
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

117 | P a g e

www.ijacsa.thesai.org

Fast Hybrid String Matching Algorithm based on the

Quick-Skip and Tuned Boyer-Moore Algorithms

Sinan Sameer Mahmood Al-Dabbagh

Department of Parallel and Distributed Processing

School of Computer Sciences Universiti Sains Malaysia

(USM), 11800 Pulau Pinang,

Malaysia

Nuraini bint Abdul Rashid (PhD)

Associate Professor, Department of Computer Sciences,

College of Computer & Information Sciences,

Princess Nourah bint Abdulrahman University, KSA.

Mustafa Abdul Sahib Naser

Department of Software Engineering and Information

Technology,

Al-Mansour University College,

Baghdad, Iraq

Nawaf Hazim Barnouti

Al-Mansour University College

Baghdad,

Iraq

Abstract—The string matching problem is considered as one of

the most interesting research areas in the computer science field

because it can be applied in many essential different applications

such as intrusion detection, search analysis, editors, internet

search engines, information retrieval and computational biology.

During the matching process two main factors are used to

evaluate the performance of the string matching algorithm which

are the total number of character comparisons and the total

number of attempts. This study aims to produce an efficient

hybrid exact string matching algorithm called Sinan Sameer

Tuned Boyer Moore-Quick Skip Search (SSTBMQS) algorithm

by blending the best features that were extracted from the two

selected original algorithms which are Tuned Boyer-Moore and

Quick-Skip Search. The SSTBMQS hybrid algorithm was tested

on different benchmark datasets with different size and different

pattern lengths. The sequential version of the proposed hybrid

algorithm produces better results when compared with its original

algorithms (TBM and Quick-Skip Search) and when compared

with Maximum-Shift hybrid algorithm which is considered as one

of the most recent hybrid algorithm. The proposed hybrid

algorithm has less number of attempts and less number of

character comparisons.

Keywords—Hybrid algorithm; string matching algorithm;

Tuned Boyer-Moore algorithm; quick-skip search algorithm; Sinan

Sameer Tuned Boyer Moore-Quick Skip Search (SSTBMQS)

I. INTRODUCTION

String matching, which involves locating all occurrences of
a particular pattern in a large text, is considered one of the
primary problems in computer science. Basically, the string
matching algorithm accepts two inputs, namely, a short string
called a pattern and a long string called a text. The pattern
string is usually compared with the text string to determine if
the former is a substring of the latter [1], [2]. Although many
algorithms and strategies have been developed to solve this
problem, scientists still attempt to develop far more efficient
methods. String matching algorithms are extensively employed
in different computer applications, such as information
retrieval, DNA sequence, Web search engines, and artificial
intelligence [3].

In the last two decades, string matching algorithms have
elicited considerable attention, particularly when applied in
various computer applications, such as text processing, DNA
analysis, antivirus software, and anti-spam software. Such
amount of attention may be attributed to the rapid growth of
technology [4]. Current improvements in existing technologies
pose numerous challenges to string matching algorithms [5].
String matching algorithms are of two types: exact and
approximate string matching [4]. This research focuses on on-
line exact string matching algorithms.

String matching algorithms are the basic components of
existing applications, such as text processing, intrusion
detection, search analysis, information retrieval, and
computational biology [6]. All these applications involve a
large amount of data because of the advancement in
technology; moreover, all these applications involve different
types of alphabets. Therefore, researchers continue to reiterate
the need for significant string matching algorithms that can
address different types of alphabets and large amounts of data
[7].

Hybrid string matching approach was introduced to
overcome the limitation of existing exact string matching
algorithms. The former involves merging two or more
algorithms. The Quick-Skip Search hybrid algorithm and
Tuned Boyer-Moore algorithm are suitable for identifying all
appearances of a pattern in a large text. However, both
algorithms have limitations. The Quick-Skip Search hybrid
algorithm consists of Skip Search and Quick Search
algorithms. The latter exhibits good efficiency when large
alphabets with a small pattern are utilized in the comparison
operation, whereas the former exhibits good performance when
small alphabets and a long pattern are employed [8].

However, the Skip Search algorithm consumes much time
when a short DNA pattern and protein database are employed
[7]. By contrast, the Tuned Boyer-Moore algorithm consumes
much time when a long pattern of DNA alphabet is employed
[7]. This algorithm has two disadvantages. First, it does not
examine m−text characters to specify a starting search point as

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

118 | P a g e

www.ijacsa.thesai.org

the first step. Second, in the case of mismatch or entire pattern
match, the shifting distance depends on a fixed shift value
obtained in the preprocessing phase; this fixed shift value does
not change until the text window reaches the end of the text.
One of the advantages of this algorithm is that it checks the
rightmost character in the text window as the first step before
character comparison is implemented.

By contrast, the quick-skip search algorithm does not check
the rightmost character in the text window as the first step
before character comparison is implemented. The advantage of
this algorithm is that it examines m − text characters to specify
a starting search point as the first step; in the case of mismatch
or entire pattern match, the shifting distance value depends on
the Skip Search bucket and Quick Search bad character table.
The larger shift value is adopted.

Owing to the contradictory behavior of the two algorithms,
the important issue for this research is “how to harness the
significant advantages of the positive features of the two
algorithms, overcome their performance weaknesses, and solve
the string matching problem effectively during sequential and
parallel stages for any alphabet type and any pattern length?”

The remaining of the paper is structured as: Section 2
presents the look at of several hybrid algorithms. Section 3 the
design principle of the proposed hybrid algorithm is discussed
in detail. Moreover, an example is outlined in Section 4 to trace
the hybrid algorithm. Section 5 discusses the experimental
results of the hybrid algorithm when compared with its original
algorithms and when compared with Maximum-Shift hybrid
algorithm. In Section 6 summarizes the conclusion and
suggests a future work that can be performed to improve the
hybrid algorithm.

II. PREVIOUS WORKS

Numerous studies on the string matching problem have
been conducted continuously over the years to develop new
efficient algorithms. These efficient algorithms are expected to
reduce the work performed in each attempt, increase the
amount of shift, and reduce the number of character
comparisons during each attempt. Algorithms that acquire the
positive properties and exclude the negative properties of
original algorithms are called hybrid algorithms. The next
subsections discuss some of these hybrid string matching
algorithms.

SSABS algorithm [9] explained the advantage of
combining two well-known exact string matching algorithms,
namely, Quick Search and Raita. The new hybrid string
matching algorithm exploits the fact that the dependency
between neighboring characters is stronger than that between
other characters. Therefore, putting off the comparisons of the
neighboring characters would be better, which forms the
fundamental idea of the new proposed algorithm. During the
searching phase, which is similar to the Raita algorithm’s
searching phase, the rightmost character in the pattern is
compared with the corresponding character in the text to
determine if they match. The leftmost character in the pattern is
then compared with the matched position character in the text.
If they match, then the remaining characters are compared
from right to left until a match or mismatch is observed in all

m−2 characters. The shifting value to the sliding window after
complete match or mismatch is determined based on the Quick
Search bad character table.

Berry Ravindran-Fast Search (BRFS) algorithm, Yong [10]
presented a new hybrid algorithm called BRFS by combining
BR and Fast Search (FS) algorithms. Similar to most exact
string matching algorithms, BRFS consists of preprocessing
and searching phases. The preprocessing phase is constructed
by computing the maximum shift value from BM good suffix
shift (bmGs) and BR bad character (brBc) table. The searching
phase depends on the searching method of the Fast Search
algorithm, which performs comparison from right to left. After
a complete match or mismatch, the sliding window shifts to the
right side depending on the shift value provided by the
preprocessing phase. The BRFS algorithm exhibits good
performance in cases that involve small alphabets and long
patterns. Hence, this algorithm is appropriate for use in
applications related to biological sequence search.

Berry Ravindran-Skip Search (BRSS) Algorithm Berry
Ravindran-Skip Search (BRSS) algorithm [11] is a
combination of Berry Ravindran and Skip Search (SS)
algorithms. The preprocessing phase consists of building the
bucket list for the SS algorithm and the (brBc) table. The
process to calculate the shift value in the preprocessing phase
aims to have highest shift value to shift pattern throughout the
searching phase. The combination of the two algorithms
improves the other’s weaknesses. The BR algorithm provides
optimum shift values through the use of two successive
characters positioned after the rightmost character of the text
window. However, the BR algorithm does not examine m-text
characters to specify a starting search point as a first step. By
contrast, the SS algorithm begins by examining m-text
characters during the searching phase to assign the starting
search point in the text characters prior to the matching
process. The drawback of the SS algorithm comes from using
all the locations of the examining character in the bucket list
table in case of a match or mismatch. The BRSS hybrid
algorithm shows the benefit of combining the two algorithms
by reducing the total work performed in each attempt and the
overall computational time.

Quick-Skip Search Hybrid Algorithm [12] developed
another hybrid algorithm based on the Quick Search (QS)
algorithm. The combination of Quick Search and Skip Search
algorithms allows each algorithm to complement the other. The
resultant algorithm is called Quick-Skip Search hybrid
algorithm. Similar to the two original algorithms, the
effectiveness of the resultant hybrid algorithm can be found in
the preprocessing and searching phases. The preprocessing
phase of the Quick-Skip Search hybrid algorithm consists of
building two shifting value tables, namely, the bad character
table for the Quick Search algorithm and the bucket list for the
Skip Search algorithm. The searching phase of the hybrid
algorithm depends on the original algorithms searching phase
with some update related to matching operation (the searching
process is performed in different orders). Throughout the
searching phase, the decision on how much distance is required
to shift the sliding window if a mismatch or a complete match
is found between the pattern and text characters depends on
selecting a large shift value from the Quick Search and Skip

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

119 | P a g e

www.ijacsa.thesai.org

Search shift values. The algorithm is effective for any alphabet
type and pattern length.

Quick Search, Zuh-Takaoka and Boyer Moore-Horspool
(Maximum-Shift) Algorithm [13] proposed a hybrid string
matching algorithm called Maximum-Shift hybrid algorithm.
This new hybrid algorithm is a combination of three existing
algorithms, namely, QS, ZT, and Horspool. The Maximum-
Shift hybrid algorithm consists of three phases: preprocessing,
maximum shift, and searching phases. The pre-processing
phase, which preprocesses the input pattern to be useful during
the matching process, consists of building the shifting value
tables of the QS bad character table and the (ztBc) table.

The two inputs to the maximum shift phase are the QS and
ZT shift values. The output from this phase is considered the
maximum shift value between these two inputs to shift the
pattern to a longer distance and subsequently reduce the
number of attempts and the total number of character
comparisons. The searching phase depends on QS and
modified Horspool algorithms. The searching phase of the
Maximum-Shift hybrid algorithm follows the searching phase
orders of the QS algorithm with some updates related to the
matching process.

During the searching phase, the hybrid algorithm searches
the text string from left to right and utilizes the idea of the
Horspool algorithm with a slight modification by comparing
the two rightmost characters of the pattern with the text
window characters as an initial step before searching the
remaining characters P[m −2] from left to right. The algorithm
produces better results compared with the three original
algorithms and also when compared with another two hybrid
algorithms (BR and Smith) in terms of minimizing the number
of attempts and character comparisons [13].

The author [14] in 2017 proposed a new hybrid algorithm
its name ABSBMH, which is a result of combining the good
features of the two well know algorithms the modified
Horspool and SSABS hybrid algorithms, which are a single
and hybrid algorithm respectively. In the preprocessing phase
the ABSBMH hybrid algorithm generates the Quick Search
bad character table (qsBc) as the SSABS algorithm do which is
beneficial to calculate the shifting distance during the searching
phase. In the searching phase the ABSBMH algorithm
depending on the SSABS and modified Horspool searching
phase algorithms, the ABSBMH algorithm inspects not only
the rightmost character in the text window, but it checks the
last two characters in the text window with its corresponding
position in the pattern characters to inspect if it matches or
mismatch, if it matches the algorithm start search the
remaining characters from left to right.

III. THE PROPOSED ALGORITHM

The contribution of this research is discussed in this
section, that is, a solution to the string matching problem that
involves proposing a sequential hybrid algorithm that blends
two existing algorithms to develop an efficient sequential
hybrid algorithm.

The proposed hybrid algorithm, SSTBMQS algorithm, is
the key point of this study. This algorithm comprises two
phases: the preprocessing and searching phases. In the

preprocessing phase, the pattern characters are preprocessed to
collect information to be used in the searching phase to
decrease the number of characters compared and the number of
attempts. The preprocessing and searching phases, which
consist of seven steps for the proposed hybrid algorithm, are
summarized in the next subsections, as shown in Fig. 1.

Fig. 1. Flowchart for SSTBMQS hybrid algorithm overview.

A. Preprocessing Phase

To construct the preprocessing phase for SSTBMQS
algorithm, the preprocessing phase for the Quick-Skip Search
hybrid algorithm and the Tuned Boyer-Moore algorithm must
be built first. The Quick-Skip Search hybrid algorithm
preprocessing phase consists of building the QS bad character
table and the SS bucket separately. The two preprocessing
phases were not combined into one preprocessing phase
because of the reverse behavior of the preprocessing phase for
the QS and SS algorithms. Bad character table of QS stores all
the rightmost indexes for each character in the pattern. The SS
bucket contains all the leftmost indexes for each character in
the pattern. Moreover, the bad character table for the Tuned
Boyer-Moore algorithm consists of all the first rightmost
appearances for each character in the pattern after scanning and
indexing the pattern from right to left, starting with the
rightmost character in the pattern, which always has the index
0. As a result, the preprocessing phase of SSTBMQS algorithm
builds the preprocessing phase from each original algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

120 | P a g e

www.ijacsa.thesai.org

B. Searching Phase

The searching phase of SSTBMQS algorithm depends on
the technique used in the original algorithms, such as searching
using different orders, with some development during the
matching operation. During the matching operation, if a
mismatch or an entire pattern string match occurs, the
algorithm shifts the pattern according to the shift value from
the original Quick-Skip Search hybrid algorithm. Basically, the
searching phase of the hybrid algorithm follows these seven
steps:

Step 1: Similar to the original Quick-Skip Search hybrid
algorithm, this stage starts by examining the m −text characters
to specify a possible starting search point S. The starting search
point has a position in the text characters, where both j and

the pattern length (m) have the same size. Initially, after
selecting the position in the text characters, At this point, the

SSTBMQS algorithm starts performing the alignment
operation between the text characters and the pattern characters
in such a way that permits the alignment of the character at the
 position with its corresponding location in the bucket list.

Also, as an initial step the SSTBMQS algorithm computes the
shift value of the Quick-Skip Search hybrid algorithm, which
contains the shift value for the Skip Search phase and Quick
Search phase, because the underlying structure of SSTBMQS
algorithm has two searching phases (Skip Search and Quick
Search).

The SSTBMQS algorithm examines both shift values and
uses the searching phase, which has the maximum shift value.
When the alignment between the text characters and the pattern
characters is performed, the character located at the position

does not appear in the pattern characters. Thus, the algorithm
continually shifts the pattern characters to the following
 position in the text character. This operation skips numerous

unnecessary attempts, consequently minimizing the total
number of character comparisons and avoiding the alignment
of the leftmost character of the pattern with the leftmost
character of the text at the beginning of the searching phase.

Step 2: The SSTBMQS algorithm calculates the value,
where d is the difference between the position and the

 position. is the position of the inspection character, where

f is the location of the last character in the m−text characters.
The position is determined in the next step. The value is

calculated depending on two circumstances:

1) If the character at position occurs in the last position

in the bucket, is calculated from Equation (1) after being

subtracted from the last character index, which is equal to the

pattern length minus one (m − 1) from the last position in the

bucket. Then, the algorithm moves directly to Step 3.
 = (m−1)−(The last position in the bucket) (1)

2) Whenever the character at position is not at the last

position in the bucket, the value is calculated using

Equation (2) after subtracting the last character index, which is

equal to the pattern length minus one (m − 1) from the current

 position of the bucket.
 = (m−1) − (The current position of the bucket) (2)

This process continues to execute until all positions of the
character at position in the bucket are processed. The

algorithm moves to the Step 3.

Step 3: This step comes after determining the value in
Step 2. In this step, the algorithm determines the location of
 , where f is the location of the last character in the m−text

characters, which is often called the inspection character. To
determine the location of , the SSTBMQS algorithm adds

the value to the current position of in the text characters,

as shown in Equation (3).

 = (The current position of in the text characters)+ (3)

Step 4: The SSTBMQS algorithm verified whether a match
is possible between the pattern and the text characters by
checking the inspection character (which occurs at in the

text). If the value of this character after referring to the
(bmBc[a]) table is equal to (0) (that is, the last character in the
pattern matches its corresponding character at the position in

the text), where the value (0) in the (bmBc[a]) table is given
only for the rightmost character in the pattern, The most
significant property of the Tuned Boyer-Moore algorithm is the
unique zero value given to the rightmost character in the
pattern. Therefore, the value of the rightmost character in the
(bmBc) table is always (0). The algorithm moves to Step 5.
Otherwise, the algorithm goes to Step 6. By performing this
process, the algorithm verifies whether a match is possible
between the rightmost character in the pattern and its
corresponding character at the position in the text without

opening the text window and without performing a comparison
operation. The latter is considered the most costly portion of a
string matching algorithm, that is, when the algorithm verifies
whether the character in the pattern occurs in the text window
[15]. This process will reduce the number of character
comparisons, as well as the number of attempts.

Step 5: This step is accomplished if the inspection
character at equals (0) from the (bmBc[a]) table. Thus, a

match between the pattern and the text characters is possible.
At this step, comparisons occur between the pattern and text
characters by opening a text window that is equal to pattern
length (m). The first comparison operation is performed from
the leftmost character in the pattern to the corresponding
character position in the text window to the right side. If a
mismatch or a complete pattern match occurs, the SSTBMQS
algorithm moves to the following step.

Step 6: In this step, the SSTBMQS algorithm computes the
shift values for both the SS and QS algorithms. SSTBMQS
hybrid algorithm computes the SS shift value in different ways
depending on two circumstances:

1) When the SSTBMQS algorithm checks the character at

the position and determines that the character appears in the

last location of the bucket, the SS value is computed using (4)

after the first bucket location of the character that appears in

the next position is distinguished in the text characters. This

position is considered the following start search point.
SS_shift = m + current position (from bucket) – the next

 position (4)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

121 | P a g e

www.ijacsa.thesai.org

2) When the position does not appear in the last location

of the bucket, the SS shift value is computed by using a

subtracting operation performed between the following

location value from the current location value of this character

in the bucket.
SSTBMQS algorithm is used to compute the QS shift value

depending on the character that follows the rightmost character
of the text window. This character is used as an index that
refers to the shift value stored in the QS bad character table,
which represents the value of the rightmost occurrence of this
character in the pattern.

SSTBMQS algorithm has two searching phases (Skip
Search and Quick Search). At this point, SSTBMQS algorithm
computes the shift values of the Skip Search and Quick Search
phases. SSTBMQS algorithm examines both shift values and
uses the searching phase, which has the maximum shift value.
In other words, if the SS shift value is larger than or equal to
the QS shift value, SSTBMQS algorithm depends on the Skip
Search phase and goes to Step 2, as shown in Fig. 2.
Otherwise, if the QS shift value is larger, then the SSTBMQS
algorithm goes to Step 7.

Fig. 2. Flowchart for Skip Search Phase Role in the SSTBMQS algorithm.

Step 7: This step is employed when SSTBMQS algorithm
depends on the Quick Search phase. The Quick Search phase
computes the position depending on two circumstances.

1) When the value of the character is positioned next to the

rightmost character of the text window is lower than or

equivalent to pattern length (m), the new position computes

the current position in the text character to become

equivalent to that positioned immediately next to the window,

which is considered to be the new beginning search point.

Then, the algorithm moves to Step 2, as presented in the

following condition.

If (QS_Shift > SS_Shift) & (QS_Shift ≤ m)

Then

New Position = First Position after the Window

2) When the Quick Search phase checks the shift value of

the character that follows the rightmost character of the text

window and it is larger than pattern length (m), the new

 position is computed by summing the current position in

the text and is made equal to the character position

immediately next to the text window plus the value of pattern

length (m) as presented in the following condition.

If (QS_Shift > SS_Shift) & (QS_Shift > m)

Then

New Position = First Position after the Window + m

However, after the new position is computed, if the

character positioned at the new position does not appear in

the pattern characters, SSTBMQS algorithm continually shifts
the pattern to the following potential beginning search point,
and SSTBMQS algorithm goes into Step 2. Fig. 3 shows the
functionality of the Quick Search phase throughout the
searching phase of SSTBMQS algorithm. All of the steps of
the searching phase are repeated until the window is placed
beyond (n − m + 1).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

122 | P a g e

www.ijacsa.thesai.org

Fig. 3. Flowchart for Quick Search Phase Role in the SSTBMQS algorithm.

IV. SSTBMQS ALGORITHM TRACING EXAMPLE

This section demonstrates an example of tracing by using
SSTBMQS algorithm. The example shows the steps of the
preprocessing and searching phases of SSTBMQS algorithm.
Two strings are used as input: text and a pattern, as displayed
in Fig. 4.

Fig. 4. Algorithm Inputs.

The preprocessing phase of SSTBMQS algorithm is built
by constructing the pre-processing phase for the two original
algorithms: The Quick-Skip Search hybrid algorithm and the
TBM algorithm. The Quick-Skip Search hybrid algorithm is
used to build the SS buckets and the QS bad character table,

whereas the TBM algorithm is used to build the (bmBc[a]) bad
character table for the input pattern, as shown in Fig. 5.

Fig. 5. Preprocessing phase.

The searching phase starts by choosing the start search
point, which is at location in the text, as shown in Fig. 6.

Fig. 6. First Alignment.

In the first alignment, the chosen beginning point (T) does
not exist in the pattern. SSTBMQS algorithm checks the
following potential starting point (A), as mentioned in Step 1
of Section III. In the second alignment (see Fig. 7), the shift
value is calculated by subtracting the next position value from
the current position value of the character (A) that appears in
the SS bucket, as explained in the second circumstance in
Step 6 in Section III.

Fig. 7. Second Alignment.

Shift = Skip Shift = 6 - 3 = 3

SSTBMQS algorithm checks the character at position in

the (bmBc[M] 6= 0), which is found to be unequal to 0. By
performing this process, SSTBMQS algorithm avoids opening
a text window and reduces the number of attempts, as well as
the number of character comparisons, as explained in Step 4 in
Section III. SSTBMQS algorithm then computes the shift value
of the SS shift value = 3, where the QS shift value = 2 from the
QS bad character table. SSTBMQS algorithm depends on the
SS shift value, as explained in Step 6 in Section III.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

123 | P a g e

www.ijacsa.thesai.org

Fig. 8. Third Alignment.

Shift = Quick Search bad character table = 6

The third alignment shows a situation in which SSTBMQS
algorithm depends on the QS shift value, which is equal to the
position of the character (G) in the pattern (see Fig. 8). After
checking the character (A) at position in (bmBc[A] 6= 0), as

mentioned previously in Step 4 in Section III, the new
 position becomes equivalent to the position of the character

(G) in the text characters, as explained in the first circumstance
of Step 7 in Section III.

Fig. 9. Fourth Alignment.

Shift = Skip Shift = 8 + 2 - 6 = 4

The value of the character (A) in the TBM bad character
table is equal to (1). Thus, a match between the pattern and the
text characters is impossible (see Fig. 9). The SSTBMQS
algorithm computes shift value depending on the shift value
from the SS bucket. The (G) character at position appears in

the last position of the bucket. SSTBMQS algorithm computes
the shift value by adding the value of the (G) character in the
SS bucket to the pattern length (m). Then, the summation is
subtracted from the first value of the character at position
 from the bucket, as explained in the first circumstance of

Step 6 in Section III.

Fig. 10. Fifth Alignment and First Attemp.

Shift = Quick Search bad character table = 9

In the fifth alignment the character (C) at position equals

(0) in the (bmBc[c] = 0) bad character table. Thus, matching
can possibly occur between pattern and text characters.
SSTBMQS algorithm opens a text window and starts
comparing characters from left to right, considering the first
attempt, as shown in Fig. 10. After a mismatch occurs,

SSTBMQS algorithm computes both SS and QS shift values.
The QS shift value becomes larger than the SS shift value. By
computing for the shift value of the character (D), which is
equal to (9) in the QS bad character table, the QS shift value
becomes larger than the pattern length (m). Thus, the new
 position becomes equal to the summation of the current

(qsBc[D]) and the pattern length (m), as explained in the
second circumstance of Step 7 in Section III.

Fig. 11. Sixth Alignment and Second Attempt.

Shift = Skip Shift = 7 - 4 = 3

The sixth alignment shows a situation in which the pattern
aligns its character (C) at position that is, at the same time,

the position. After examining the (bmBc[C]=0), SSTBMQS

algorithm opens a text window and starts comparing characters
from left to right, considering the second attempt (see Fig. 11).
SSTBMQS algorithm depends on the SS shift value by
subtracting the next position value from the current position
value of the character (C) in the SS bucket, as explained in the
second circumstance of Step 6 in Section III.

Fig. 12. Seventh Alignment and Third Attempt.

In the seventh alignment, SSTBMQS algorithm first
examines the value of the character (C) at the position in the

TBM bad character table (bmBc[C] = 0) and finds it to be
equal to (0). Then, SSTBMQS algorithm starts comparing the
characters from left to right until all characters’ match,
considering the third attempt as explained in Fig. 12.

Number of attempts = 3

Number of characters’ comparison = 10

V. RESULTS AND DISCUSSION

This section presents the experimental design adopted in
this study for the sequential version of SSTBMQS algorithm.
The execution of the sequential program, performance and
evaluation are discussed.

A. Experimental Databases

DNA sequence, protein sequence, and English text datasets
are used in this work to evaluate the results of the sequential
version of SSTBMQS algorithm with the two original
algorithms. Such datasets are chosen because they are defined

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

124 | P a g e

www.ijacsa.thesai.org

as a benchmark standard that demonstrates the typical
utilization of string matching applications. They also vary in
alphabet size; thus, a variety of algorithm behavior with
different alphabet sizes can be evaluated. The data size chosen
for testing the sequential behavior of SSTBMQS algorithm
with the two original algorithms is 100 MB.

a) DNA Sequence

DNA sequence is created from a long string that holds
hereditary information arranged in a sequence of four
nucleotides represented by four uppercase letters. Usually,
adenine is indicated by (A), thymine is indicated by (T),
guanine is indicated by (G), and cytosine is indicated by (C) [∑
= (A, C, G, T) and σ = 4]. To examine the algorithm behavior
in a small alphabet size, DNA sequence is considered in this
study. Database is downloaded from Gutenberg Project [16].

b) Protein Sequence

Protein sequence is composed of 20 amino acids indicated
by uppercase characters [∑ = (A, C, D, E, F, G, H, I, K, L, M,
N, P, Q, R, S, T, V, W, Y) and σ = 20]. Protein sequence has
an essential responsibility in biochemistry science, especially
in protein structure and functionality.

c) English Text

English text data type comprises over 100 various alphabet
types split into English language (lowercase and uppercase),
numbers, and samples. The large size of this alphabet data type
allows testing the algorithm behavior in such a large dataset.
This data type is gathered from the Gutenberg Project [16].

B. Performance and Evaluation

The major goal of this research is to offer an effective
algorithm to be utilized basically with different string matching
applications. Two common factors are typically considered to
evaluate the performance of a string matching algorithm with
different applications [17]. The two factors are presented
below.

a) Total Number of Character Comparisons

This factor refers to the summation of exact comparison
that occurs between the pattern and characters of text window.
The algorithm with a significantly less number of character
comparisons is identified as a powerful algorithm with better
performance.

b) Total Number of Attempt

This factor denotes the distance that a pattern needs to skip
along the entire assigned text. When the amount of attempts is
significantly less, the overall performance of an algorithm is
better. These two factors are used as a basis to evaluate the
efficiency of the sequential version of SSTBMQS algorithm
and to specify its overall performance with various datasets
implemented.

C. Sequential Program Execution

The sequential program of SSTBMQS hybrid algorithm
with the two sequential original string matching algorithms
(i.e., TBM and Quick-Skip Search) is examined on each kind
of dataset outlined in part (A) of Section V. The three
algorithms are run using a personal computer with 2.4 GHZ
Inter®Core™with 7 cores and 8 GB RAM. The operating

system used is Microsoft Windows 8 Single language, which is
a 64-bits operating system. Microsoft visual studio 2010 is
utilized to write down the codes. The compiler used to build
and run the codes is visual C++ compiler.

This section elucidates the evaluation results acquired from
executing the sequential programs of SSTBMQS algorithm
when compared with TBM and Quick-Skip Search hybrid
algorithms. As indicated in Table 1, TBM is a single algorithm
used in developing SSTBMQS algorithm of this study. Quick-
Skip Search and Maximum-Shift are both hybrid algorithms.

Quick-Skip Search is used in developing SSTBMQS
algorithm. Maximum-Shift consists of QS, BMH, and ZT
algorithms. The results of Maximum-Shift are compared with
those of SSTBMQS algorithm and the two chosen string
matching algorithms. This hybrid algorithm is chosen for
comparison because it is considered as one of the latest hybrid
algorithm in the literature. The QS algorithm that is included in
developing Quick-Skip Search hybrid algorithm is also used to
develop the Maximum-Shift hybrid algorithm. All the
algorithms indicated above are elucidated in Section II of this
research.

These algorithms are evaluated according to the total
numbers of character comparisons and number of attempts. As
mentioned previously in part (A) of Section V, various kinds of
datasets are employed, which are DNA sequence, protein
sequence, and English text. The patterns are selected randomly
from the words inside each dataset and have various lengths
that range from 8 to 100 [10], where 8 and 10 are short
patterns; 20, 30, 40, 50, 60, 70, 80, 90, and 100 are long
patterns [13]. Each pattern length is searched five times, and
the average is obtained. The Maximum-Shift hybrid algorithm
results are generated from [13] (Table 1).

TABLE. I. RELATIONSHIP AMONG TBM, QUICK-SKIP SEARCH,
MAXIMUM-SHIFT, AND THE PROPOSED ALGORITHM

Algorithms Algorithm Type
Underlying

Structure

Relationship

with

the Proposed

Algorithm

Tuned

Boyer-Moore
(TBM)

Single algorithm TBM

Used in the
preprocessing

and

searching phases

Quick-Skip

Search
algorithm

Hybrid

algorithm
QS+Skip Search

Used in the
preprocessing

and

searching phases

Maximum-Shift

(Max-Shift)

Hybrid

algorithm
QS+BMH+ZT

Used the QS in

the

preprocessing
phase

D. Analyzing Number of Character Comparisons

Based on the empirical results presented in Fig. 13 to 15,
DNA alphabet delivers a great number of character
comparisons, especially when the size of pattern length is
short. This behavior is due to the structure nature of the DNA
alphabet itself, which considers a small alphabet size. The
DNA alphabet structure consists of four characters, thereby
leading to a small shift distance of pattern during the searching
operation of pattern string into text string. The use of a small

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

125 | P a g e

www.ijacsa.thesai.org

size of alphabet in implementing algorithms causes
considerable exact matching between inspected pattern string
and text window, particularly when utilizing short pattern
lengths. Subsequently, the amount of character comparisons is
influenced by the size of the alphabet used.

For all algorithms with all dataset types, the results show
that when pattern lengths increase, the total number of
character comparisons decreases significantly. This behavior is
due to the increasing amount of shift distance provided by the
algorithms when a mismatch occurs. Based on this observation,
the DNA dataset is excluded, especially for TBM algorithm.
The performance of TBM algorithm in DNA dataset shows an
unstable behavior, which is due to a fixed shift value provided
by this algorithm that leads to a small shift of pattern after a
mismatch occurs. Furthermore, DNA dataset generates small
numbers in TBM bad character table, which leads to a small
shift of pattern during an unrolled operation in each attempt.
This condition can be considered another reason for the
unstable behavior provided by TBM algorithm that tends to
increase the total number of character comparisons.

In protein and English datasets, the performance of Quick-
Skip Search hybrid algorithm surpasses that of Maximum-Shift
hybrid algorithm when a short pattern length is used. This
result is ascribed to that the Maximum-Shift hybrid algorithm
starts the searching phase without checking starting point.

The probability of position character taking place in pattern

characters is low when using medium and large alphabet sizes
for protein and English datasets, respectively. The results of
protein and English datasets also show that the Maximum-Shift
hybrid algorithm beats the Quick-Skip Search hybrid algorithm
in 30 to 100 pattern lengths.

This behavior is due to employing both QS and ZT
preprocessing phases to obtain a maximum shift distance to
shift a pattern when a mismatch or a complete match occurs.
The largest shift value can be obtained from the QS algorithm
preprocessing phase, which is equal to the pattern length plus
one, when the character following the rightmost character of
text window is not occurring in the pattern characters.
However, ZT preprocessing phase depends on two consecutive
rightmost characters in the text window to calculate the shift
distance value. Using these methods avoids many unnecessary
potential numbers of character comparisons during the
matching process of Maximum-Shift hybrid algorithm.

Quick-Skip Search hybrid algorithm utilizes QS algorithm
preprocessing phase with Skip buckets to determine the next
position of pattern string in text string. Maximum-Shift hybrid
algorithm strongly beats Quick-Skip Search hybrid algorithm
when 30 to 100 pattern lengths are used. The Quick-Skip
Search hybrid algorithm uses the Skip buckets with the QS
algorithm in the preprocessing phase. The disadvantage of the
Skip Search algorithm is used all the positions of the character
at position in the bucket list in case of match or mismatch

occurs. On the contrary, the Maximum-Shift hybrid algorithm
uses the preprocessing phase of ZT algorithm, which is viewed
as a highly effective algorithm with small alphabet size data
type.

SSTBMQS algorithm outperforms all other algorithms by
producing a less number of character comparisons for all
pattern lengths and data types. Such a good performance is due
to three reasons. First, the algorithm employs Quick-Skip
Search preprocessing phase to determine the next position of a
pattern in text string after a mismatch occurs. Second, the
algorithm starts the searching phase by checking the
occurrence of character at Tj position in pattern characters,
which is considered a starting search point before actual
comparison. Third, the algorithm employs modified TBM
matching operation characteristic by checking the character at
 position before starting a comparison operation.

The results of the SSTBMQS algorithm are better than
those of the two original algorithms and Maximum-Shift
hybrid algorithm in all pattern lengths and data types. The good
performance of the SSTBMQS algorithm implies that the
integration of the two original algorithms provides a new
hybrid algorithm with better performance.

Fig. 13. Number of Character Comparisons in DNA Sequence Data.

Fig. 14. Number of Character Comparisons in Protein Sequence Data.

Fig. 15. Number of Character Comparisons in English Text Data.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

126 | P a g e

www.ijacsa.thesai.org

E. Analyzing Number of Attempts

The empirical results presented in Fig. 16 to 18, show the
behavior of TBM, Quick-Skip Search, Maximum-Shift, and
SSTBMQS algorithms when using with DNA sequence,
protein sequence, and English text data types. The results show
that all the algorithms have a stable behavior in medium and
large sizes for protein and English alphabets, respectively.
Generally, the total number of attempts is decreased when
pattern lengths increase. In short, pattern lengths and the
Quick-Skip Search hybrid algorithm outperform the
Maximum-Shift hybrid algorithm. This result is due to the
characteristic of the Quick-Skip Search hybrid algorithm, that
is, it starts the searching phase by checking the probability of
occurrences of the character at position in the pattern

characters. This probability decreases when alphabet size
increases. Hence, the Quick-Skip Search hybrid algorithm
surpasses the Maximum-Shift hybrid algorithm in a short
pattern length with protein and English alphabets.

The Maximum-Shift hybrid algorithm does not start the
searching phase by checking position to specify the starting

search point. DNA alphabet is accordingly excluded because of
its small size, which consists of only four characters, and the
ordering of the characters in the pattern itself, which increases
the probability of occurrences of the character at position in

the pattern. Thus, a small shift distance to the pattern is
generated across the text string. The Maximum-Shift hybrid
algorithm generally outperforms the Quick-Skip Search hybrid
algorithm in long pattern, especially from 30 to 100 pattern
lengths. This result is due to using ZT preprocessing function,
which uses two rightmost characters at the text window to
compute the shift distance and is considered as a powerful
function with small alphabets.

The TBM algorithm shows a stable behavior in protein and
English alphabets by decreasing the total number of attempts,
which is related to the alphabet size of the dataset being used.
DNA dataset is excluded because of the size of DNA alphabet,
which increases the probability of finding inspection character,
which is the position of the rightmost character in text window
that is equal to zero in the TBM bad character table. This
behavior will lead to many exact matching processes between
the pattern and text characters, which contributes in increasing
the total number of attempts.

The results of the SSTBMQS algorithm indicate that it
outperforms all other algorithms in all pattern lengths and with
any alphabet sizes. This good behavior is related to its good
properties acquired from integrating the two original
algorithms. The hybrid algorithm starts the searching phase by
checking the occurrence of the character at position in the

pattern characters. When the size of the alphabet used is large,
the probability of the character occurrence at position is low.

The Quick-Skip Search preprocessing function is used to
compute a maximum shift distance to shift the pattern long
distance when a mismatch or a complete pattern match occurs.

Before performing matching operations, the character at
 position is checked that is the position of the rightmost

character at the text window. If the character at position

equals to zero in the TBM bad character table, then the

SSTBMQS algorithm starts a character comparison. If the
character at position is not equal to zero value, then the

SSTBMQS algorithm skips opening text window and starts
character comparison. This technique contributes in reducing
the total number of attempts. Therefore, SSTBMQS algorithm
utilizes the significant advantages and excludes the
disadvantages of the two original algorithms by producing a
minimal number of attempts.

Fig. 16. Number of Attempts in DNA Sequence.

Fig. 17. Number of Attempts in Protein Data Type.

Fig. 18. Number of Attempts in English Text Data Type.

VI. CONCLUSION AND FUTURE WORK

This section presents the conclusion from achieving the
objective of this study, that is, integrating two existing
algorithms (i.e., TBM and Quick-Skip Search) to produce an
efficient hybrid string matching algorithm called SSTBMQS.
Particularly, this study aims to extract the good properties from
the two original algorithms. The SSTBMQS algorithm uses the
shift values produced from the preprocessing phase of the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

127 | P a g e

www.ijacsa.thesai.org

Quick-Skip Search hybrid algorithm to compute the next
expected position of the pattern during the searching phase.

In the searching phase, the SSTBMQS algorithm examines
m−text characters to specify a starting search point before the
actual character comparisons. This process avoids performing
many unnecessary attempts, which reduces the total number of
attempts. The SSTBMQS algorithm also utilizes modified
TBM matching operation during the searching phase by
checking the character at position in the TBM bad character

table before performing character comparisons and starting an
attempt. Consequently, the total numbers of character
compassions and attempts are significantly reduced.

Two parameters are used to evaluate the performance of the
sequential version of the SSTBMQS algorithm, which are the
total numbers of character comparisons and attempts. In
Section V, the SSTBMQS algorithm is compared with three
algorithms, namely, TBM and Quick-Skip Search as original
algorithms and Maximum-Shift as hybrid string matching
algorithm. Comparisons are performed in different datasets
(DNA sequence, Protein sequence, and English text) with
different pattern lengths. The SSTBMQS algorithm
outperforms all other algorithms by producing fewer total
numbers of attempts and character comparisons. In future
work, the running time of SSTBMQS algorithm should be
enhanced by parallelizing it on the GPU using CUDA library.

REFERENCES

[1] Michailidis, Panagiotis D., and Konstantinos G. Margaritis. "On-line
string matching algorithms: Survey and experimental results."
International journal of computer mathematics 76.4 411-434, (2001).

[2] Al-Dabbagh, Sinan Sameer Mahmood, et al. "Parallel Quick Search
Algorithm for the Exact String Matching Problem Using OpenMP."
Journal of Computer and Communications 4.13 (2016): 1.

[3] Raju, S. Viswanadha, A. Vinaya Babu, and M. Mrudula. "Backend
engine for parallel string matching using boolean matrix." Parallel
Computing in Electrical Engineering, 2006. PAR ELEC 2006.
International Symposium on. IEEE, 2006.

[4] Kumar, K. S. M. V., S. Viswanadha Raju, and A. Govardhan. "A Survey

of Parallel Algorithms for Text Matching In Large Databases and
Hardware Implementations." International Journal of Engineering and
Innovative Technology (IJEIT) 1(2): 2277–3754, 2012.

[5] Hassan, Atif Agha. "Mixed heuristic algorithm for intelligent string
matching for information retrieval." Computational Intelligence and
Multimedia Applications, 2005. Sixth International Conference on.
IEEE, 2005.

[6] Kun, Bi, et al. "A practical distributed string matching algorithm
architecture and implementation." World Acad Sci Eng Technol 10
(2005): 1307-6884, 2005.

[7] AbdulRazzaq, A. A., Rashid, N. A., Hasan, A. A. and Abu-Hashem, M.
A. The Exact String Matching Algorithms Efficiency Review, Global
Journal on Technology 4(2): 576–589, 2013.

[8] Naser, Mustafa Abdul Sahib, and Mohammed Faiz Aboalmaaly. "Quick-
Skip search hybrid algorithm for the exact string matching problem."
International Journal of Computer Theory and Engineering 4.2 (2012):
259.

[9] Sheik, S. S., et al. "A fast pattern matching algorithm." Journal of
Chemical Information and Computer Sciences 44.4, 1251-1256, 2004.

[10] Huang, Yong, et al. "A fast exact pattern matching algorithm for
biological sequences." BioMedical Engineering and Informatics, 2008.
BMEI 2008. International Conference on. Vol. 1. IEEE, 2008.

[11] Almazroi, Abdulwahab Ali. "A fast hybrid algorithm approach for the
exact string matching problem via berry ravindran and alpha skip search
algorithms." Journal of Computer Science 7.5 (2011): 644.

[12] Naser, Mustafa Abdul Sahib, and Mohammed Faiz Aboalmaaly. "Quick-
Skip search hybrid algorithm for the exact string matching problem."
International Journal of Computer Theory and Engineering 4.2 (2012):
259.

[13] Kadhim, Hakem Adil, and NurAini AbdulRashidx. "Maximum-shift
string matching algorithms." Computer and Information Sciences
(ICCOINS), 2014 International Conference on. IEEE, 2014.

[14] Al-Dabbagh, Sinan Sameer Mahmood, and Nawaf Hazim Barnouti. "A
New Efficient Hybrid String Matching Algorithm to Solve the Exact
String Matching Problem."

[15] Charras, Christian, and Thierry Lecroq. Handbook of exact string
matching algorithms. King's College, 2004.

[16] Kärkkäinen, Juha, and Joong Chae Na. "Faster filters for approximate
string matching." 2007 Proceedings of the Ninth Workshop on
Algorithm Engineering and Experiments (ALENEX). Society for
Industrial and Applied Mathematics, 2007.

[17] Thathoo, Rahul, et al. "TVSBS: A fast exact pattern matching algorithm
for biological sequences." Current Science 91.1 (2006): 47-53.

