
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

427 | P a g e

www.ijacsa.thesai.org

SaaS Level based Middleware Database Integrator

Platform

Sanjkta Pal

Abstract—In purpose of data searching acceleration, the

fastest data response is the major concern for latest cloud

environment. Regarding this, the intellectual decision is to enrich

the SaaS level applications. Amongst the SaaS based applications,

service level database integration is the recent trend to provide

the integrated view of the heterogeneous cloud databases through

shared services using DBaaS. But the generic limitations

interacted during the database integration are dynamic

adaptability of multiple databases structure, dynamic data

location identification in the concern databases, data response

using the data commonality. Data migration technique and single

query approach are the two individual solutions for the proposed

limitations. But the side effects during data migration technique

are extra space utilisation and excess time consumption. Again,

the single query approach suffers from worst case time

complexity for data connectivity, data aggregation and query

evaluation. So, to find a suitable data response solution by

eliminating these combined major issues, a graph based

Middleware Database Integrator Platform or MDIP model has

been proposed. This integrator platform is actually the flexible

metadata representation technique for the concerned

heterogeneous cloud databases. The associativity and

commonality among components of multiple databases would be

further helpful for efficient data searching in an integrated way.

For the incorporation within the service level but not in the

services, MDIP is considered as the different platform. It is

applicable over any service based database integration in

purpose of data response efficiency. Finally, the quality

assessment using evaluated query time compared with already

proposed SLDI shows better data access quality. Thus, its

expertise dedication in data response can overcome summarised

challenges like data adaptation flexibility, dynamic identification

of data location, wastage of data storage, data accessing within

minimal time span and optimised cost in presence of data

consistency, data partitioning and user side scalability.

Keywords—Database integration; Integrator platform; Multi-

Level graph; Subset of vertices; First class edge; Concrete edge;

Connectivity edge

I. INTRODUCTION

In cloud computing environment, huge amount of data sets
are handled through services. The reason is the opaque nature
of the services, for which it can typically hide the
implementation details from the service consumers and is able
to provide facility of returning information in a request-reply
form through shared service environment. In the cloud
storage, generally data are of varied types and incremental in
nature. For this reason, the relational databases are not
sufficient to store that heterogeneous type huge amount of
data following the schematic structure. Remembering these
issues, NoSQL databases are used to store huge amount of

cloud data following the schema on read operation. But in
course of data accessing, the automation is needed at cloud
provider side. That causes accelerated consumer based service
provisioning and data instance management. To reach towards
the prescribed goal, DBaaS assistance is needed [9] [10].
Because, using the data service support at SaaS service model,
DBaaS can deliver high quality of data to a large number of
users. That satisfies multi-tenant scenario [16].

In purpose of data handling in cloud environment, there
may be multiple numbers of heterogeneous cloud databases to
store large scale data items. So, for cloud data handling,
database integration concept comes. This can handle different
types of data from multiple cloud databases in an integrated
fashion. This concept leads towards database integration. But,
in the database integration subtitle, one of the most
challenging approaches is the deliverability of integrated view
of different data sets which are situated in distributed
heterogeneous cloud databases. If the database integration is
done over the services, then that service based database
integration [12] [13] must be focused as more effective
approach than IaaS or PaaS based database integration. The
reason is the services‟ ability to extract dynamic view of
multiple cloud databases. But in sense of robustness of any
mechanism, every mechanism suffers from some
incompleteness as well as some challenges. Similarly this
service based database integration technique also suffers from
flexible adaptability of the structure of multiple databases and
also lacks in dynamic identification of data location in the
concern database or databases against users data request using
their commonality. Depending on these challenges, some
solutions have been found. Those are, data migration
technique and single query approach. In data migration
technique the data transformation form relational database to
NoSQL database has been focused [1] [2]. But this technique
suffers from extra space utilisation for storing duplicate data,
and excess time for data migration. In single query approach,
data collection is possible from relational as well as from
NoSQL database just using a single query [3] [4] [5] [6]. In
the context, the single query approach also suffers from the
worst case time complexity for data connectivity, maximised
time for data aggregation and maximised time for query
evaluation.

So, surveying all the possible techniques for multiple
database handling, it can be concluded that database
integration through SaaS is the effective approach rather than
others. Because service based database integration can deliver
integrated view of data within minimum data accessing cost as
well as minimum implementation cost, in presence of
consistency, service partitioning and service share-ability. But

The author is presently not affiliated to any Institution/Organisation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

428 | P a g e

www.ijacsa.thesai.org

for the above challenges during service based database
integration, some modification is needed over it. So, to
overcome the issues, a different platform in the service level
in needed which can act as the integrator of multiple
heterogeneous databases maintaining the flexible adaptation of
another new database.

Remembering all the issues and its possible solutions, a
Middleware Database Integrator Platform (in abbreviation it is
termed as MDIP) has been proposed. This platform would act
as the database integrator and would able to provide integrated
view of distributed heterogeneous cloud databases after
adapting those multiple databases structure. The applicable
area of this MDIP is SaaS service model. This middleware
architecture does not ensure formalisation in services or in
composition of services. Rather this middleware architecture
ensures a different platform concept in between Application
service and Data service, in which multiple number of
heterogeneous cloud databases can store their database details
in combined fashion for further integrated data deliverability.
This mechanism is applicable in any service based database
integration for the optimised time consumption during data
response. So, in purpose of implementation of MDIP concept,
a multi-level graphical approach has been considered. The
concept can easily map the cloud databases and their
components in different levels to form the metadata by
maintaining the data instance inter relationship and
commonality. This causes reduced time and fast data retrieval
during users query response. At last, a comparison on query
evaluation time has been done within already existing Service
Level Database Integration mechanism [12] and proposed
mechanism after incorporating it in SLDI. The comparison
focuses on the quality assurance in sense of better data
availability and optimised time for data management. Thus the
approach can overcome the prerequisite challenges like data
model adaptation flexibility, dynamic identification of data
location, wastage of data storage, data accessing with minimal
implementation cost as well as minimum time in presence of
data consistency, data partitioning and maximum scalability.
Summarising all the characteristics and solved issues of the
proposed approach, it can be concluded that the MDIP
approach would be supportive for further accelerated efficient
data retrieval in the latest cloud environment.

II. RELATED WORK

Till now, many approaches have been proposed to provide
dynamic integrity of cloud databases for the deliverability of
the integrated view of heterogeneous data instances. Those are
briefly discussed in below.

In [1], to support advance database architecture, relational
as well as NoSQL databases would be involved in data adapter
system through three different approaches. To simplify the
query evaluation, data adapter system integrates and handles
the transformation from SQL to NoSQL approach is accessed.
In [2], a framework is introduced to support migration from
relational database to NOSQL database. The framework is
modularised into two parts. The first is migration module,
which enables seamless migration in between databases and
the second is mapping module is used to translate and execute
the requests in any database management system for returning

the integrated view. In [3], the Triple fetch query language on
the platform for integrating relational and NoSQL databases
claims to provide applications to leverage the benefits of the
relational as well as NoSQL databases using the single
relational database query. This query may produce results
from relational database and from NoSQL database rather than
single output within minimal cost. In [4], a generalised query
interface is designed for unity of both relational and NoSQL
databases. In the scenario of unity allows SQL queries to
automatically translate and execute with the help of
underlying API of the relational and NoSQL data storages. As
a whole virtualise system is applied to join data and query
from both relational and NoSQL databases using a single SQL
query. In [5], to provide the concrete benefit of NoSQL
databases with relational database, a dual fetch query language
system has been proposed. The platform is introducing a query
syntax. This helps to provide combined data from separate
databases in a single application. In [6], a framework has been
evolved for integrating relational as well as NoSQL databases.
The efficiency of the framework is the answering the queries
after collecting them from integrated data sources. The
framework offers optimised query translation within minimal
cost for integrating MySQL (as relational database) and
Mongo DB (as NOSQL database) through an aggregated cost.
In [7], comparison in between NoSQL and relation databases
has been magnified and also specifies the limitations during
real world applications. Here the mechanism proposes the
solution to solve the limitations using through integrated data
sources for yielding better data responses through simple or
complex queries. In [8], due to absence of proper tool for
migration from relational database to NoSQL, a conversion
has been proposed. This helps data migration from relational
database (SQL) to NoSQL database (Mongo DB) using query.
The common structure of the proposed query processing
language can handle NoSQL data and relational data together.

III. FRAMEWORK FOR MDIP

Considering all the summarised generic challenges, a
mechanism has been proposed to resolve the mentioned
summarised issues. Regarding those issues, a Middleware
Database Integrator Platform or in abbreviation MDIP
approach is considered, where an individual platform rather
than services would be engaged to provide the integrated view
of heterogeneous cloud databases. Even for easier data
availability, the integrator platform takes the responsibility as
dynamic metadata representation after accepting new database
and its model in a flexible way. Here, the target is to formalise
the flexible metadata representation after collecting the data
models from multiple cloud databases showing the
interconnectivity and commonality among database instances.
In this way, the formalisation can provide the draft for
attached cloud databases using their interconnectivity and
their commonality. This would be further helpful for users‟
data response by follow the strict navigation in reverse
direction.

A. Graphical Representation of MDIP Framework:

A formal representation has been diagrammed using a
graphical approach. Then MDIP can be realised using multi-
level digraph M (G: (V, E), L) which can be extendable unto

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

429 | P a g e

www.ijacsa.thesai.org

multiple levels, L. In the graphical scenario, the components
of the cloud databases are considered as the vertices of the
multi-level graph, which are denoted as V. The set of directed
edges of the graph are defied by the interconnection in
between pair of vertices are formally denoted as E (V × V),
where (V × V) is the representation of the pair of consecutive
vertices within a layer or in between layers.

For deploying the multi-level graph M (G, L), some issues
can be evolved over the components of MDIP graphical
framework. So, more formal description of those components
are defined below.

1) Vertices: In the MDIP graphical scenario, multiple

cloud databases and their intermediate components are

considered as the vertices of the graph. For this graphical

design, the numbers of databases are themself considered as

the vertices, which are the residence in the top level of the

graph, in a single plane. The intermediate components of those

databases can be realised as the subordinate consecutive lower

level vertices. Whenever the same type of database

components would be allowed to reside in same level, then

those database components must be declared as co-planar

vertices of the graph. Here in the graphical scenario, every

vertices V are denoted by the combination of subset of vertices

and level notation, like Spj(Li), where, Spj is the notation of j
th

number vertex in the p
th

 subset of vertices at level Li.
For this approach, all the black circles are considered as

vertices and are denoted by V.

2) Subset-of-vertices: In the graphical scenario, the total

number of co-planar vertices can be clustered into some

number of subset of vertices. Those subset of vertices are

denoted as Sp at a particular level L of the multi-level graph M

(G, L). Here the arbitrary number p must range in between 1 to

n or formally it will be denoted as 1 ≤ p ≤ n. So, the formal

representation of the subset of vertices at a particular level L

of the graph can be represented as,

S1(L) / S2(L) / S3(L) /……/ Sp(L) / ………/ Sn(L) S (L)

Or,

S (L) = S1(L) S2(L) S3(L) …. Sp(L) …… Sn(L).

This means, the combination of all subsets of vertices in a
particular level must form a complete level.

For the presence of multi-level concept, if Li represents the
i
 th

 level in the multi-level graph M (G, L), then for non-co-
planar subsets of vertices, any lower level subset of vertices
must be considered as the subset of a particular subset of
vertices in its consecutive upper level. Or in formal it would
be represented as,

S (L0) S (L1) S (L2) ……………. S (Li)

For example, in a particular level of the MDIP graph, the
cluster of similar components at a particular level and can be
decomposable into finite number of subsets. In vice-versa, the
union of those subsets of vertices must form a complete level
of the graph.

For this approach, all the triangular solid shapes in the
upper part of any level are considered as subset of vertices, but

in the lower part, the lightly shaded areas containing vertices
are considered as the subset of vertices in elaborate fashion.

According to MDIP graphical concept, cloud databases
must exist at the top level of the graph. Then their subordinate
components would be placed in its lower level maintaining the
proper sequence. Those subsets of vertices must exist at a
particular level in a clustered way. Form the concept of subset
of vertices it is declarable that any top level sub set of vertices
is the superset of its subordinate level‟s subset of vertices.

3) Levels: In the graphical representation, cloud databases

and their subordinate components must be non-co-planar.

Maintaining the consequent placement of different non-co-

planar database components at different stages will discuss the

level concept in the graph.
For multi-level graph M (G, L), levels Li can be defined by

the non-co-planar sets of vertices and their connectivity using
edges. At a particular level, all the placed vertices or database
components are considered as co-planar. If Vi denotes the set
of co-planar vertices at a particular plane or level Li and the set
of vertices Vj are denoting the set of another co-planar vertices
at a particular plane or level Lj, then the two different co-
planar sets of vertices must exist at different plane or formally
Li ≠ Lj. Then, as per definition of non-co-planar sets of
vertices, different planes of the graph must be regarded as
levels.

Using the concept of multiple levels, any level Lj will be
said as consecutive of level Li, if level Lj must maintain the
provided relation: i.e. Lj = Li+1 / Li-1. Here, the number of
levels must range up to some positive finite number. Because
for any cloud databases, attributes are the granular
components and those attributes cannot be further
decomposable. But for the level concept, those levels always
maintain the connectivity, which can be represented through
the edge notation denoted by set E.

TABLE I. DATABASE COMPONENTS AND LEVELS ASSOCIATIVITY IN

MULTI-LEVEL MDIP GRAPH

In the graphical scenario, for the simplicity of the
graphical framework, at the top level of the graph, numbers of
cloud databases are placed. So, for this reason, the number of
cloud databases would be regarded as the co-planar graph,
contained at same level. In the next level of the graph, the
subordinate components of those cloud databases (like
collection of schemas) would be placed in its proper graphical
level maintaining the planarity of the vertices. Similarly,
multi-level graph would be formed by placing those different
database components at different levels in a proper sequence,
which are also non-co-planar in nature. Here for the MDIP
graphical scenario, the database components and their
assumed levels are provided in Table 1.

4) Count ability of the Subset of Vertices: In the graphical

scenario, if the sub set of vertices are represented by Sp, at

particular level Li. Then, formally the total number of sub-sets

b in a particular level Li can be represented as,

MySQL Database, Mongo DB Level 0/ top level

Schemas of databases Level 1/ intermediate level

Attributes of Databases Level 2/ lower level

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

430 | P a g e

www.ijacsa.thesai.org

c (Li) = c(∑
 Sp(Li)) = |b|.

Here, each level of the multi-level graph has possibility to
be decomposable into multiple numbers of sub sets of vertices
maintaining the requirements. These subsets of vertices are
regarded as the sub-graph in a level in the graph. Continuing
in this way, the multi-level graph will contain total number of
sub-graphs same as the total number of subset of vertices used
in different levels in the whole graph. Continuing in this way,
in the multi-level graph M (G, L), the total count of the sub-
graph must be the sum of total number of sub-graphs in every
levels. Then the formal representation of the total count of the
sub-graphs must be,

C = ∑
 |,

Whenever the maximum number of levels is m

According to MDIP graphical concept in Figure 1, here
two cloud databases are used in the graph. This indicates the
single set of vertices at top level containing the databases. In
the next level, if their schemas are defined, then two different
sets of vertices (here schemas) for two different cloud
databases would be represented. For the two sets of vertices in
the second level, the cardinality of the sub-graph in the second
level must be declared as two. And at the lowest level, there
exists five different subsets of vertices depending on this
concept.

Then using the count ability of the subset of vertices, the
total count of sub-graphs in the whole graph would be,

C = (|∑
 |) = c (L0) + c (L1) + c (L2) = 1+2+5 = 8

5) Edges: In MDIP, whenever a cloud database gradually

can be decomposed into multiple number of subordinate

components (i.e. cloud databases, schemas, attributes etc.),

then non-co-planar database components must be mapped into

different levels in the multi-level graph. Continuing this

process, the components of the cloud databases (denoted as

the vertices) of same level or different levels must be

connected some other consicutive components maintaining

their physical connectivity.
So, the set of edges can be categorised into two different

types. Those are,

a) Intra level connectivity edges: These set of edges are

responsible for connecting a pair of co-planar vertices situated

in a particular level. For this category of edges, the situation of

the end vertices may be in a single subset of vertices or may

be in different subset of vertices. Depending on this, these set

of edges may be categorised into two types. Those are,

 Intra subset connectivity edges: These set of edges are
responsible for connecting a pair of vertices situated in
a subset of vertices. If Fi denotes the set of Intra
connectivity edges for connecting any two vertices vi

and vj, situated at same sub set of vertices Sp at level Li,
then the formal representation can be defined as,

Fi (Spi (Li) × Spj (Li))

where, Spi (Li) denotes vertex Vi and Spj (Li) denotes vertex
Vj. The solid arrow headed solid lines represent these intra
connectivity edges.

 Inter subset connectivity edges: These set of edges are
responsible for connecting a pair of vertices situated in
two different subsets of vertices in a particular level. If
Di denotes the intra level connectivity edges for
connecting any two edges vi and vj, situated at different
sub set of vertices named as Sp and Sq at a particular
level Li,, then its formal representation can be defined
as,

Di (Spi(Li) × Sqj(Li))

where, Spi (Li) denotes vertex Vi and Sqj (Li) denotes vertex
Vj. Solid arrow headed dashed lines represent these inter
subset connectivity edges.

b) Inter level Connectivity edges: These set of edges are

responsible for connecting a pair of vertices situated in two

different subsets of vertices in two consecutive levels. If Pi

denotes the inter level connectivity edges then its formal

representation can be defined as

Pi (Sp(Li) × Sq(Li+1))/ (Sq (Li+1) × Sp(Li)),

Where, Sp and Sq are denoting two different sub sets of
vertices accordingly at the levels Li and Li+1. In the inter-level
edge representation, two different types of edges are defined.
Those are,

 Upward directed edges: In this set of edge
representation, edges are directed towards upward. In
the given scenario, the edge direction is from lower
level components (i.e. like attributes) towards upper
level components (finally the used database).
Following these upward directed edges in a proper
sequence, a user can find her requested data from the
concerned cloud databases. So, the consecutive
sequential usage of upward directed edges can form a
complete request path.

 Downward directed edges: In the second set of edge
representation, edges are directed towards downwards.
Where, the edge direction is from upper level
components (i.e. like the used database) towards lower
level components (finally attributes). Following these
downward directed edges in a proper sequence, the
data can be stored in the cloud database. So, the
consecutive sequential usage of downward directed
edges can form a complete data storage path.

The blank arrow headed solid line represents these inter
level connectivity edges. If the edges are directed towards
upper level then the edges are upward directed edges. If the
edges are directed towards lower level then the edges are
downward directed edges.

So, the formal representation of the set of edges can be
defined as,

Ei = Fi Di Pi

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

431 | P a g e

www.ijacsa.thesai.org

6) Dissection of a single level, its necessity and

advantage: For the graphical simplicity, every level has been

dissected into two different parts. Among them, the lower part

must contain the clustered vertices and their connectivity

details and the upper part must contain only the number of

subset of vertices.
Within a level, any subset of vertices in the upper part

would be connected with its lower level components using a
single edge. The reason is to avoid multiple edges connectivity
complication. For this scenario, this single edge connectivity
in between subset of vertices and its vertices is actually the
summarised consideration of multiple inter connectivity
edges.

So, formally the representation would be,

Ri (Sp (Li) × Spi (Li))

Or

Ri (Sp (Li) × {Sp1 (Li), Sp2 (Li), ….. , Spr (Li)})

Where Sp(Li) is the representation of the p
th

 subset of
vertices situated at the upper part of the level i, and Spi (Li) is
the representation of the i

th
 vertex in the p

th
 subset-of-vertices

at lower part of the i
th

 level. This connectivity must explain the
total count of edges equals with the number of vertices
situated in Sp (Li) subset-of-vertices. If the Sp (Li) subset-of-
vertices contains r number of vertices in the set, then for
interconnectivity r number of edges must exist. Here the
vertices to subset-of-vertices functional connectivity will
deliver the common edge in place of r number of inter
connectivity edges.

For the concise characteristics, any two co-planar subsets
of vertices connectivity in the upper part of a level can explain
the abstract relationship. But its lower part can explain the
absolute relationship within the vertices in a single subset of
vertices or within multiple co-planar subsets of vertices for its
detail description.

Similarly for the inter level connectivity discussion, any
two vertices for two consecutive levels must be connected
with the single edge for avoiding multiple edges to connect all
of its nearer suordinates.

So, formally the representation would be,

Pi (Spi (Li) × Sq (Li+1))

Or

Pi (Spi (Li) × {Sq1 (Li+1), Sq2 (Li+1), …….. , Sqr (Li+1)})

Where Spi (Li) is the representation of the i
th

 vertices
situated at p

th
 subset-of-vertices at level i, and Sq(Li+1) is the

representation of the q
th

 subset-of-vertices at consecutive i+1
th

level. This connectivity must explain the number of edges
equals with the number of vertices situated in Sq (Li+1) subset-
of-vertices. Here also, if the Sq (Li+1) subset-of-vertices
contains r number of vertices in the set, then for
interconnectivity, single edge would be placed as the
substitute of r number of edges.

Graphically inter level connectivity edges are the detail
explanation of this type of connectivity.

B. Presentation of MDIP graph and its detail description:

Figure 1 shows a simple scenario through the proposed
MDIP graphical model. In the graph, three levels have been
used, those are S (L0), S (L1) and S (L2). Among these S (L2)
represents lower level and the highest level is represented by S
(L0). In the highest level, two vertices are situated. They are
noted as S11 (L0) and S12 (L0). In real concept these two nodes
are denoting the used two different cloud databases, i.e. DB1
as S11 and DB2 as S12. Here the upper part of the level L0

denotes the subset of vertices S1 (L0), which contains the
discussed two vertices. In this level the interconnectivity
within two databases lacks the concreteness in explanation.
So, that connectivity edge is the first class edge.

Fig. 1. Graphical representation of MDIP using multi-level digraph

TABLE II. SUMMARISED GRAPHICAL NOTATION FOR MDIP GRAPHICAL

NOTATION

Formal

notation
Description of notation Graphical notation

V Set of vertices

S Subset of vertices

E

Set of intra

level
connectivity

edges

Intra subset

connectivity

edges

Inter subset

connectivity

edges

Set of inter

level

connectivity
edges

Upward directed
edges

Blank headed arrows

towards upward

direction

Downward

directed edges

Blank headed arrows
towards upward

direction

Set of edges for connecting the
components of upper part and lower

part with in level

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

432 | P a g e

www.ijacsa.thesai.org

In the next level, means at level 1, the clusters of schemas
of the proposed databases has been magnified. For two
different databases, the set of schemas have been presented
into two subsets of vertices. The first subset is under vertex S11

(L0) and the second subset is under vertex S12 (L0) of level S
(L0) and those vertex subsets are denoted as S1 (L1), S2 (L1).
So, the upper part of level S (L1) contains these two subsets of
vertices, means S1 (L1) and S2 (L1). Here, the inter connectivity
edges responsible for connecting the set of vertices <S11 (L0),
S1 (L1)> and <S12 (L0), S2 (L1)> can discuss the connectivity
with all vertices, which are situated in the lower part of the
level. In the lower part of the level, first subset containing
three vertices S11 (L1), S12 (L1) and S13 (L1). In the second subset,
numbers of vertices are two and they are denoted as S21 (L1)
and S22 (L1). Here, inter level connectivity edges responsible
for connecting the set of vertices <S11 (L0), S1 (L1)> and <S12

(L0), S2 (L1)>. These edges can discuss the connectivity with
all vertices, which are situated in its lower part of the level.

For the next lower level (here the last level) means at level
2, the set of attributes are used. At level 2 five set of vertices
have been used for discussing five schemas in the upper part
of the level. Here the used sets of vertices are denoted as S1
(L2), S2 (L2), S3 (L2), S4 (L2), and S5 (L2) and these are the
vertices of the upper part of the level. The connectivity of
these subsets of vertices can‟t clear the concrete connectivity.
So, for the concrete view, those subsets are decomposable into
lower part showing its concrete connectivity. Among them,
the first subset containing three vertices S11 (L2), S12 (L2) and
S13 (L2), the second subset contains two vertices and they are
denoted as S21 (L2) and S22, (L2), the third subset contains
another two vertices, which are denoted as S31 (L2) and S32 (L2).
For the fourth set, the numbers of vertices are three and are
denoted as S41 (L2), S42 (L2) and S43 (L2), and finally in the fifth
subset, the numbers of vertices are two and are denoted as S51

(L2) and S52 (L2). Because of the attribute declaration in the
level 2, this level is unable for further decomposed into next
level, because attribute components always maintain the
granularity feature in its provider databases.

In this proposed graphical scenario, the used components
of the databases in a single level easily be declared as co-
planar. But for the whole graph concept, databases
components situated at different levels may be declared as
non-co-planar.

C. Decomposibility of the Levels:

In this multi-level graph concept, there is a possibility to
decompose a particular level of the graph into another level
using some characteristics. But this decomposition process
may be continued up to a finite range. Because, the assumed
last level components may not be further decomposable using
the proposed characteristics. In reality, any cloud database can
be decomposable unto its attributes. This situation is for the
granularity of the attributes in every database. Then, in the
graph, the first used level must be considered as the parent
level or highest level of the graph, and the assumed last level
must be considered as the leaf level or lower level of the
graph.

Continuing in this way, the proposed MDIP graphical
framework may be decomposable into multiple levels. But this

decomposability scenario must follow some characteristics
associated with the graph. Those are,

1) First class edge and concrete edge: In the concept of

individual level (i.e. any particular level of cloud databases),

there may be multiple sets of vertices. All these vertices must

maintain the planarity and may have intra level connectivity

among them. In this graphical concept, every level has been

decomposed into two parts. The lower part (in Figure 1)

shows the coplanar vertices in their defined section, means

subset of vertices. The upper part (in Figure 1) of the level

only shows the number of subsets of vertices (means

subgraph) used in the level. This explains that the lower part

of the level is the elaborate dissection of the upper part of the

level. In the scenario, whenever the connectivity has been

shown in between the two components in the upper part of any

particular graphical level, then the concreteness of that edge

can be discussed into the lower level vertex connectivity. So,

in the upper part of the level shows the abstract connectivity

of two sets of vertices using first class edges [11], and then at

lower level, the vertices connectivity will explain the concrete

edges.

2) Scalability during decomposition of first class edge:

During the explanation of total graphical concept, if the

vertices connectivity within the upper part of the level shows

the abstract connectivity using first class edge, then the upper

part of the discussed level must be decomposable into

consecutive lower part to provide the concrete connectivity of

vertices. Whenever the vertex connectivity within the lower

part of the level are may not be further decomposable for the

atomic nature of the vertices, that level must be considered as

the extreme lower level or leaf level Li. But the absence of

concrete decomposability, permits the lower part of the level

to be further decomposed into consecutive lower level.
In reality, for this MDIP graphical approach, cloud

databases are considered as the top level vertices. Let, those
databases are further decomposable into cluster of schemas in
the next level, and then those schemas must be regarded as the
vertices in the next level. But in reality, the database schemas
are not child level components. So, the schemas must be
further decomposable into attribute details. Then in the
consecutive lower level, those database attributes must be
arranged. In the database detailing, the attributes may not be
further decomposable into subordinate components. So, the
graphical level with attribute detail must be declared as the
extreme lower level in the multi-level graph. In this case,
different cluster of schemas of different databases, different
attribute detail of different schemas must form individual
subsets-of-vertices maintaining their planarity. During the
graphical formalisation, the upper part of the level must show
only the number of subsets-of-vertices.

3) Algorithm to accomplish the complete decomposition in

the multi-level graph: To decompose a particular level of the

graph into its lower level, anyone must follow the

decomposability into defined steps. Those are,
Step1: take any edge, which connects a pair of co-planar

vertices.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

433 | P a g e

www.ijacsa.thesai.org

Step 1a: if the edge is intra subset connectivity edge, then
pair of vertices will reside in a single subset-of vertices. Then
check step 2 cases.

Step 1b: if the edge is inter subset connectivity edge, then
the pair of vertices will reside in different subset-of vertices.
Then check step 2 cases.

Step 2: Check the database components equivalent with
those vertices.

Step 2a: If both the vertices represent child level database
components, then go to step 4.

Step 2b: if both the vertices represent intermediate level
database components, then go to step 3.

Step 2c: if one vertex represent child level database
component and the other vertex represent intermediate level
database components, then go to step 3.

Step 3: Decompose those vertices into further lower level
components or vertices.

Go to step 1 (Continue the process until it find Step 2a
case to end the decomposition).

Step 4: Stop further decomposition.

End process.

IV. ILLUSTRATION OF THE PROPOSED MDIP FRAMEWORK

To illustrate the Middleware Database Integrator platform
or MDIP, the real life example on healthcare data storage has
been taken. Here for the presence of relational data as well as
semi-structured data for remote health care, two different
types of databases are used. Those are, MySQL database, used
for storing relational data and Mongo DB database used for
storing semi-structured data.

In the illustration, MySQL database is taken to store the
patients‟ demographic data, doctors‟ demographic data and
doctor‟s schedule. For storing those data in a structured
schematic way, a database named „HEALTHCARE‟ has been
declared in the MySQL database, in which the three tables are
designed [12].

For storing the prescription details, which poses the ever
increased volume data with respect to a particular patient,
Mongo DB database has been used. In Mongo DB, the
declared database name is „RHC‟ [12]. In this RHC database,
here also three collections (means table) has been declared.
Those are PATIENT, EPRESCRIPTION and
PRESCRIPTION DETAILS. The characteristics like the
declaration of different types of documents (tuples or rows) in
different collections (tables), there is no need to specify the
attributes data type under which the data would be inserted in
the Mongo DB database. But for declaring the inter-
connection within the tables or intra-connection in between
tables in the database, some common attributes have been
declared in the tables. Here, Table 3 shows the table details of
MySQL database as well as of Mongo DB database.

For data collection in an integrated way from the multiple
number of tables or collections within a single database or

multiple number of databases, the correlation among tables or
collections or within databases are mandatory. MySQL
supports the foreign key concept for interconnection within
the tables in the single database for the above reason. So, in
MySQL database, DOC_ID is assigned as a foreign key in
PATIENT table and also in DOCSCHEDULE table for
searching the doctor‟s details (i.e. doctor‟s name,
specialisation as well as doctor‟s schedule) by any patient.
But Mongo DB does not support any foreign key concept
within the collections. So, for collection‟s inter-connection in
Mongo DB, reference concept has been used. This referencing
concept may not be validated throughout the whole collection.
Only the referenced documents of a collection can be referred
by the concerned particular documents situated at other
collection. The referencing syntax is like,

>db.eprescription.insert({name:"rames

h",pid:db.patient.find()[1]._id,docid:db.

doctor.find()[1]._id,age:"41",disease:"fe

ver",bp:"110/79",pulse:"92",medicine:

"paracitamol 650"})

Here, this particular document of collection
EPRESCRIPTION taking reference from the PATIENT
collection‟s document. So, using database details, and the
inter-connections or intra-connections among them, the use
case diagram of the MDIP graph is given below.

In the use case diagram sketched in Figure 2, MySQL
database and Mongo DB database are two different states at
top level. The associativity among those databases or states
can explain the relationship among their internal components.
So, the two databases can provide schemas through the
generalised view in the next level UML. Here, in the UML the
clusters of schemas of two databases are grouped into two
different packages. Then the single generalisation indicator
can illustrate the database relationship with all of its schemas
contained in the schema group. Continuing in this way, in the
next level, all the attribute detail of the schemas and their
associativity has been shown. But for the regarded case,
attributes are further do not decomposable into next level. So,
the attribute details are regarded as the last level of MDIP.

Here different components of different level discussed in
the use case diagram of the multi-level MDIP Graph have
been provided with their identifying ID in Table 4.

To discuss the provided tables or collections inter or intra
connection among them, it is important to provide the attribute
details with their commonality. To illustrate the graphical
dissection of the vertices of the complete graph, a simplified
example on healthcare data has been used. From the above
table (Table 4), two different sets of tables or collections have
been diagrammed. In Figure 2, MS1, MS2 and MS3 are
associated with MySQL database and they actually are the
representation of the three tables of the MySQL database,
named PATIENT, DOCTOR and DOCSCHEDULE. But the
three collections MD1, MD2 and MD3 are associated with
Mongo Database and they actually are the representation of
the three collections of the concerned database, named
PRESCRIPTIONDETAILS, PATIENT, and
EPRESCRIPTION.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

434 | P a g e

www.ijacsa.thesai.org

TABLE III. DATABASE DESCRIPTION OF MYSQL AND MONGO DB

DATABASES

One remarkable thing in the Mongo DB database is the
declaration of attribute. Because, in Mongo DB database
attribute declaration is not mandatory for storing data. But for
database to database interconnectivity, some basic attributes in
the collections of Mongo DB have been declared. These
attribute declaration is supportive for further metadata
representation.

In MySQL‟s PATIENT table, being the primary key, P_ID
maintains functional dependency relationship with other
attributes. And the NAME attribute also maintains functional
dependency relationship with AGE attribute. Again, as the
foreign key of the PATIENT table, DOC_ID manages inter-
table relationship with other tables and manages the efficient
data collection. Following the same process, in Mongo DB
database, common attributes P_ID have been declared in
PATIENT collection as T41, in PRESCRIPTIONDETAILS
collection as T51 and in EPRESCRIPTION collection as T61.
In the complete scenario, P_ID of MySQL database as well as
Mongo DB Database will maintain the Inter-database
connectivity. The unique P_ID usage indirectly maintains
database to database connectivity, which helps to collect
patient details by a doctor.

Finally, the metadata representation can illustrate the
above use cases using their attributes having interconnectivity
among them.

Using the root structure in the JSON format given in
Figure 3, it is easy find the common attributes by finding the
leaf nodes. The relationship provided by the commonality in
the leaf level or child level can help to investigate the suitable
data or sets of data in a single fashion or in integrated fashion
by interrogating their concern schemas and their proper
databases and.

This schematic presentation is applicable in between two
types of used services. I.e. the platform is suitable to reside
within the Application service and Data service. It helps to
interrogate the requested data after placing user request at the
Application service side. Because, for data interrogation using
metadata representation would be further helpful for collecting
data form the concerned databases within minimal effort
through the Data services.

Fig. 2. Use case diagram for storing health care data in MySQL and Mongo

DB database against the concept of MDIP graphical approach

TABLE IV. DIFFERENT COMPONENTS OF USED CLOUD DATABASES WITH

IDS FOR ILLUSTRATION OF MDIP

MySQL Database: DB1

Schema name ID Attribute name ID

PATIENT MS1

P_ID T11

NAME T12

ADDRESS T13

AGE T14

DOC_ID T15

PHNO T16

DOCTOR MS2

DOC_ID T21

DNAME T22

SPECIALISATION T23

PHNO T24

ADDRESS T25

DOCTORSCHEDULE MS3

DOC_ID T31

DNAME T32

VISITING DAY T33

VISITING HOUR T34

Mongo DB Database: DB2

Schema name ID Attribute name ID

PRESCRIPTIONDETA

ILS
MD1

P_ID T51

P_NAME T52

P_REPORT T53

MEDICINE_LIST T54

PATIENT MD2

P_ID T41

P_NAME T42

AGE T43

PHNO T44

EPRESCRIPTION MD3

P_ID T61

P_REPORT_DATE T62

DNAME T63

Database 1: MySQL Database name: HEALTHCARE

Table name Attribute name Primary key Foreign key

PATIENT P_ID, NAME,

ADDRESS, AGE,

PHNO, DOC_ID

P_ID DOC_ID

DOCTOR DOC_ID, DNAME,

SPECIALISATION,

PHNO, ADDRESS

DOC_ID

DOCSCHED

ULE

DOC_ID, DNAME,

VISITING DAY,

VISITING HOUR

DOC_ID,

DNAME

DOC_ID

Database 2: Mongo DB Database name: RHC

Table name PATIENT, EPRESCRIPTION, PRESCRIPTIONDETAILS

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

435 | P a g e

www.ijacsa.thesai.org

Fig. 3. Tree structure for different databases metadata representation

TABLE V. SET OF QUERIES OF MYSQL AND MONGO DB FOR QUERY

EVALUATION TIME

TABLE VI. QUERY EVALUATION TIME MEASURED IN MICROSECONDS

Fig. 4. Comporison chart of SLDI and SLDI with MDIP for quality

assessment

V. QUALITY ASSESSMENT THROUGH COMPARISON

ANALYSIS BY QUERY EVALUATION

In concern to evaluate the quality assessment,
incorporating the proposed MDIP with SLDI [12], query
evaluation time has been measured. To get the integrated
result, the same set of queries have been evaluated which were
used in SLDI [12] are given in Table 5. The given sets of
quires are able to collect data from the concern databases in an
individual way. But to collect the individual results in an
integrated way, multiple database function calling can be done
under a single loop, like,

If (p_id= ?) search
{
MySQL function();
MongoDB function():
}

For showing the better quality evaluation for the proposed
mechanism, the implementable experimental query evaluation
time has been compared with existing query evaluation time
done in SLDI paper [12].

Form the existing SLDI approach, the case number 5
(having 2 different databases, 2 different data services for
connecting those databases individually and single
Application service) has been selected. For the accurate
comparison result, the proposed MDIP mechanism has been
implemented over the same set of queries to get the evaluated
time during integrated data retrieval. Here the respond time
has been measured in microseconds and the measured time is
given in Table 6. After plotting the query evaluation time of
SLDI case 5 and SLDI case 5 using MDIP in the comparison
chart plotted in Figure 4, the measured growth rate shows the
better quality for MDIP incorporated SLDI. Because, during
simple query evaluation the difference within query evaluation
time of two different mechanism are lower. But whenever, the
type of query becomes more complex, the difference within
query evaluation time becomes greater. That shows the better
performance during MDIP usage in SLDI mechanism. So, the
usage of MDIP causes lower time consumption in a drastic
way during complex query evaluation. That shows the better
performance during MDIP usage over SLDI mechanism.

0
2000
4000
6000
8000

10000
SLDI

SLDI WITH
MDIP

Time

 MySQL query MongoDB query MongoDB query

1
Select * from patient where

p_id= ?; Select
patient prescription

details

2
Select * from doctor where

doc_id= ?;
Selects patient

details

3
Select count (*) from patient

where

doc_id =? group by p_id;

Selects patients

details

4

Select a .dname, a .

specialisation, a . address, b

. name, b . p_id from doctor a,

patient b where a .doc_id = b

.doc_id;

Select doctor details

5

Select a.dname, a .

visitingday, a .

visitinghour, b . name, b .

p_id from docschedule a,

patient b where a . doc_id = b

. doc_id;

Select doctor details

 Q1 Q2 Q3 Q4 Q5

SLDI Case 5 2,781 3,221 3,971 4,719 9,156

Using MDIP 1466 1398 1753 1871 2527

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

436 | P a g e

www.ijacsa.thesai.org

VI. SOLVED ISSUES BY MDIP FRAMEWORK

The presence of individual platform in the service level for
monitoring the database integration concept, this MDIP
approach has been proposed. Unlike the existing models
which act as the database integrator in different way, this
proposed MDIP framework differs because of its ability to
heal the unsolved functional as well as non-functional issues
during its application. Here the summarised solved issues are
given below. Those are,

A. Database adaptation flexibility:

Unlike any other service based database integration
mechanisms, the proposed MDIP mechanism over service
based database integration doesn‟t suffer from database
adaptation. Intellectually it supports flexibility to accept any
newer database‟s model and is able to deliver the detail
description of that database maintaining the commonality with
another existing database description. For this type of
resolution, the mechanism effects the database integration
during users query evaluation.

B. Database heterogeneity:

The graceful concern for database adaptation flexibility in
MDIP scenario explains multiple databases support for cloud
environment. This concept for multiple databases always
doesn‟t ensure similar types of databases, but also it ensures
the support of heterogeneous types of databases.

C. Distribute support:

The applicability of MDIP in cloud environment along
with its heterogeneous support indirectly explains the
distributed support. Because, during heterogeneous databases
support always does not ensure that the databases are the
residence of a single location, rather it revels the positions of
those databases in distributed location in the cloud
environment.

D. Dynamic Identification of data location:

The MDIP mechanism simplifies the deliverability of the
integrated view of multiple databases through the data
identification against a single query, either form a single
database or from multiple numbers of databases using the
commonality and relationship among databases. So, before
searching the databases blindly to find the appropriate data
after placing query, the mechanism identifies the exact data
location. This causes helpful for further data response.

E. Memory space utilisation:

The proposed MDIP mechanism efficiently response users
query by providing the integrated view after individually
capturing the data sets from multiple databases. So, in the
mechanism there is no need to overwrite the data form one
database to another to supply the integrated view of requested
data instances. For this reason, MDIP avoids data redundancy
and causes lower space utilisation.

F. Cost efficiency:

As the developing platform of the MDIP mechanism is
service level, the implementation details causes lower
development cost. Again for service usage, this software based

implementation also causes lower maintenance cost and its
efficient data response also degrades the data availability cost.

G. Data availability:

For data response after placing the users query, dynamic
data location identification in the flexible metadata format for
multiple databases decreases the data searching time in a
remarkable way. This additive feature over service level
database integration causes more effective data availability.

H. Data consistency:

The concept of data consistency is to manage the
successful incorporation of the latest updated data in the
concern database during data handling. The proposed MDIP
mechanism is suitable to accept eventually the final updated
data model, which causes deliverability of the last updated
data within a short time span. This concept explains the data
consistency support.

I. Data partitioning:

For any user query evaluation, the implementation of
MDIP mechanism mandates to find out the concerned data
sets from multiple numbers of databases using their
relationship and commonalities. During data set searching
mechanism, data location may be identified through the
previously partitioned metadata structure of the databases,
which shows the data partitioning. Eventually this concept
supports the effective data response.

J. User side scalability:

Because of the service level implementation, the integrator
platform would reside in between Application services and
Data services. Where, Application service is responsible for
user interaction and the Data service is responsible for
database interaction. For the attachment of these two types of
services, the multi-tenancy [16] feature of the services would
support the scalable numbers of end users in accordance with
their needs.

K. Overall efficiency:

This is a non-functional factor for checking the overall
strength using the intended output. For the proposed MDIP
mechanism, the ease of data response with the help of
different impact factors discussed previously, explains overall
efficiency.

VII. CONCLUSION AND FUTURE WORK

The proposed MDIP mechanism is the progressive
approach over any service level database integration to ease
the data response against maximised customers need. Beside
the service level database integration, the MDIP mechanism
can be implemented in an individual service level platform.
This resides within Application service and Data service and
applicable over any service based database integration. The
working principle for the mechanism is to diagram all about
for a single database using its multiple components
relationship or for the multiple databases through the
commonality of their components. The explanation is
conducted through the multilevel graphical concept. Here
multilevel concept explains the multiple stages of data
components of the cloud databases. This platform does not

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

437 | P a g e

www.ijacsa.thesai.org

find the data physically from the data storage, rather it helps to
find requested data or data sets from multiple heterogeneous
databases using its tree structured metadata view against
single user query that explains the data partitioning. Actually
it helps to find the related data using the proper track. For this,
the mechanism eventually causes better data response within
optimised time span in presence of data consistency which has
been shown through the query evaluation time comparison
with existing SLDI approach over same set of queries. So, for
the efficient data deliverability in the presence of data
availability, data consistency and data partitioning, shows the
CAP theorem [14] [15] support for the proposed MDIP
mechanism. Like the ACID properties for relational databases,
the desirable CAP properties support inversely explains the
distributed heterogeneous database support for the proposed
MDIP. Again for the service support, it can bear on scalable
multi-tenant support as well as lower implementation cost and
lower maintenance cost. So, the overall MDIP consideration
mandates efficient data response avoiding any type of data
duplication and complex query evaluation.

The future scope for MDIP would reveal some other
quality matrices for the purpose of quality assessment of any
other quality factors in comparison with existing service level
database integration approaches. Again, the additional
application „dynamicity‟ over flexible database adaptation can
forward the proposed MDIP mechanism towards database
virtualisation. This may cause the attachment of additional
cloud databases as per requirement basis and may effect with
its more efficient data response.

REFERENCES

[1] Liao, Y.T., Zhou, J., Lu, C.H., Chen, S.C., Hsu, C.H., Chen, W., Jiang,
M.F. and Chung, Y.C., 2016. Data adapter for querying and
transformation between SQL and NoSQL database. Future Generation
Computer Systems, 65, pp.111-121.

[2] Rocha, L., Vale, F., Cirilo, E., Barbosa, D. and Mourão, F., 2015. A
Framework for Migrating Relational Datasets to NoSQL1. Procedia
Computer Science, 51, pp.2593-2602.

[3] Oluwafemi E. Ooju, Sahalu B. Junaidu and S.E. Abdullaahi,
“TripleFetchQL: A Platform for Integrating relational and NoSQl
Databases”, International Journal of Applied Information System
(IJAIS), Volume-10 No-5, February 2016, pp. 54-57.

[4] Lawrence, Ramon. "Integration and virtualization of relational SQL and
NoSQL systems including MySQL and MongoDB." In Computational
Science and Computational Intelligence (CSCI), 2014 International
Conference on, vol. 1, pp. 285-290. IEEE, 2014.

[5] Thankgod S. Adeyi, Saleh E. Abdullahi, Sahalu. B Junaidu,
“DualfetchQL System: A Platform for Integrating Relational and
NoSQL Databases”, International Journal of Engineering Research &
Technology, Vol.2 - Issue 12 (December - 2013), pp.1973-1981

[6] Curé O, Hecht R, Le Duc C, Lamolle M., “Data integration over nosql
stores using access path based mappings”, International Conference on
Database and Expert Systems Applications, Springer Berlin Heidelberg,
2011 Aug 29, pp. 481-495.

[7] Sangeeta Gupta, G.Narsimha, “CORRELATION AND COMPARISON
OF NOSQL SPECIMEN WITH RELATIONAL DATA STORE”,
IJRET: International Journal of Research in Engineering and
Technology, Volume: 04 Special Issue: 06, May-2015, pp.1-5.

[8] DikshaKoul, DevayaniPawar, RadhikaRanade, VishakhaPatil,
“SQL2MongoDB”, International Journal of Computer Science and
Information Technology Research, Vol. 3, Issue 1, Month: January -
March 2015, pp. 317-321.

[9] „Database-As-A-Service Saves Money, Improves IT Productivity And
Speeds Application Development‟. A Forrester Consulting Thought
Leadership Paper Commissioned By VMware, (October, 2012).

[10] An Oracle White Paper on Enterprise Architecture (September 2011)
„Database as a Service Reference Architecture – An Overview‟.

[11] Anirban Sarkar, Narayan C Debnath, “Aspect Algebra: The Operational
Semantics for Aspect Oriented Software”, 9th International Conference
on Information Technology: Next Generation (ITNG 2012) [IEEE], PP
139 – 144, Las Vegas, USA, April 2012.

[12] Trushna Parida, Sanjukta Pal, Anirban Sarkar, “SaaS level Database
Integration in Cloud Environment through Database as a Service”,
International Journal of Services Technology and Management
(Inderscience Publisher), in press, 2017. [ISSN print: 1460-6720]

[13] GhadaElSheikh, Mustafa Y. ElNainay, Saleh ElShehaby and Mohamed
S. Abougabal, „SODIM: Service Oriented Data Integration based on
Map Reduce‟, Alexandria Engineering Journal, volume 52, Elsvier,
2013 pp 313-318.

[14] Seth Gilbert and Nancy A. Lynch. Perspectives on the CAP
Theorem,http://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf,
(Accessed 23rd july 2012)

[15] Seth Gilbert and Nancy Lynch. „Brewer‟s Conjecture and the Feasibility
of Consistent, Available, Partition-Tolerant Web Services‟, ACM
SIGACT News, volume 33 Issue 2, (June 2002), pp.51-59.

[16] Sanjukta Pal, Amit K. Mandal, Anirban Sarkar, “Application Multi-
Tenancy for Software as a Service”, International Journal, ACM
SIGSOFT, Software engineering notes, Volume 40, Issue 2, ACM, NY,
March 2015, pp. 1-8.

