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Abstract—Software effort estimation is an increasingly 

significant field, due to the overwhelming role of software in 

today’s global market. Effort estimation involves forecasting the 

effort in person-months or hours required for developing a 

software. It is vital to ideal planning and paramount for 

controlling the software development process. However, there is 

presently no optimal method to accurately estimate the effort 

required to develop a software system. Inaccurate estimation 

leads to poor use of resources and perhaps failure of the software 

project. Effort estimation also plays a key role in deducing cost of 

a software project. Software cost estimation includes the 

generation of the effort estimates and project duration to predict 

cost required to develop software project. Thus, effort is very 

essential and there is always need to enhance the accuracy as 

much as possible. This study evaluates and compares the 

potential of Constructive COst MOdel II (COCOMO II) and k-

Nearest Neighbor (k-NN) on software project dataset. By the 

analysis of results received from each method, it may be 

concluded that the proposed method k-NN yields better 

performance over the other technique utilized in this study. 
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I. INTRODUCTION 

Since the invention of computers, a vast number of people 
find themselves reliant on computers. Computers are 
appearing in nearly every aspect of our lives, such as 
transportation, banking, education, communication as well as 
personal health. In general, computers are making things 
easier for us, for example, working electronically from home, 
socialising with long distance friends. While a computer is 
merely a box of circuits that achieve software level tasks for 
its user, software is simply a set of instructions which enables 
the computer to perform specified tasks. 

Despite the growing popularity of software, there are still 
issues been encountered in various aspect of its development 
which has been receiving attention from several researchers. 
In 1968, software engineering emerged at a meeting in a 
discussion of what was then called „software crisis‟ [1]. It 
became apparent that developer approaches to software 
development did not scale up to large and complex software 
systems. These issues were unreliable, cost overrun, and late 
delivery [2]. Many software projects still suffer from 
inaccurate estimation hence they are delivered late or worse 
still abandoned. 

For example, in April 1990, the Regional Information 

Systems Plan (RISP) for the Wessex Regional Health 
Authority was abandoned, five years after it started. By this 
time, £43 million had already been expended on the project 
and out of which £20 million was confirmed wasted. RISP 
was meant to accomplish integration across the health region. 
The failure of the project was attributed to the ambiguous 
definition of the scope which resulted in difficulties in 
handling and budgeting the expenditure of the project [3]. 

In this paper, an empirical study and comparison of two 
models on NASA dataset [4]. K-Nearest Neighbour and 
Constructive COst MOdel II (COCOMO II) are the methods 
which are utilised in this work. These methods have seen an 
explosion of interest over years and hence it is important to 
analyse the performance of these methods. These methods 
have been analysed on datasets collected from 90 projects. 

The paper is organized as: Section 2 summarizes the 
related work. Section 3 explains the research background, i.e, 
describes the dataset used for the estimation of effort and also 
explains various performance measures. Section 4 presents the 
research methodology followed in this paper. The results of 
the models estimated for software effort estimation and the 
comparative analysis are given in Section 5. The paper is 
concluded in Section 6. Finally, the future research is 
discussed in Section 7. 

II. RELATED WORK 

Software Effort Estimation is one of the most significant 
fields in software engineering and has repeatedly drawn the 
attention of researchers and practitioners towards addressing 
the on-going problem of inaccurate estimates in software 
development. Software effort estimation requires high 
accuracy, but it is difficult to achieve accurate estimates. 
Software effort estimation also plays a key role in determining 
cost of a software project. Software cost estimation includes 
the generation of the effort estimates and project duration in 
order to compute cost required to develop software project. 
There are various Software Estimation Techniques which fall 
in the following categories: Expert Judgment, Algorithmic 
Models, Machine Learning, Empirical techniques, Regression 
techniques and Theory-based techniques. 

Enhancing the accuracy of effort estimation remains an 
intricate problem because it is difficult to deduce which 
technique produces more accurate estimation on which dataset 
[5]. According to software effort estimation technique survey, 
it is concluded that there is no single technique that can lead 
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us to unambiguous results [6]. 

Several models have been proposed for Software effort 
estimation, e.g., Slim, Cocomo, Estimacs, Function Point 
Analysis (FPA), Spans, Costar etc. In any case, none of the 
models proposed have been outstandingly successful in 
precisely predicting the effort required to develop a particular 
software product [7]. 

Many machine learning methods have been the subject of 
comparison to seeking an accurate estimation model for 
software development effort [8]. Several studies comparing 
techniques have been conducted for software effort estimation. 
From 17 different organisations dataset of 299 software 
projects were used from which they were divided randomly 
into 249 training cases and 50 test cases [9]. Desharnais 
compared using function points Analysis (FPA) with Artificial 
Neural Networks (ANN), Case-Based Reasoning (CBR) and 
Regression Models. Desharnais concluded that Artificial 
Neural Networks model performs more effectively than the 
other techniques. 

Jain and Malhotra (2011) compared Linear regression, 
Support Vector Machine (SVM), Artificial Neural Network 
(ANN), Decision tree and Bagging using 499 projects. The 
result showed that Decision tree is the best among the other 
techniques at predicting effort required to develop a software. 

Over the years, machine learning has been producing good 
results in numerous fields and like the majority of the effort 
prediction research, these reports assess the accuracy of effort 
estimation models. The significant distinction between this 
report and the current research attempt is that it goes into the 
comparison of the traditionally utilized algorithmic model of 
software effort estimation with a popular machine learning 
technique not currently researched by most. 

III. RESEARCH BACKGROUND 

A. Feature Sub Selection Method 

The data we have used is obtained from Promise data 
repository. The NASA dataset originally comprises of 93 
instances, however, 90 of these instances are chosen after 
disregarding unusable instances. The disregarded instances are 
that of the organic software projects, given the number of 
instances, they would not be sufficient to implement the 
proposed technique. Each of this projects are described by 15 
effort multipliers and are measured on the scale of six 
categories ranging from very low to extra high. The 90 project 
chosen consist of 69 semi-detached and 21 embedded software 
projects. 

B.  Machine Learning Method 

After data refinement, the projects are then divided into 
training sets and test set on a ratio of 7:3 (Given a dataset of 
size “B”, divided into a training set of size (Y=|Y set| <= B) 
and the test set of size (X = B – Y=|Y set|). Thus 70% was 
used for the training set and 20% was used for the test set. 

The selected training set of semi-detached software 
projects are 48 projects and the remaining 21 projects are used 
as test set. Likewise, the selected training set of embedded 
software projects are 15 projects and the remaining 6 projects 

are used as test set. The two techniques (k-NN and COCOMO 
II) are both implemented in the MATLAB environment [10] 
and the estimated effort of the test set is generated and 
compared with the equivalent actual effort in the original 
dataset to verify the estimation capability of the method. For 
the k-NN technique, the estimated effort is generated using the 
Euclidean distance function and then different values of k 
used to examine which value produces better results while for 
the COCOMO II technique, effort is estimated using the 
COCOMO II formula for both the semi-detached and 
embedded software projects. 

C. Performance Measures 

The following evaluation criterion has been used to 
evaluate the estimate capability. Amongst all these stated 
criterions, the most frequently utilised for performance 
measure are the PRED (n) and MMRE. Hence, these two 
measures are used in the comparison of our results with the 
results of preceding researches. 

1) Mean Magnitude of Relative Error (MMRE) is a 

measure of the average error given by an estimation system. It 

is achieved through the average of the Magnitude of Relative 

Error (MRE), MRE is calculated as the summation of the 

absolute difference between the actual effort and the predicted 

effort divided by the actual effort. 
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Where, PEi is the predicted effort achieved for the i
th

 test 
data: 

AEi is the actual effort collected for the i
th

 test data 

n is the total number of projects in the test set. 

2) Root Mean Squared Error (RMSE) is a regularly 

utilised measure of differences between estimated value of the 

model and the actual perceived value. It is obtained through 

the square root of the Mean Square Error (MSE), MSE is 

calculated as the squared difference between the actual effort 

and the predicted effort. 
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n is the total number of projects in the test set. 

3) Mean Absolute Error (MAE) is the measure of how far 

the predicted values are from actual values. It is calculated as 

the mean of the absolute errors between predicted and actual 

effort. 
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data: 

AEi is the actual effort collected for the i
th

 test data 

 n is the total number of projects in the test set. 

4) Relative Absolute Error (RAE) is the total absolute 

error made relative to what the error would have been if the 

estimate just had been the average of the actual values. It is 

obtained through the summation of the absolute difference 

between actual and predicted effort divided by the summation 

of the absolute difference between actual and mean of actual. 
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Where, PEi is the predicted effort achieved for the i
th

 test 
data: 

AEi is the actual effort collected for the i
th

 test data 

AEm is the average of the actual effort collected for the i
th

      
test data 

n is the total number of projects in the test set. 

5) Root Relative Squared Error (RRSE) is calculated by 

dividing the RMSE by summation of the squared difference 

between actual values and mean of actual values. Therefore, 

the smaller the values the better. 
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Where, PEi is the predicted effort achieved for the i
th

 test 
data: 

AEi is the actual effort collected for the i
th

 test data 

AEm is the average of the actual effort collected for the i
th

     
test data 

n is the total number of projects in the test set. 

6) Correlation Coefficient is the statistical measures of the 

strength and direction of a relationship between two variables. 

It indicates the strength of the relationship. The higher the 

value of correlation coefficient, the stronger the relationship. 
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Where, PEi is the predicted effort achieved for the i
th

 test 
data: 

AEi is the actual effort collected for the i
th

 test data 

   is the mean of the actual effort collected for the i
th

 test 
data 

   is the mean of the predicted effort collected for the i
th

 
test data 

n is the total number of projects in the test set. 

7)  Prediction Accuracy (PRED (n)) is an indicator of the 

percentage of estimates that are within n% of the actual 

values. It is obtained from the relative error which is the 

absolute difference between the actual and predicted effort. It 

is expressed as the ratio of the test data with relative error 

(RE) less than or equal to x percent to the total number of 

projects in the test set. Hence, the larger the value of PRED 

(n), the better it is. n should be 25% and a good prediction 

system ought to attain this accuracy level 75% of the time. 

[11] 

         
 

 
  

Where, t is the value of relative error (RE) where the test 
data has: 

             less than or equal to x. 

             n is the total number of projects in the test set. 

IV. RESEARCH METHODOLOGY 

In this paper, one machine learning technique and one 
algorithmic model is used in order to predict effort. K-Nearest 
Neighbour and COCOMO II have seen an explosion of 
interest over the years, and have successfully been applied in 
various areas. 

A.  K-Nearest Neighbour 
K-Nearest Neighbour (k-NN) algorithm is a non-

parametric machine learning method for classification that 
predicts objects class by classifying objects centred on the k 
nearest training examples in the feature space [12]. K-Nearest 
Neighbour is recognised for its ability to produce good results 
in clinical outcome prediction such as Cancer prediction. 

The k-nearest neighbour (k-NN) classifies new cases with 
previously stored available cases on the basis of similarity 
measure (e.g., Distance functions). It is a type of instance-
based learning where the function is only approximated 
locally and all calculation is postponed until classification. 
The k-Nearest Neighbour (k-NN) gathers historical data 
known as the training data set, and utilises this data collected 
to make estimates for new test data, and then, the k-nearest 
data of the training dataset are achieved. Based on the data 
attribute of the nearest records, an estimate is made for the 
new data. 

The k-Nearest Neighbour (k-NN) classification algorithm 
expands this procedure by utilising a predefined number (k≥1) 
of the nearest training instances as opposed to utilising only a 
single instance. k is a user-defined constant of positive 
integers, usually small. For instance, in a self-organizing map 
(SOM), all nodes are representatives of a cluster of similar 
points, irrespective of their density in the original training 
data. K-Nearest Neighbour(k-NN) can then be applied. 
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Fig. 1. Example of k-NN classification [13]. 

The test sample (green circle) ought to be classified either 
to the top class of blue squares or to the lower class of red 
triangles. When k = 3 (solid line circle) it is allotted to the red 
triangles because there are 2 triangles and just 1 square inside 
the inner circle. In the event that k = 5 (dashed line circle) it is 
allotted to the blue squares (3 squares versus 2 triangles inside 
the external circle) [13]. 

In k-Nearest Neighbour (k-NN) classification (Fig. 1), the 
estimated label is dictated by the voting for the nearest 
neighbours to the test label, that is, the most common label in 
the set of the chosen k instances is returned. The quality of the 
estimation relies upon the distance measure. 

The generally used distance function is the Euclidean 
Distance. 

                                     √∑        
  

               

Where, k is the user-defined constant 

i is the number of instances 

x and y are the vectors of each instance. 

B.  COCOMO II Model 

COnstructive COst MOdel II (COCOMO II) is an 
estimation method that enables one to predict cost, schedule 
and effort when planning the development of a new project. 
The COCOMO techniques represents a model-based, data 
driven, parametric method that executes a fixed model method 
[14]. Thus, COCOMO produces a fixed estimation model 
which has been formed on organisational project data by 
utilising statistical regression, which signifies parametric and 
data driven techniques. COCOMO II is the latest version of 
the original COCOMO also known as COCOMO 81. 

In 1981, the original COCOMO model was created by Dr. 
Barry Boehm using a multiple regression analysis. This was 
derived from the evaluation and scrutiny of 63 software 
development projects [15]. The use of the effort estimation 
equation to predict the number of person-months or person-
hours needed to develop a project is the most essential 

calculation in the COCOMO model [15]. The model applies to 
three types of software projects (Table 1) [16]: 

Organic projects – These are projects that consist of 
relatively small teams with lots of experience with less 
stringent requirements. 

Semi-detached projects – These are projects that consist of 
medium teams with diversified experience working with a 
combination of stringent and less stringent requirements. 

Embedded projects – These are projects developed with 
stringent requirements and team, that have little experience in 
the project area. It is also a mixture of organic and semi-
detached projects. 

TABLE I. TYPES OF SOFTWARE PROJECT [16] 

         Software project 
a b 

Organic 2.4 1.05 

Semi-Detached 3.0 1.12 

Embedded 3.6 1.21 

The original COCOMO model equation for computing 
effort is as follows: 

 𝑓𝑓 𝑟 ( ) =   × (𝐾𝐿𝑂 )
𝑏 

×   𝐹 

Where, KLOC is the estimated size (number of lines of 
code) of the software project (expressed in thousands). 

The coefficients a, b are dependent on which type of 
software project is being developed. 

EAF (Effort Adjustment Factor) is the product of all the 

effort drivers.  Effort is calculated in person months and it is a 

function of development criterion productivity, some effort 
drivers, and software size. 

V. ANALYSIS RESULT 

A. Model Prediction Result 

The k-Nearest Neighbour (k-NN) and COCOMO II 
techniques have been used for estimating the efforts required 
to develop a software project using NASA dataset. Effort was 
estimated for both semi-detached and embedded software 
project. Seven performance measures have been utilised to 
compare the results gotten from these models. These measures 
are Mean Magnitude-Relative-Error (MMRE), Root-Mean 
Square-Error (RMSE), Mean Absolute Error (MAE), Relative 
Absolute Error (RAE), Relative Root Square Error (RRSE), 
Correlation Coefficient and PRED (25). The technique 
holding low values of MMRE, RMSE, MAE, RAE, and RRSE 
and high values of PRED (25) and correlation coefficient is 
considered to be the best among others. 
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TABLE II. RESULT

The plots in Fig. 2 to 5 display the results of k-Nearest 
Neighbour (k-NN) and COCOMO II on semi-detached and 
embedded software project. In these plots, the purple curve 

represents the estimated values and the orange curve 
represents the actual values. The closer, the actual and 
estimated value curves are the lower, the error and the better 
the technique. 

 
Fig. 2. Result using the k-Nearest Neighbour (k-NN) for Semi-Detached software project. 

 
Fig. 3. Result using the COCOMO II for Semi-Detached software project. 

Performance Measures 

Semi-Detached Software Project 
Embedded Software  

Project 

COCOMO II 
k- Nearest Neighbour  

(k-NN) 
COCOMO II 

k- Nearest Neighbour 

 (k-NN) 

Mean Magnitude Relative Error (MMRE)  
1.07 
 

0.54 
1.70 

 
7.84 

Root mean squared error (RMSE)  20266.30 3189.30 1501.24 5961.46 

Mean absolute error (MAE)  1198.20 393.70 429.36 1378.92 

Relative absolute error (RAE)  1.98 0.65 0.20 0.65 

Root relative squared error (RRSE)  
4.47 0.70 0.21 0.84 

Correlation coefficient  
0.91 0.76 0.998 0.98 

PRED (25) %  23.81 28.57 33.33 16.67 
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Fig. 4. Result using the k-Nearest Neighbour (k-NN) for Embedded software project. 

 
Fig. 5. Result using the COCOMO II for Embedded software project.

VI. CONCLUSION

In this research, the k-Nearest Neighbour (k-NN) and 
COCOMO II techniques have been used in predicting 
software development effort. Results were obtained using the 
NASA dataset acquired from Promise software engineering 
repository and are displayed in Table 2 above. The two 
techniques (k- NN and COCOMO II) were applied to the 
semi-detached and embedded software project and the method 
with lower error and higher accuracy is considered as better 
suited for estimating effort. There are various estimation 
techniques, although, no one method is necessarily better or 
worse than the other. It is difficult to decide which technique 
is right for which dataset [17]. 

The embedded software project dataset consists of 15 
historical training data and 6 test set while semi-detached 
software project dataset consists of 48 historical training data 
and 21 test set. The results show that the k-Nearest Neighbour 
(k-NN) was the best technique for estimating the effort with 
MMRE value 0.54 and PRED (25) value 28.57% for the semi-
detached software project. Hence, the NULL hypothesis H0 
should be accepted. Although, for the embedded software 
project the results show COCOMO II to be the best method 
with MMRE value 1.70 and PRED (25) value 33.33%. Thus, 

the Alternate hypothesis HA should be accepted. 

This result shows that k-NN is better when applied to the 
semi-detached software project and worse for embedded 
software project. This, however, does not signify that the type 
of software project has any effect on the method utilised. Thus 
indicating that the nature of data is important and this is true 
for most machine learning techniques. Small data makes over-
fitting harder to avoid which is by far the most common 
problem in applied machine learning [18], and the outliers 
could mislead the training process thereby affecting the results 
too. In comparison to the previous study by Jain and Malhotra 
(2011), several machine learning methods such as decision 
tree, linear regression, bagging etc. were analysed on a larger 
dataset and produced good results. 

The plot in Fig. 3 above shows an extreme overestimation 
of the semi-detached project which is with regards to the high 
rating scale of the effort driver in the dataset. 

The first research question was “Which of the two 
techniques (k-NN and COCOMO II) produces better 
estimates?” Considering this question through the result 
obtained from both software projects, this question can, in 
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fact, have multiple answers: the k-NN technique performs 
better when there is a substantial amount of data. The lack of 
data makes k-NN unsuitable for use and as shown in Fig. 5 
above, the COCOMO II model produces better estimates 
when analysed on the embedded project dataset because the 
nature of data has no effect on the algorithmic model. 

The second research question was “Which of the two 
techniques (k-NN and COCOMO II) has stronger relationship 
between its estimated and actual value?” The result in Table 2 
above shows that COCOMO II model has a stronger 
relationship with a correlation coefficient of 0.91 for semi- 
detached project and 0.998 for the embedded project. 

Software practitioners and researchers may apply the k-
Nearest Neighbour (k-NN) method for effort estimation where 
there is adequate data. 

VII. FUTURE RESEARCH 

Researchers have examined various machine learning 
techniques which are producing good results in different 
domains. However, the proposed technique has not received 
adequate attention in the field of software effort estimation. It 
would be useful to compare this k-Nearest Neighbour (k-NN) 
technique with other techniques such as Artificial Neural 
Network (ANN), Decision Tree, Neuro- Fuzzy (NF) etc. being 
examined by numerous researchers. 

For future research, this methodology can further be 
explored on some large datasets to improve the validity of the 
produced results. Also, the performance of the proposed 
estimation method could be enhanced by making further 
modifications regarding small data by utilising the “leave one 
out” cross validation process, boot strapping and many more 
resampling techniques. 
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