of local execution, it is relatively high.

Those profiling results helped in determining an offloading
criterion when the storage space is inadequate. Nevertheless,
unless the Internet connection is fast enough, remote execution
might be preferable. For example, in the case of a video of size
30 MB and an Internet connection of 500 KB/sec, the time
needed for local download is about 60 sec, while the remote
execution time is about 190 seconds. In case the Internet
connection speed is reduced to 20% of its value, for example,
the task would need 300 sec to be executed locally. In this case,
remote offloading would be favourable.

Fig. 9. Execution (including offloading overhead) of the context

management task

Fig. 10. Storage space of the context management task

Fig. 11. Network usage of the context management task

C. Context Management Task

In a context-aware mobile application, the context of each
task is monitored until it is satisfied triggering the task. In the
case of context with monitored sequential values such as time,
we can monitor one context value at a time, and as soon as it is
satisfied, this event is recorded and the next context value to be
monitored is added to a log file. The third task is a simple task
that involves recording a satisfied context value and adding the
next context value to be monitored to the log file. To profile
this task, we executed it both locally and remotely. The results
are shown in Figures 9, 10 and 11 respectively.

As shown in the figures, recording context required 0.19
seconds locally and 0.17 seconds remotely. Similarly, adding
new context required 0.99 seconds locally and 0.85 seconds
remotely. Concerning the storage space, adding context
required 18 KB when executed locally and 12 KB when
executed remotely due to the difference between the file
system on the mobile and the cloud. Recording context, on the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

389 | P a g e

www.ijacsa.thesai.org

other hand, did not consume significant storage space neither
locally nor remotely. Finally, neither adding context nor
recording context consumed any network bandwidth during
local execution, but required 12 KB of network bandwidth to
send a notification to the remote code. It is clear that executing
such simple tasks does not benefit much from offloading to the
cloud so such tasks better be executed locally.

D. Discussion

In this section, we presented profiling results of three
example tasks with variable complexity levels using CAMO. In
those tasks, execution time, storage space and network usage
were the critical resources of interest. Of course, we could have
taken other resources such as power consumption into
consideration [41]. We will consider this in future research
studies. It is clear that the nature of context-aware mobile
applications that involve independent tasks simplifies the
profiling process of each task in isolation. Profiling results help
in identifying offloading plans and corresponding criteria and
objectives that can be implemented using CAMO. In other
words, CAMO facilitates developing off-loadable context-
aware mobile applications armed with context-awareness.

TABLE. II. EVALUATION RESULTS OF CAMO

V. EMPIRICAL EVALUATION

In this section, we present the results of the empirical
evaluation of CAMO. We demonstrated the capabilities of
CAMO to fifteen Android developers and allowed them to
experiment with it and use it for developing off-loadable
context-aware mobile applications for two weeks. Afterwards,
a questionnaire was provided to assess their satisfaction with it.
The developers were asked to provide a response for each item
in the questionnaire based on a Likert scale that starts from one
(very unacceptable) up to five (very acceptable), and the results
are shown in Table 2. As shown in the table, the developers
believe that the introduced concept of task-offloading plans
deemed to be of high flexibility to suit various tasks and that
CAMO is a promising tool for guiding and facilitating the
development of efficient off-loadable applications with
context-aware offloading decisions. Additionally, it is clear
that most of the respondents think it is easy to use, and would
readily use it in the future. We estimated the internal
consistency and reliability of the questionnaire results using
Cronbach’s alpha. We got an estimated value of α equal to
0.92 signifying an extremely high degree of reliability and
recognition of the encouraging questionnaire outcomes.

VI. CONCLUSION

This paper presents a thorough investigation of various
techniques, frameworks and development models in the
literature to examine their suitability for offloading context-
aware mobile applications. Accordingly, the paper proposes the
practical context-aware mobile applications offloading
development model, CAMO. We developed CAMO in Java for
the Android platform providing several classes and methods to
help programmers in developing off-loadable applications.
Programmers can exploit the independency of the tasks of a
typical context-aware mobile application and use CAMO to
profile each task in isolation on the mobile and the cloud.

The paper introduces the concept of a task-offloading plan
that is highly flexible to suit various tasks with different
offloading criteria and objectives. Programmers can use
profiling results to develop one or more custom offloading
plans for each task in different contexts and use CAMO to
implement them. Alternatively, they can use pre-specified
plans, criteria and objectives for this purpose. Offloading
criteria allow rapid offloading at runtime in case the mobile
environment does not change frequently or considerably unlike
similar systems that rely merely on the offloading objectives
[37]. Finally, CAMO is general enough to allow programmers
to use it for any mobile application partitioned into
independent modules. Empirical evaluation shows extreme
satisfaction of mobile application developers with its promising
capabilities.

As future work, we intend to consider other types of
resources especially power. Besides, we will explore the idea
of incorporating the specifications of the mobile environment
including the Internet connection into the offloading plans for
increased context awareness rather than merely updating the
offloading criteria. Automated generation of offloading plans
based on profiling results and given the task objectives in
different contexts is currently under development. Such plans
can be updated, for example, once before using the application
on a new mobile and more often with each considerable change
in the Internet connection. In other words, we will continue
working on improving CAMO hoping to trigger its wide
adoption by mobile application developers to develop efficient
applications that can benefit from the cloud.

ACKNOWLEDGMENT

The authors would like to thank both Alaa Alalyani and
Malak Alharbi for their help.

REFERENCES

[1] A. Dey, “Understanding and using context,” Personal and Ubiquitous

Computing, vol. 5, no. 1, pp. 4-7, 2001.

[2] H. Elazhary, A. Althubyani, L. Ahmed, B. Alharbi, N. Alzahrani and R.

Almutairi, “Context management for supporting context-aware Android
applications development,” International Journal of Interactive Mobile

Technologies, vol. 11, no. 4, pp. 186-201, 2017.

[3] A. Khan, M. Othman, S. Madani and S. Khan, “A survey of mobile
cloud computing application models,” IEEE Communications Surveys

& Tutorials, vol. 16, no. 1, pp. 393-413, 2014.

[4] H. Elazhary, “Cloud computing for Big Data,” MAGNT Research

Report, vol. 2, no. 4, pp. 135-144, 2014.

Evaluation indicator average

Suitable for context-aware mobile applications 4.66

Useful for saving valuable mobile resources 4.26

May help in developing resource intensive mobile applications 4.80

The concept of offloading plan implies high flexibility to suit
various tasks with different objectives in different contexts

4.73

Promising to guide and facilitate the development of efficient

context-aware off-loadable mobile applications
4.80

Easy to use 4.66

Would use it in future development 4.60

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

390 | P a g e

www.ijacsa.thesai.org

[5] H. Elazhary, “A cloud-based framework for context-aware intelligent
mobile user interfaces in healthcare applications,” Journal of Medical

Imaging and Health Informatics, vol. 5, no. 8, pp. 1680-1687, 2015.

[6] H. Elazhary, “Cloud-based context-aware mobile intelligent tutoring
system of technical computer skills,” International Journal of Interactive

Mobile Technologies, vol. 11, no. 4, pp. 170-185, 2017.

[7] J. Liu, E. Ahmed, M. Shiraz, A. Gani, R. Buyya and A. Qureshi,

“Application partitioning algorithms in mobile cloud computing:

Taxonomy, review and future directions,” Journal of Network and
Computer Applications, vol. 48, pp. 99-117, 2015.

[8] T. Verbelen, T. Stevens, F. Turck and B. Dhoedt, “Graph partitioning

algorithms for optimizing software deployment in mobile cloud
computing,” Future Generation Computer Systems, vol. 29, pp. 451-459,

2013.

[9] B. Chun, S. Ihm, P. Maniatis, M. Naik and A. Patti, “CloneCloud:

Elastic execution between mobile device and cloud,” 6th Conference on

Computer systems, Salzburg, Austria, pp. 301-314, 2011.

[10] M. Smit, M. Shtern, B. Simmons and M. Litoiu, “Partitioning

applications for hybrid and federated clouds,” Conference of the Center
for Advanced Studies on Collaborative Research, Toronto, Ontario,

Canada, pp. 27-41, 2012.

[11] D. Kovachev and R. Klamma, “Framework for computation offloading
in mobile cloud computing,” International Journal of Interactive

Multimedia and Artificial Intelligence, vol. 1, no. 7, pp. 6-15, 2012.

[12] M. Ra, B. Priyantha, A. Kansal and J. Liu, “Improving energy efficiency

of personal sensing applications with heterogeneous multi-processors,”

ACM Conference on Ubiquitous Computing, Pittsburgh, PA, USA, pp.
1-10, 2012

[13] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han and A. Chan, “A framework for

partitioning and execution of data stream applications in mobile cloud
computing,” ACM SIGMETRICS Performance Evaluation Review, vol.

40, no. 4, pp. 23-32, 2013.

[14] K. Sinha and M. Kulkarni, “Techniques for fine-grained, multi-site

computation offloading,” 11th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing, Newport Beach, CA, USA, pp.
184-194, 2011.

[15] R. Balan, M. Satyanarayanan, S. Park and T. Okoshi, “Tactics-based

remote execution for mobile computing,” 1st International Conference on
Mobile Systems, Applications and Services, San Francisco, CA, USA,

pp. 273-286, 2003.

[16] R. Balan, D. Gergle, M. Satyanarayanan and J. Herbsleb, “Simplifying

Cyber Foraging for mobile devices,” 5th International Conference on

Mobile Systems, Applications and Services, San Juan, Puerto Rico, pp.
272-285, 2007.

[17] E. Tilevich and Y. Smaragdakis, “J-Orchestra: Automatic Java
application partitioning,” 16th European Conference on Object-Oriented

Programming, Malaga, Spain, pp 178-204, 2002.

[18] S. Osman, D. Subhraveti, G. Su and J. Nieh, “The design and
implementation of Zap: A system for migrating computing

environments,” 5th Symposium on Operating Systems Design and

Implementation, Boston, MA, USA, 2002.

[19] M. Satyanarayanan, B. Gilbert, M. Toups, N. Tolia, A. Surie, D.

O’Hallaron, A. Wolbach, J. Harkes, A. Perrig, D. Farber, M. Kozuch, C.
Helfrich, P. Nath and H. Lagar-Cavilla, “Pervasive personal computing

in an Internet suspend/resume system,” IEEE Internet Computing, vol.

11, no. 2, pp. 16-25, 2007.

[20] S. Smaldone, B. Gilbert, J. Harkes, L. Iftode and M. Satyanarayanan,

“Optimizing storage performance for VM-based mobile computing,”

ACM Transactions on Computer Systems, vol. 31, no. 2, pp. 5:1-5:25,
2013.

[21] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt and
A. Warfield, “Live migration of virtual machines,” 2nd Symposium on

Networked Systems Design & Implementation, Boston, MA, USA, pp.

273-286, 2005.

[22] W. Zhang, K. Lam and C. Wang, “Adaptive live VM migration over a

WAN: Modeling and implementation,” 7th International Conference on

Cloud Computing, Alaska, USA, 2014.

[23] T. Bressoud and F. Schneider, “Hypervisor-based fault-tolerance,” 15th
ACM Symposium on Operating Systems Principles, Copper Mountain,

Colorado, USA, pp. 1-11, 1995.

[24] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam and B. Weissman,
“ReTrace: Collecting execution trace with virtual machine deterministic

replay,” 3rd Annual Workshop on Modeling, Benchmarking and

Simulation, San Diego, CA, USA, 2007.

[25] J. Tucek, S. Lu, C. Huang, S. Xanthos and Y. Zhou, “Triage:

Diagnosing production run failures at the user’s site,” 21st ACM
Symposium on Operating Systems Principles, Stevenson, WA, USA, pp.

131-144, 2007.

[26] J. Flinn and Z. Mao, “Can deterministic replay be an enabling tool for
mobile computing?” 12th Workshop on Mobile Computing Systems and

Applications, Phoenix, AZ, USA, pp. 84-89, 2011.

[27] A. Surie, H. Lagar-Cavilla, E. de Lara and M. Satyanarayanan, “Low-

bandwidth VM migration via opportunistic replay,” 9th Workshop on

Mobile Computing Systems and Applications, Napa Valley, CA, USA,
pp. 74-79, 2008.

[28] S. Hung, C. Shih, J. Shieh, C. Lee and Y. Huang, “Executing mobile
applications on the cloud: Framework and issues,” Computers and

Mathematics with Applications, vol. 63, pp. 573-587, 2012.

[29] A. Khan, M. Othman, F. Xia and A. Khan, “Context-aware mobile cloud
computing and its challenges,” IEEE Cloud Computing, vol. 2, no. 3, pp.

42-49, 2015.

[30] B. Zhou, A. Dastjerdi, R. Calheiros, S. Srirama and R. Buyya, “A

context sensitive offloading scheme for mobile cloud computing

service,” 8th International Conference on Cloud Computing, New York,
USA, pp. 869-876, 2015.

[31] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R.

Chandra and P. Bahl, “MAUI: Making smartphones last longer with
code offload,” 8th International Conference on Mobile Systems,

Applications, and Services, San Francisco, California, USA, pp. 49-62,

2010.

[32] A. Ellouze, M. Gagnaire and A. Haddad, “A mobile application

offloading algorithm for mobile cloud computing,” 3rd International
Conference on Mobile Cloud Computing, Services, and Engineering,

San Francisco, CA, USA, pp. 34-40, 2015.

[33] X. Zhang, S. Jeong, A. Kunjithapatham and S. Gibbs, “Towards an
elastic application model for augmenting computing capabilities of

mobile platforms,” 3rd International Conference on Mobile Wireless
Middleware, Operating Systems and Applications, Chicago, IL, USA,

pp. 161-174, 2010.

[34] R. Kemp, N. Palmer, T. Kielmann and H. Bal, “Cuckoo: A computation
offloading framework for smartphones,” 2nd International Conference on

Mobile Computing, Applications and Services, San Francisco, CA,

USA, pp. 59-79, 2010.

[35] V. March, Y. Gu, E. Leonardi, G. Goh, M. Kirchberg and B. Lee,

“µCloud: Towards a new paradigm of rich mobile applications,” 8th
International Conference on Mobile Web Information Systems, Niagara

Falls, ON, Canada, 2011.

[36] P. Yuan, Y. Guo and X. Chen, “Uniport: A uniform programming
support framework for mobile cloud computing,” 3rd IEEE International

Conference on Mobile Cloud Computing, Services, and Engineering,

San Francisco, CA, USA, pp. 71-80, 2015.

[37] A. Khan, M. Othman, A. Khan, S. Abid and S. Madani, “MobiByte: An

application development model for mobile cloud computing,” Journal of
Grid Computing, vol. 13, pp. 605-628, 2015.

[38] TextToSpeech,

https://developer.android.com/reference/android/speech/tts/TextToSpeec
h.html, [Online; accessed: 2017-03-01].

[39] Text-to-Speech, https://www.ivona.com/us/about-us/text-to-speech/,
[Online; accessed: 2017-03-01].

[40] J. Nielsen, Usability Engineering. Morgan Kaufmann, 1993.

[41] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. Dick, Z. Mao and L. Yang,
“Accurate online power estimation and automatic battery behavior based

power model generation for smartphones,” 8th International Conference

on Hardware/Software Codesign and System Synthesis, Scottsdale, AZ,

USA, pp. 105-114, 2010.

