
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

102 | P a g e

www.ijacsa.thesai.org

Cross-Layer-Based Adaptive Traffic Control Protocol

for Bluetooth Wireless Networks

Sabeen Tahir

Department of Information Technology,

Faculty of Computing and Information Technology,

King Abdulaziz University, Jeddah 21589, Makkah,

Saudi Arabia

Sheikh Tahir Bakhsh

Department of Computer Science,

Faculty of Computing and Information Technology,

King Abdulaziz University, Jeddah 21589, Makkah,

Saudi Arabia

Abstract—Bluetooth technology is particularly designed for a

wireless personal area network that is low cost and less energy

consuming. Efficient transmission between different Bluetooth

nodes depends on network formation. An inefficient Bluetooth

topology may create a bottleneck and a delay in the network

when data is routed. To overcome the congestion problem of

Bluetooth networks, a Cross-layer-based Adaptive Traffic

Control (CATC) protocol is proposed in this paper. The

proposed protocol is working on backup device utilization and

network restructuring. The proposed CATC is divided into two

parts; the first part is based on intra-piconet traffic control,

while the second part is based on inter-piconet traffic control.

The proposed CATC protocol controls the traffic load on the

master node by network restructuring and the traffic load of the

bridge node by activating a Fall-Back Bridge (FBB). During the

piconet restructuring, the CATC performs the Piconet

Formation within Piconet (PFP) and Scatternet Formation

within Piconet (SFP). The PFP reconstructs a new piconet in the

same piconet for the devices which are directly within the radio

range of each other. The SFP reconstructs the scatternet within

the same piconet if the nodes are not within the radio range.

Simulation results are proof that the proposed CATC improves

the overall performance and reduces control overhead in a

Bluetooth network.

Keywords—Bluetooth; scatternet; multi-layer; resolving

bottleneck; reducing control overhead component

I. INTRODUCTION

Improvements in wireless technologies have enhanced our
daily life. A number of mobile devices can interconnect
through wireless technology and exchange different types of
data (text, voice, and video) [1]. Bluetooth is an open standard
that has the ability to connect heterogeneous mobile devices. A
basic communication unit of Bluetooth is piconet, which
consists of eight active Bluetooth nodes. A piconet is created
through sharing the same frequency hopping sequence and
synchronization, where one Bluetooth node becomes the
master and remaining nodes act as slaves. An active Bluetooth
device may perform the role of master, slave or bridge. Slave
nodes cannot communicate directly with each other; they
always need a master node support for communication, as the
master node always handles all communications within a
piconet [2], [3]. The communication within a piconet is also

called intra-piconet communication. Bluetooth devices transmit
their data packets over Time Division Duplex (TDD) [4].

Bluetooth also allows communication within multiple
piconets, which is known as a scatternet. Where a relay or
bridge device provides communication among different
piconets, a bridge node can be Master-Slave (M/S) or Slave-
Slave (S/S) [5]. A bridge node is responsible for transporting
messages between piconets so that the resources should not be
restricted [6]. Bluetooth efficient communication can be
achieved through a role switching technique [7], which can be
used for different requirements. A role switching operation
divides one piconet into multiple piconets; splitting operation
increases the number of piconets and bridge nodes. Using an
example in Fig. 1(a), before executing a splitting role switch
operation, there is one piconet having one master with six slave
nodes. Fig. 1(b) shows how a role switch operation splits one
piconet into two piconets P1 and P2 by changing the roles of
the devices, where node C and F perform the master role and
node A is used as a bridge between two piconets.

A merge role switch operation combines different piconets
into a single piconet [8], [9]. As shown in Fig. 1(b), two
piconets (P1 and P2) are connected through an intermediate
node A. Nodes (B, C, D, E, F, G) are in the range of node A.
According to the role switch operation, node A performs the
master role and merges two piconets into a single piconet.
Fig. 1(a) shows how a bridge node becomes a master and
masters (C and F) change their roles from master to slave. A
role switch operation can be applied on Bluetooth device to
take over the resource of other device. During this operation,
devices can change their roles from slave to master and vice
versa. As shown in Fig. 1(c), node D and G become masters
and node A acts as a slave node, with two independent
piconets.

Many researchers proposed scatternet formation protocols
[10]-[14] to decrease scatternet formation time or increase the
probability of making a scatternet, but an efficient scatternet
formation protocol is missing. This paper designs a well-
organized protocol for a Bluetooth scatternet that minimizes
the delay and efficiently uses the network resources. The
proposed CATC controls and shares the traffic load of master
and bridge nodes in a distributed manner. The role-switching
operations are performed dynamically for congestion handling
on an affected link.

Deanship of Scientific Research (DSR) in King Abdulaziz University,
under grant No. (611-271-D1435).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

103 | P a g e

www.ijacsa.thesai.org

P1

A

Bridge SlaveMaster

F
E

D

C
B

G
A

F
E

D

C
B

G
A

F
E

D

C B

G

(a) Merging role switching (b) Splitting role switch (c) Take-over role switch

P1

P2

Fig. 1. Different configurations of Bluetooth network.

The paper is organized as: The background is discussed in
Section 2. To control traffic load in Bluetooth network, a
protocol is proposed in Section 3. The results of the proposed
CATC are presented in Section 4 using NS-2 [15] and UCBT
[16]. The paper is concluded in Section 5.

II. RELATED WORK

The traffic bottleneck is an important issue in Bluetooth,
which is caused by a master or bridge node. Within a piconet,
all slaves communication is possible through the master node,
while scatter communication is achieved through intermediate
relay node [17]. A huge number of devices may cause
congestion and delay in the Bluetooth scatternet. The slave
device cannot communicate with each other, master is always
involved in intra-piconet communication among slaves.
Therefore, master’s energy and mobility have a critical role in
the piconet. In the same way, bridge node mobility and energy
has a crucial role for inter-piconet communication. Failure of a
bridge node may disconnect the whole network. Many
researchers have proposed different techniques for a Bluetooth
scatternet, i.e., relay optimization, congestion avoidance, and
scheduling. Each technique has its own benefits and limitations
[1], [18], [19]. Through a literature survey, some relevant
existing research works have been analyzed in this research
work.

Dynamic piconet restructuring protocol (PRP) [20] is
proposed for Bluetooth networks. PRP locally regulates the
traffic on the master node. PRP shares master node load by
forming new piconets of slave nodes that can communicate
directly, where one slave node acts as a master and others act
as slaves. During the restructuring operation, the slave node
with light traffic flow will be selected as the new master. For
example, as shown in Fig. 2(a), nodes (A, B), (E, F) and (B, C)
are communicating through a master G. According to PRP,
when traffic load is detected by the master node, it performs
piconet restructuring using a role switching operation as shown
in Fig. 2(b).

It is analyzed that PRP provides a solution for congestion
problem on a master node through sharing the load, but it
creates serious problems. It loses active member addresses due
to breaking the existing link between slaves and master. During
transmission, if new joins the piconet, the master assigns all
remaining active member addresses to new nodes. Once the
communication is over the nodes cannot join the existing
master due to unavailability of active member address.
Frequent piconets construction also consume extra resources.

At it creates new piconets for all communicating pairs without
considering whether they are frequently communicating or not.
The new nodes cannot communicate with the node already
changed their state, therefore, the new nodes have to wait until
nodes to return to their original states.

A

F E

D

CB

Master Slave

G

(a) (b)

A

F E

D

CB

G

Fig. 2. Traffic flow analysis before and after role switching.

Subsequently, Dynamic Congestion Control (DCC) [21]
has been proposed as another solution for avoiding bottleneck
problems in a scatternet through backup relay (BR). If several
links use a single bridge it creates a bottleneck. The master
monitors the load and delay on the bridge node. The master
gets relay load and a number of links from relay table. When
the master observes bottleneck in the piconet, it shares the load
through BR. As shown in Fig. 3, multiple links passing through
M1 the data traffic load can be determined by the master. As
different piconets are communicating through bridge node B1,
the master activates the BR to share the load. It provides a
solution for intra-piconet congestion inter-piconet congestion it
still missing. When there is a bottleneck on B1, but the master
in P1 cannot find the congestion due to distributed traffic, it
fails to avoid inter-piconet congestion. As shown in Fig. 3, all
traffic load is passing through B1. Although BR is available the
load is distributed, BR is not activated by M1. In distributed
load, DCC does not allow parallel transmissions.

Bridge SlaveMaster

M4

M3

M2

B1

Backup relay

P2

P1P4

P3

BR

M1

Fig. 3. Scatternet formation using DCC Protocol.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

104 | P a g e

www.ijacsa.thesai.org

III. THE PROPOSED CROSS-LAYER-BASED ADAPTIVE

TRAFFIC CONTROL (CATC) PROTOCOL

This section discusses the proposed CATC protocol for
intra-piconet and inter-piconet congestion avoidance. The
proposed protocol consists of two parts; in the first part, role
switching techniques are used to overcome the problem of
intra-piconet congestion avoidance. In the second part, FBB is
used to control the bridge load that overcomes the bottleneck
problem of inter-piconet congestion.

A. Intra-piconet traffic load and dynamic role switching

operation

In this section, intra-piconet traffic load handling is
presented. The intra-piconet traffic load is handled through
PFP and SFP.

1) Intra-piconet load handling through Piconet

Formation within Piconet
Large numbers of connections passing through the master

node within a piconet may create congestion. The incoming
data traffic is called Download Traffic (DTr), and the outgoing
data traffic is called Upload Traffic (UTr). The traffic load in a
piconet is calculated as follows:

where DTr and UTr calculate incoming and outgoing traffic
respectively. The total traffic (TT) load on a master node is
calculated through the sum of (1) and (2).

The proposed protocol maintains a Master Traffic Flow
Table (MTFT) to monitor traffic load. The MTFT maintains the
information of all incoming and outgoing data traffic going
through the master within a piconet as recorded in Table 1. A
threshold () value is used for congestion handling on the
master node. When a master gets TT it compares to , where
= 90 slots. The traffic load is calculated after receiving or
transmitting data between a new pair. In the next step, master
marks the most frequent (MF) communicating nodes that reach
the limit of the threshold value. Hence, the CATC performs
network restructuring using a taking-over role switching
operation. When the master node determines higher traffic load
is greater than , it performs a role switch operation by sending
a request packet to the pair of MF communicating nodes within
the piconet. When the master node receives uplink data, it
checks in the MTFT; if the number of active connections is
more than three, the master node calculates TT. A pair of nodes
having the highest traffic load is marked as the MF
communicating pair.

The role switch request packet contains the node ID and
clock-offset of the nodes. On receiving the role switch request,
the source node enters into Page state and destination node
enters into Page Scan state to create a new piconet. In the next

step, the master node changes both nodes mode into park
mode, to save active member addresses and reduce
unnecessary switching control overhead. Once the
communication ends, the nodes come back into their original
states and send a request to the master node to restore their
original states as active slaves. As the master node maintains
the list of nodes for temporary connections, the original active
member addresses are reserved by the master node. Hence, the
nodes can come back to their original states without losing
their connection.

Using an example, Fig. 4(a) shows, node (I, J) and (A, B)
are marked as MF communicating pairs by M1 and M2
respectively. Therefore, a piconet restructuring request is sent
to the slave nodes by the master nodes. As a result, after
piconet restructuring, slave nodes J and A become auxiliary
masters; the new connections of the most frequently
communicating nodes are shown in Fig. 4(b). The data traffic
flow of the M2 is maintained in Table 1 among different nodes,
where MF represents a heavy traffic flow, 1 is used for normal
traffic, and Ø means there is no data exchange between nodes.

M1

M2

F

K

J
I

H

G

A
B

E

D

C

B1

Bridge SlaveMaster

M1

M2

F

K

J
I

H

G

A
B

E

D

C

B1

(a) (b)

Fig. 4. (a) Before role switching operation (b) After role switching

operation.

TABLE. I. DATA TRAFFIC FLOW ANALYSIS ON MASTER M2

ID A B C D E F B1 M2

A Ø MF Ø Ø Ø Ø Ø 1

B MF Ø 1 Ø Ø Ø Ø 1

C Ø Ø Ø 1 1 Ø Ø 1

D Ø Ø 1 Ø 1 Ø Ø 1

E Ø Ø 1 1 Ø Ø Ø 1

F Ø Ø Ø Ø Ø Ø Ø Ø

B1 Ø Ø Ø Ø Ø Ø Ø Ø

M2 1 1 1 1 1 Ø 1 Ø

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

105 | P a g e

www.ijacsa.thesai.org

2) Intra-piconet traffic load handling through Scatternet

Formation within Piconet (SFP)
The proposed SFP creates a scatternet within a piconet. On

receiving a role switch request, source and destination nodes
enter Page and Page Scan state respectively and try to create a
new link. As the paging procedure needs 1.28 s, after executing
twice paging procedure if nodes fail to establish the new link.
The source node sends a link fail message to the master node.
On receiving the source node link fail message, the master
requests connected slave nodes to enter into Inquiry state and
create a new connection, where all slave nodes enter into the
Inquiry Scan state and listen to the source and the destination
nodes. A node that can connect both source and destination
nodes performs a bridge role and executes a splitting role
switching operation by making a scatternet within a piconet.
During SFP operation, an intermediate node is selected as an
auxiliary bridge (AxB) and a pair of source and destination
nodes are selected as auxiliary masters. An intermediate node
between source and destination can be selected as an auxiliary
bridge.

The SFP operation is explained through Fig. 5. Nodes H
and F are marked as MF communicating nodes in the piconet
but both are not within the direct radio range of each other.
Thus, node G performs an A x B role, while the source node H
and the destination node F perform an AxM role. In Table 2,
according to the Fig. 5, the master node updates the Node
Information Table (NIT) for MF communicating nodes, which
are in the same piconets but cannot communicate directly so
they need an intermediate node.

TABLE. II. NODE INFORMATION TABLE (NIT) FOR P1 AFTER SFP

ID Clock-offset Device-role Download traffic Upload traffic

F C-offset (F) AxM 70 80

G C-offset (G) AxB 150 150

H C-offset (H) AxM 80 70

M1

M2

F

K

J
I

H

G

A

B

E

D

C

B1

Bridge SlaveMaster

Fig. 5. Sharing of traffic load by making scatternet within the piconet.

B. Inter-piconet traffic load handling on the bridge node

through Fall-Back Bridge (FBB)

When multiple piconets are connected through a single
bridge, it may create a bottleneck in the network due to the
unavailability of a bridge. The inter-piconet problem is solved
through FBB. At the same time, a maximum of seven master
devices can connect to a bridge device. According to the
Bluetooth specification, a bridge node shares its time with all
connected masters. Therefore, at the same time, only one
master node's traffic can flow through the bridge node. Due to
unavailability of a bridge node, inter-piconet congestion
seriously affects network performance. The proposed CATC
maintains a Bridge Traffic Flow Table (BTFT) (Table 3) to
store the traffic load of masters that passes through the bridge
node. As the bridge device receives/transmits data from master
devices if a bridge device receives the data from a master
device, it is called Bridge Download Traffic (BDTr); similarly,
if the bridge device transmits data to the master device, it is
called Bridge Upload Traffic (BUTr). The traffic load on a
bridge (CB) device can be calculated as follows:

 ∑

 ∑ ()

If higher traffic load is detected by a bridge node, it
requests masters to activate a backup node. On receiving the
request, master finds a FBB; if any master node has a FBB,
then it sends a request to the bridge node to activate its
connection with the required master node. The FBB is
activated when a single bridge node is not sufficient for an
efficient communication between piconets. Thus, parallel
transmissions are allowed between piconets for well organized
and smooth communication. Meanwhile, the master node sends
the active bridge node into the park mode. As shown in
Fig. 3(a), B1 connects multiple nodes and creates a bottleneck.
The heavy traffic flow does not allow parallel transmission in a
scatternet, and thus, B1 creates the bottleneck, as one master
node sends data through B1, and others wait for B1 to become
free. As shown in Fig. 6, node A is selected as FBB for P2 and
P3 and node D is selected as FBB for P1 and P2. The dotted
lines show the temporary links where traffic is shared and the
bottleneck problem is resolved through activation of FBB.
Master nodes update the NIT and send FBB to park mode; once
communication ends successfully, FBBs return to their original
states.

TABLE. III. BRIDGE TRAFFIC FLOW TABLE FOR B1

ID M2 M3 M4 M5 B1

M2 Ø MF 1 1 1

M3 MF 1 1 1 1

M4 1 1 Ø 1 1

M5 1 1 1 Ø 1

B1 1 1 1 1 Ø

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

106 | P a g e

www.ijacsa.thesai.org

Bridge SlaveMaster

M4

M3

M5

M2

M1

B3

B1

B2

FBB

P1

P2

P3

P4

P5 A

D

Fig. 6. Scatternet formation after activation of FBB.

IV. PERFORMANCE ANALYSIS

The proposed protocol is compared against PRP and DCC
protocols. To assess the performance, the CATC is simulated
in the University of Cincinnati Bluetooth (UCBT) [16], which
is a ns-2 [15] based Bluetooth simulator. UCBT is an open
source and publicly available which can support mesh-formed
Bluetooth scatternet and implemented most Bluetooth protocol
stacks [22]. The time interval between different frequencies is
625μs.

A. Simulation setup

The parameters used in the proposed protocol simulation
are listed in Table 4. For simulation, the number of Bluetooth
nodes is varied from 10 to 100 and 48 node pairs are used [23].

TABLE. IV. SIMULATION PARAMETERS

Parameters Assessment

Traffic Model

Number of nodes

Bluetooth nodes pairs

Simulation time

Network Dimension

Data packet type

Communication range

Scheduling algorithm

Bridge scheduling algorithm

Packet size

Inquiry time

Paging time

Packet interval

Queue length

CBR

10 - 100

48

1000 s

80 m x 80 m

DH3, DH5

10 m

Round Robin

Maximum Distance Rendezvous
Point

349 Bytes

10.24 s

128 – 256 s

0.15

50 packets

B. Simulation results and discussion

In this sub-section, the simulation results are discussed. The
simulation was run ten times and results are obtained using
those ten simulations. After getting the comparison results, it
was found that the proposed CATC protocol outperformed the
existing PRP and DCC protocols.

During the communication, it was observed that, when the
number of passing links increased through a single bridge
node, the proposed CATC activates a FBB that shares the
traffic load. The CATC allows the parallel transmission to
reduce the wait time and improve network performance. In the
holding mode when one pair of devices transmits remaining
pairs are blocked. As DCC and PRP both are proposed to
handle congestion, but, it is observed that the DCC is efficient
for intra-piconet traffic load. When traffic load increases on a
master node, it activates a bridge node for load balancing. In
the contrary, the PRP solves bottleneck problem by creating
extra piconets within the piconet. It creates a new piconet for
each new communicating pairs. As shown in Fig. 7, the CATC
shares the traffic load more efficiently compared to DCC and
PRP. There are total twenty available bridges and 84
connections, the PRP uses 12 bridges, the DCC 14, and the
CATC uses 18 bridge nodes. Therefore, the traffic load has
been successfully shared; which improves the overall
performance.

Fig. 7. Average links passing through bridge nodes vs. Number of bridges.

A large number of nodes in a scatternet increasing the
master polling time. To increase efficiency, PRP frequently
performs piconet restructuring for all connections. It provides
the solution for congestion on the master node, but it increases
the network delay. On the contrary, DCC avoids congestion,
within an intra-piconet but it does not provide any solution
inter-piconet. It is analyzed a large number of connections
passing through a bridge node create a bottleneck and increase
network delay. The CATC shares the traffic load on the master
and bridge nodes. The total delay of protocols is shown in
Fig. 8 and it is observed that CATC has less delay compared to
PRP and DCC protocols. The throughput of the CATC, PRP,

0

1

2

3

4

5

6

7

8

9

10

2 4 6 8 10 12 14 16 18 20

A
v
e
r
a

g
e
 l

in
k

s
p

a
ss

ig
n

 b
r
id

g
e
 (

n
)

Number of bridge nodes

PRP DCC CATC

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

107 | P a g e

www.ijacsa.thesai.org

and DCC protocols was compared and it was observed that the
CATC protocol showed better results than the PRP and DCC
protocols. The PRP and DCC protocols consume more control
packets compared to the CATC protocol. The CATC allows
the parallel transmission because it efficiently manages traffic
load in the intra-piconet and inter-piconet to improve overall
network throughput. When a bridge creates bottleneck the
CATC activates the FBB for an efficient communication
between the piconets. As shown in Fig. 6, when a larger
number of links pass through B1 it creates a bottleneck, to
avoid bottleneck node A is selected as a FBB for P2 and P3, and
node D is selected as FBB for P1 and P2. Fig. 9 shows the
throughput of the CATC is higher compared to PRP and DCC.

Fig. 8. Average delay vs. Number of nodes.

Fig. 9. Network throughput vs. Time.

Bluetooth has limited resources, and therefore, efficient
resource utilization is key to network performance. The CATC
does not frequently perform the network restructuring within
the piconet, and therefore, it uses a lower number of control
packets. The PRP frequently creates new piconets within the

piconet and makes new links so that each time during
synchronization, the Bluetooth devices use extra control
packets. In contrast, the DCC protocol overcomes the delay
problem within the piconet through activating a backup device
that is utilizing extra control packets. Fig. 10 shows that the
PRP and DCC’s inefficient resource utilization causes more
control packets compared to the CATC protocol. Also the
number of blocking users increases due to the unavailability of
intermediate nodes. As PRP makes new piconets frequently
within the piconet and if other devices need to communicate
with the devices which have changed their roles, it could block
more users. The CATC protocol creates efficient links for
intra-piconet and inter-piconet communication so it decreases
the rate of blocking users. When the CATC protocol performs
network restructuring, it changes the mode of the device in the
park mode. After successful transmissions, it changes back into
the original states. From Fig. 11, it can be seen that the CATC
protocol performs better than the PRP and DCC protocol in
terms of blocking connections about 15%.

Fig. 10. Control packet overhead vs. Number of nodes.

Fig. 11. Blocking users vs. Number of nodes.

0

25

50

75

100

125

150

175

200

225

250

10 20 30 40 50 60 70 80 90 100

A
v
e
r
a

g
e
 d

e
la

y
 (

m
s)

Number of nodes

PRP DCC CATC

0

100

200

300

400

500

600

700

800

900

1000

100 200 300 400 500 600 700 800 900 1000

T
h

r
o

u
g

h
p

u
t

(k
b

p
s)

Simulation time (s)

PRP DCC CATC 0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.4E+05

1.6E+05

1.8E+05

10 20 30 40 50 60 70 80 90 100

C
o

n
tr

o
l

o
v
e
r
h

e
a

d
 (

P
a

c
k

e
ts

)

Number of nodes

PRP DCC CATC

0

3

6

9

12

15

18

21

24

10 20 30 40 50 60 70 80 90 100

B
lo

c
k

in
g

 u
se

r
s

(%
)

Number of nodes

PRP DCC CATC

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

108 | P a g e

www.ijacsa.thesai.org

V. CONCLUSIONS AND FUTURE WORK

This paper has proposed a Cross-layer-based Adaptive
Traffic Control protocol for Bluetooth network. The proposed
CATC protocol shares the master load through network
restructuring and the bridge load through FBB. The CATC
creates PFP if nodes are within the range. If the source and
destination are not within 10 m CATC creates SFP to reduce
traffic load on the master node. On the contrary, the CATC
activates FBB to overcome bottleneck problem of a bridge
node and allow parallel transmission in the scatternet.
Simulation results show that the CATC protocol outperforms
existing protocols in terms of minimizing the total delay,
control overhead, and a number of blocked users.

In future work, this research work will be extended by
using some additional parameters for comparison. In addition,
the network traffic load can be shared by reducing the hop
count based on the role switch operations.

ACKNOWLEDGEMENT

The authors are thankful to the Deanship of Scientific
Research (DSR) at King Abdulaziz University for funding this
project, under grant No. (611-271-D1435).

REFERENCES

[1] M. J. Sataraddi, et al., “Priority Based Scheduler for Bluetooth
Network,” in Advances in Computing, Communication, and Control.
vol. 361, S. Unnikrishnan, et al., Eds., ed: Springer Berlin Heidelberg,
2013, pp. 356-365.

[2] Bluetooth_specificaiton. (2015). Bluetooth SIG, “Specification of the
Bluetooth System”, http://www.bluetooth.com, June 2010.

[3] G. Aldabbagh, et al., “QoS-Aware Tethering in a Heterogeneous
Wireless Network using LTE and TV White Spaces,” Computer
Networks, vol. 81, pp. 136-146, 2015.

[4] Y. Chih-Min and Y. Yin-Bin, “Reconfigurable Algorithm for Bluetooth
Sensor Networks,” Sensors Journal, IEEE, vol. 14, pp. 3506-3507, 2014.

[5] S. Sharafeddine, et al., “A scatternet formation algorithm for Bluetooth
networks with a non-uniform distribution of devices,” Journal of
Network and Computer Applications, vol. 35, pp. 644-656, 2012.

[6] J. Decuir, “Bluetooth Smart Support for 6LoBTLE: Applications and
connection questions,” Consumer Electronics Magazine, IEEE, vol. 4,
pp. 67-70, 2015.

[7] T. Klajbor, et al., “A new role-switching mechanism optimizing the
coexistence of bluetooth and Wi-Fi networks,” Telecommunication
Systems, pp. 1-11, 2010.

[8] G. Aldabbagh, et al., “Distributed dynamic load balancing in a
heterogeneous network using LTE and TV white spaces,” Wireless
Networks, pp. 1-12, 2015.

[9] S. T. Bakhsh, et al., “Self-Schedule and Self-Distributive MAC
Scheduling Algorithms for Next-Generation Sensor Networks,”
International Journal of Distributed Sensor Networks, 2015.

[10] C. M. Yu and J. H. Lin, “Enhanced bluetree: A mesh topology approach
forming bluetooth scatternet,” Wireless Sensor Systems, IET, vol. 2, pp.
409-415, 2012.

[11] C. M. Yu, “Global configured method for blueweb routing protocol,”
Communications, IET, vol. 6, pp. 69-75, 2012.

[12] J.-W. Lin and W.-S. Wang, “An efficient reconstruction approach for
improving Bluetree scatternet formation in personal area networks,”
Journal of Network and Computer Applications, vol. 33, pp. 141-155,
2010.

[13] G. Ramana Reddy, et al., “An efficient algorithm for scheduling in
bluetooth piconets and scatternets,” Wireless Networks, vol. 16, pp.
1799-1816, 2010/10/01 2010.

[14] S. Bakhsh, “A Self-organizing Location and Mobility-Aware Route
Optimization Protocol for Bluetooth Wireless,” Journal of King Saud
University-Computer and Information Sciences, pp. 239-248, 2016.

[15] E. Hossain, “The Network Simulator (NS-2)”.
http://www.isi.edu/nsnam/ns/ns-build.html, 2016.

[16] D. Agrawal and Q. Wang, “University of Cinicinnati Bluetooth
simulator (UCBT)” http://www.cs.uc.edu/~cdmc/ucbt/, 2016.

[17] S. T. Bakhsh, et al., “Adaptive Sleep Efficient Hybrid Medium Access
Control algorithm for next-generation wireless sensor networks,”
EURASIP Journal on Wireless Communications and Networking, vol.
2017, pp. 84-94, 2017.

[18] P. A. Laharotte, et al., “Spatiotemporal Analysis of Bluetooth Data:
Application to a Large Urban Network,” Intelligent Transportation
Systems, IEEE Transactions on, vol. 16, pp. 1439-1448, 2015.

[19] J. Nieminen, et al., “Networking solutions for connecting bluetooth low
energy enabled machines to the internet of things,” Network, IEEE, vol.
28, pp. 83-90, 2014.

[20] G.-J. Yu and C.-Y. Chang, “Congestion control of bluetooth radio
system by piconet restructuring,” Journal of Network and Computer
Applications, vol. 31, pp. 201-223, 2008.

[21] S. Tahir Bakhsh, et al., “Dynamic Congestion Control through backup
relay in Bluetooth scatternet,” Journal of Network and Computer
Applications, vol. 34, pp. 1252-1262, 2011.

[22] F. Subhan, et al., “Indoor positioning in bluetooth networks using
fingerprinting and lateration approach,” in International Conference on
Information Science and Applications (ICISA), pp. 1-9, 2011.

[23] P. Johansson, et al., “Rendezvous scheduling in Bluetooth scatternets,”
presented at the IEEE International Conference on Communications,
2002.

