
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

227 | P a g e

www.ijacsa.thesai.org

An Investigation into the Suitability of k-Nearest

Neighbour (k-NN) for Software Effort Estimation

Razak Olu-Ajayi

Department of Computer Science,

University of Hertfordshire

Hatfield, UK

Abstract—Software effort estimation is an increasingly

significant field, due to the overwhelming role of software in

today’s global market. Effort estimation involves forecasting the

effort in person-months or hours required for developing a

software. It is vital to ideal planning and paramount for

controlling the software development process. However, there is

presently no optimal method to accurately estimate the effort

required to develop a software system. Inaccurate estimation

leads to poor use of resources and perhaps failure of the software

project. Effort estimation also plays a key role in deducing cost of

a software project. Software cost estimation includes the

generation of the effort estimates and project duration to predict

cost required to develop software project. Thus, effort is very

essential and there is always need to enhance the accuracy as

much as possible. This study evaluates and compares the

potential of Constructive COst MOdel II (COCOMO II) and k-

Nearest Neighbor (k-NN) on software project dataset. By the

analysis of results received from each method, it may be

concluded that the proposed method k-NN yields better

performance over the other technique utilized in this study.

Keywords—Software effort estimation; machine learning; k-

Nearest Neighbor; Constructive COst MOdel II

I. INTRODUCTION

Since the invention of computers, a vast number of people
find themselves reliant on computers. Computers are
appearing in nearly every aspect of our lives, such as
transportation, banking, education, communication as well as
personal health. In general, computers are making things
easier for us, for example, working electronically from home,
socialising with long distance friends. While a computer is
merely a box of circuits that achieve software level tasks for
its user, software is simply a set of instructions which enables
the computer to perform specified tasks.

Despite the growing popularity of software, there are still
issues been encountered in various aspect of its development
which has been receiving attention from several researchers.
In 1968, software engineering emerged at a meeting in a
discussion of what was then called „software crisis‟ [1]. It
became apparent that developer approaches to software
development did not scale up to large and complex software
systems. These issues were unreliable, cost overrun, and late
delivery [2]. Many software projects still suffer from
inaccurate estimation hence they are delivered late or worse
still abandoned.

For example, in April 1990, the Regional Information

Systems Plan (RISP) for the Wessex Regional Health
Authority was abandoned, five years after it started. By this
time, £43 million had already been expended on the project
and out of which £20 million was confirmed wasted. RISP
was meant to accomplish integration across the health region.
The failure of the project was attributed to the ambiguous
definition of the scope which resulted in difficulties in
handling and budgeting the expenditure of the project [3].

In this paper, an empirical study and comparison of two
models on NASA dataset [4]. K-Nearest Neighbour and
Constructive COst MOdel II (COCOMO II) are the methods
which are utilised in this work. These methods have seen an
explosion of interest over years and hence it is important to
analyse the performance of these methods. These methods
have been analysed on datasets collected from 90 projects.

The paper is organized as: Section 2 summarizes the
related work. Section 3 explains the research background, i.e,
describes the dataset used for the estimation of effort and also
explains various performance measures. Section 4 presents the
research methodology followed in this paper. The results of
the models estimated for software effort estimation and the
comparative analysis are given in Section 5. The paper is
concluded in Section 6. Finally, the future research is
discussed in Section 7.

II. RELATED WORK

Software Effort Estimation is one of the most significant
fields in software engineering and has repeatedly drawn the
attention of researchers and practitioners towards addressing
the on-going problem of inaccurate estimates in software
development. Software effort estimation requires high
accuracy, but it is difficult to achieve accurate estimates.
Software effort estimation also plays a key role in determining
cost of a software project. Software cost estimation includes
the generation of the effort estimates and project duration in
order to compute cost required to develop software project.
There are various Software Estimation Techniques which fall
in the following categories: Expert Judgment, Algorithmic
Models, Machine Learning, Empirical techniques, Regression
techniques and Theory-based techniques.

Enhancing the accuracy of effort estimation remains an
intricate problem because it is difficult to deduce which
technique produces more accurate estimation on which dataset
[5]. According to software effort estimation technique survey,
it is concluded that there is no single technique that can lead

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

228 | P a g e

www.ijacsa.thesai.org

us to unambiguous results [6].

Several models have been proposed for Software effort
estimation, e.g., Slim, Cocomo, Estimacs, Function Point
Analysis (FPA), Spans, Costar etc. In any case, none of the
models proposed have been outstandingly successful in
precisely predicting the effort required to develop a particular
software product [7].

Many machine learning methods have been the subject of
comparison to seeking an accurate estimation model for
software development effort [8]. Several studies comparing
techniques have been conducted for software effort estimation.
From 17 different organisations dataset of 299 software
projects were used from which they were divided randomly
into 249 training cases and 50 test cases [9]. Desharnais
compared using function points Analysis (FPA) with Artificial
Neural Networks (ANN), Case-Based Reasoning (CBR) and
Regression Models. Desharnais concluded that Artificial
Neural Networks model performs more effectively than the
other techniques.

Jain and Malhotra (2011) compared Linear regression,
Support Vector Machine (SVM), Artificial Neural Network
(ANN), Decision tree and Bagging using 499 projects. The
result showed that Decision tree is the best among the other
techniques at predicting effort required to develop a software.

Over the years, machine learning has been producing good
results in numerous fields and like the majority of the effort
prediction research, these reports assess the accuracy of effort
estimation models. The significant distinction between this
report and the current research attempt is that it goes into the
comparison of the traditionally utilized algorithmic model of
software effort estimation with a popular machine learning
technique not currently researched by most.

III. RESEARCH BACKGROUND

A. Feature Sub Selection Method

The data we have used is obtained from Promise data
repository. The NASA dataset originally comprises of 93
instances, however, 90 of these instances are chosen after
disregarding unusable instances. The disregarded instances are
that of the organic software projects, given the number of
instances, they would not be sufficient to implement the
proposed technique. Each of this projects are described by 15
effort multipliers and are measured on the scale of six
categories ranging from very low to extra high. The 90 project
chosen consist of 69 semi-detached and 21 embedded software
projects.

B. Machine Learning Method

After data refinement, the projects are then divided into
training sets and test set on a ratio of 7:3 (Given a dataset of
size “B”, divided into a training set of size (Y=|Y set| <= B)
and the test set of size (X = B – Y=|Y set|). Thus 70% was
used for the training set and 20% was used for the test set.

The selected training set of semi-detached software
projects are 48 projects and the remaining 21 projects are used
as test set. Likewise, the selected training set of embedded
software projects are 15 projects and the remaining 6 projects

are used as test set. The two techniques (k-NN and COCOMO
II) are both implemented in the MATLAB environment [10]
and the estimated effort of the test set is generated and
compared with the equivalent actual effort in the original
dataset to verify the estimation capability of the method. For
the k-NN technique, the estimated effort is generated using the
Euclidean distance function and then different values of k
used to examine which value produces better results while for
the COCOMO II technique, effort is estimated using the
COCOMO II formula for both the semi-detached and
embedded software projects.

C. Performance Measures

The following evaluation criterion has been used to
evaluate the estimate capability. Amongst all these stated
criterions, the most frequently utilised for performance
measure are the PRED (n) and MMRE. Hence, these two
measures are used in the comparison of our results with the
results of preceding researches.

1) Mean Magnitude of Relative Error (MMRE) is a

measure of the average error given by an estimation system. It

is achieved through the average of the Magnitude of Relative

Error (MRE), MRE is calculated as the summation of the

absolute difference between the actual effort and the predicted

effort divided by the actual effort.

𝑀𝑀

∑

| |

Where, PEi is the predicted effort achieved for the i
th

 test
data:

AEi is the actual effort collected for the i
th

 test data

n is the total number of projects in the test set.

2) Root Mean Squared Error (RMSE) is a regularly

utilised measure of differences between estimated value of the

model and the actual perceived value. It is obtained through

the square root of the Mean Square Error (MSE), MSE is

calculated as the squared difference between the actual effort

and the predicted effort.

 𝑀 √

∑

Where, PEi is the predicted effort achieved for the i
th

 test
data:

AEi is the actual effort collected for the i
th

 test data

n is the total number of projects in the test set.

3) Mean Absolute Error (MAE) is the measure of how far

the predicted values are from actual values. It is calculated as

the mean of the absolute errors between predicted and actual

effort.

𝑀

∑| |

Where, PEi is the predicted effort achieved for the i
th

 test

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

229 | P a g e

www.ijacsa.thesai.org

data:

AEi is the actual effort collected for the i
th

 test data

 n is the total number of projects in the test set.

4) Relative Absolute Error (RAE) is the total absolute

error made relative to what the error would have been if the

estimate just had been the average of the actual values. It is

obtained through the summation of the absolute difference

between actual and predicted effort divided by the summation

of the absolute difference between actual and mean of actual.

∑ | |

∑ | |

Where, PEi is the predicted effort achieved for the i
th

 test
data:

AEi is the actual effort collected for the i
th

 test data

AEm is the average of the actual effort collected for the i
th

test data

n is the total number of projects in the test set.

5) Root Relative Squared Error (RRSE) is calculated by

dividing the RMSE by summation of the squared difference

between actual values and mean of actual values. Therefore,

the smaller the values the better.

 √
∑

∑

Where, PEi is the predicted effort achieved for the i
th

 test
data:

AEi is the actual effort collected for the i
th

 test data

AEm is the average of the actual effort collected for the i
th

test data

n is the total number of projects in the test set.

6) Correlation Coefficient is the statistical measures of the

strength and direction of a relationship between two variables.

It indicates the strength of the relationship. The higher the

value of correlation coefficient, the stronger the relationship.

∑

 √
∑

 √

∑

Where, PEi is the predicted effort achieved for the i
th

 test
data:

AEi is the actual effort collected for the i
th

 test data

 is the mean of the actual effort collected for the i
th

 test
data

 is the mean of the predicted effort collected for the i
th

test data

n is the total number of projects in the test set.

7) Prediction Accuracy (PRED (n)) is an indicator of the

percentage of estimates that are within n% of the actual

values. It is obtained from the relative error which is the

absolute difference between the actual and predicted effort. It

is expressed as the ratio of the test data with relative error

(RE) less than or equal to x percent to the total number of

projects in the test set. Hence, the larger the value of PRED

(n), the better it is. n should be 25% and a good prediction

system ought to attain this accuracy level 75% of the time.

[11]

Where, t is the value of relative error (RE) where the test
data has:

 less than or equal to x.

 n is the total number of projects in the test set.

IV. RESEARCH METHODOLOGY

In this paper, one machine learning technique and one
algorithmic model is used in order to predict effort. K-Nearest
Neighbour and COCOMO II have seen an explosion of
interest over the years, and have successfully been applied in
various areas.

A. K-Nearest Neighbour
K-Nearest Neighbour (k-NN) algorithm is a non-

parametric machine learning method for classification that
predicts objects class by classifying objects centred on the k
nearest training examples in the feature space [12]. K-Nearest
Neighbour is recognised for its ability to produce good results
in clinical outcome prediction such as Cancer prediction.

The k-nearest neighbour (k-NN) classifies new cases with
previously stored available cases on the basis of similarity
measure (e.g., Distance functions). It is a type of instance-
based learning where the function is only approximated
locally and all calculation is postponed until classification.
The k-Nearest Neighbour (k-NN) gathers historical data
known as the training data set, and utilises this data collected
to make estimates for new test data, and then, the k-nearest
data of the training dataset are achieved. Based on the data
attribute of the nearest records, an estimate is made for the
new data.

The k-Nearest Neighbour (k-NN) classification algorithm
expands this procedure by utilising a predefined number (k≥1)
of the nearest training instances as opposed to utilising only a
single instance. k is a user-defined constant of positive
integers, usually small. For instance, in a self-organizing map
(SOM), all nodes are representatives of a cluster of similar
points, irrespective of their density in the original training
data. K-Nearest Neighbour(k-NN) can then be applied.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

230 | P a g e

www.ijacsa.thesai.org

Fig. 1. Example of k-NN classification [13].

The test sample (green circle) ought to be classified either
to the top class of blue squares or to the lower class of red
triangles. When k = 3 (solid line circle) it is allotted to the red
triangles because there are 2 triangles and just 1 square inside
the inner circle. In the event that k = 5 (dashed line circle) it is
allotted to the blue squares (3 squares versus 2 triangles inside
the external circle) [13].

In k-Nearest Neighbour (k-NN) classification (Fig. 1), the
estimated label is dictated by the voting for the nearest
neighbours to the test label, that is, the most common label in
the set of the chosen k instances is returned. The quality of the
estimation relies upon the distance measure.

The generally used distance function is the Euclidean
Distance.

 √∑

Where, k is the user-defined constant

i is the number of instances

x and y are the vectors of each instance.

B. COCOMO II Model

COnstructive COst MOdel II (COCOMO II) is an
estimation method that enables one to predict cost, schedule
and effort when planning the development of a new project.
The COCOMO techniques represents a model-based, data
driven, parametric method that executes a fixed model method
[14]. Thus, COCOMO produces a fixed estimation model
which has been formed on organisational project data by
utilising statistical regression, which signifies parametric and
data driven techniques. COCOMO II is the latest version of
the original COCOMO also known as COCOMO 81.

In 1981, the original COCOMO model was created by Dr.
Barry Boehm using a multiple regression analysis. This was
derived from the evaluation and scrutiny of 63 software
development projects [15]. The use of the effort estimation
equation to predict the number of person-months or person-
hours needed to develop a project is the most essential

calculation in the COCOMO model [15]. The model applies to
three types of software projects (Table 1) [16]:

Organic projects – These are projects that consist of
relatively small teams with lots of experience with less
stringent requirements.

Semi-detached projects – These are projects that consist of
medium teams with diversified experience working with a
combination of stringent and less stringent requirements.

Embedded projects – These are projects developed with
stringent requirements and team, that have little experience in
the project area. It is also a mixture of organic and semi-
detached projects.

TABLE I. TYPES OF SOFTWARE PROJECT [16]

 Software project
a b

Organic 2.4 1.05

Semi-Detached 3.0 1.12

Embedded 3.6 1.21

The original COCOMO model equation for computing
effort is as follows:

 𝑓𝑓 𝑟 () = × (𝐾𝐿𝑂)
𝑏

× 𝐹

Where, KLOC is the estimated size (number of lines of
code) of the software project (expressed in thousands).

The coefficients a, b are dependent on which type of
software project is being developed.

EAF (Effort Adjustment Factor) is the product of all the

effort drivers.  Effort is calculated in person months and it is a

function of development criterion productivity, some effort
drivers, and software size.

V. ANALYSIS RESULT

A. Model Prediction Result

The k-Nearest Neighbour (k-NN) and COCOMO II
techniques have been used for estimating the efforts required
to develop a software project using NASA dataset. Effort was
estimated for both semi-detached and embedded software
project. Seven performance measures have been utilised to
compare the results gotten from these models. These measures
are Mean Magnitude-Relative-Error (MMRE), Root-Mean
Square-Error (RMSE), Mean Absolute Error (MAE), Relative
Absolute Error (RAE), Relative Root Square Error (RRSE),
Correlation Coefficient and PRED (25). The technique
holding low values of MMRE, RMSE, MAE, RAE, and RRSE
and high values of PRED (25) and correlation coefficient is
considered to be the best among others.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

231 | P a g e

www.ijacsa.thesai.org

TABLE II. RESULT

The plots in Fig. 2 to 5 display the results of k-Nearest
Neighbour (k-NN) and COCOMO II on semi-detached and
embedded software project. In these plots, the purple curve

represents the estimated values and the orange curve
represents the actual values. The closer, the actual and
estimated value curves are the lower, the error and the better
the technique.

Fig. 2. Result using the k-Nearest Neighbour (k-NN) for Semi-Detached software project.

Fig. 3. Result using the COCOMO II for Semi-Detached software project.

Performance Measures

Semi-Detached Software Project
Embedded Software

Project

COCOMO II
k- Nearest Neighbour

(k-NN)
COCOMO II

k- Nearest Neighbour

 (k-NN)

Mean Magnitude Relative Error (MMRE)
1.07

0.54
1.70

7.84

Root mean squared error (RMSE) 20266.30 3189.30 1501.24 5961.46

Mean absolute error (MAE) 1198.20 393.70 429.36 1378.92

Relative absolute error (RAE) 1.98 0.65 0.20 0.65

Root relative squared error (RRSE)
4.47 0.70 0.21 0.84

Correlation coefficient
0.91 0.76 0.998 0.98

PRED (25) % 23.81 28.57 33.33 16.67

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

232 | P a g e

www.ijacsa.thesai.org

Fig. 4. Result using the k-Nearest Neighbour (k-NN) for Embedded software project.

Fig. 5. Result using the COCOMO II for Embedded software project.

VI. CONCLUSION

In this research, the k-Nearest Neighbour (k-NN) and
COCOMO II techniques have been used in predicting
software development effort. Results were obtained using the
NASA dataset acquired from Promise software engineering
repository and are displayed in Table 2 above. The two
techniques (k- NN and COCOMO II) were applied to the
semi-detached and embedded software project and the method
with lower error and higher accuracy is considered as better
suited for estimating effort. There are various estimation
techniques, although, no one method is necessarily better or
worse than the other. It is difficult to decide which technique
is right for which dataset [17].

The embedded software project dataset consists of 15
historical training data and 6 test set while semi-detached
software project dataset consists of 48 historical training data
and 21 test set. The results show that the k-Nearest Neighbour
(k-NN) was the best technique for estimating the effort with
MMRE value 0.54 and PRED (25) value 28.57% for the semi-
detached software project. Hence, the NULL hypothesis H0
should be accepted. Although, for the embedded software
project the results show COCOMO II to be the best method
with MMRE value 1.70 and PRED (25) value 33.33%. Thus,

the Alternate hypothesis HA should be accepted.

This result shows that k-NN is better when applied to the
semi-detached software project and worse for embedded
software project. This, however, does not signify that the type
of software project has any effect on the method utilised. Thus
indicating that the nature of data is important and this is true
for most machine learning techniques. Small data makes over-
fitting harder to avoid which is by far the most common
problem in applied machine learning [18], and the outliers
could mislead the training process thereby affecting the results
too. In comparison to the previous study by Jain and Malhotra
(2011), several machine learning methods such as decision
tree, linear regression, bagging etc. were analysed on a larger
dataset and produced good results.

The plot in Fig. 3 above shows an extreme overestimation
of the semi-detached project which is with regards to the high
rating scale of the effort driver in the dataset.

The first research question was “Which of the two
techniques (k-NN and COCOMO II) produces better
estimates?” Considering this question through the result
obtained from both software projects, this question can, in

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

233 | P a g e

www.ijacsa.thesai.org

fact, have multiple answers: the k-NN technique performs
better when there is a substantial amount of data. The lack of
data makes k-NN unsuitable for use and as shown in Fig. 5
above, the COCOMO II model produces better estimates
when analysed on the embedded project dataset because the
nature of data has no effect on the algorithmic model.

The second research question was “Which of the two
techniques (k-NN and COCOMO II) has stronger relationship
between its estimated and actual value?” The result in Table 2
above shows that COCOMO II model has a stronger
relationship with a correlation coefficient of 0.91 for semi-
detached project and 0.998 for the embedded project.

Software practitioners and researchers may apply the k-
Nearest Neighbour (k-NN) method for effort estimation where
there is adequate data.

VII. FUTURE RESEARCH

Researchers have examined various machine learning
techniques which are producing good results in different
domains. However, the proposed technique has not received
adequate attention in the field of software effort estimation. It
would be useful to compare this k-Nearest Neighbour (k-NN)
technique with other techniques such as Artificial Neural
Network (ANN), Decision Tree, Neuro- Fuzzy (NF) etc. being
examined by numerous researchers.

For future research, this methodology can further be
explored on some large datasets to improve the validity of the
produced results. Also, the performance of the proposed
estimation method could be enhanced by making further
modifications regarding small data by utilising the “leave one
out” cross validation process, boot strapping and many more
resampling techniques.

REFERENCES

[1] P. Naur, and B. Randell, “Software Engineering.” 1969.

[2] I. Sommerville, “Software engineering.” 9th ed. Addison-Wesley. 2011.

[3] M. Jeffcott, and C. Johnson, “The Use of a Formalised Risk Model in

NHS Information System Development.” 2002.

[4] Promise. Available: http://promisedata.org/repository/.

[5] A. Jain, and R. Malhotra, “Software Effort Prediction using Statistical
and Machine Learning Methods.” IJACSA, Vol.2, pp. 145-152, 2011.

[6] H. Rastogi, and S. Dhankhar “A survey on Software Effort Estimation
Techniques” IEEE Xplore Document. 5th International Conference -
Confluence The Next Generation Information Technology Summit
(Confluence), pp.826-830, 2014.

[7] C. Kemerer, “An empirical validation of software cost estimation
models.” Communications of the ACM, Vol.30, pp.416-429, 1987.

[8] Y. Kim, and K. Lee, “A Comparison of Techniques for Software
Development Effort Estimating.” 2017.

[9] J. Desharnais, G. Wittig and G. Finnie, “A comparison of software
effort estimation techniques: Using function points with neural
networks, case-based reasoning and regression models.” Journal of
Systems and Software, vol.39, pp.281-289, 1997.

[10] Matlab.Available: https://uk.mathworks.com/products/matlab-
online.html

[11] F. Ferrucci, C. Gravino, R. Oliveto, and F. Sarro, “Using Evolutionary
Based Approaches to Estimate Software Development Effort.” 2010.

[12] K. Conley, and D. Perry, “A Recommendation Engine for Picking
Heroes in Dota 2.”

[13] S. Ananthi, and D. Sathyabama, “Spam Filtering Using K-NN.” Journal
of Computer Applications, Vol.2, pp.20-23, 2009.

[14] A. Trendowicz, and R. Jeffery, “Software Project Effort Estimation.” 1st
ed. 2014.

[15] B. Boehm, “Software Engineering Economics.” 1st ed. New York:
Prentice-Hall Inc. pp.200- 217, 1981.

[16] S. Sehra, J. Kaur, and S. Sehra, “Effect of Data Preprocessing on
Software Effort Estimation.” International Journal of Computer
Applications, Vol.69, pp.33-36, 2013.

[17] P. Rijwani, D. Santani, and S. Jain. “Software Effort Estimation: A
Comparison Based Perspective.” IJAIEM Vol.3, pp.18-29, 2014.

[18] J. Brownlee, “How to Identify Outliers in your Data -Machine Learning
Mastery.” 2013.

AUTHORS PROFILE

Razak Olu-Ajayi: He is a student at the Department of Computer
Science, University of Hertfordshire. He received his bachelor„s degree in
Computer Science from Babcock University, Ogun, Nigeria. He is currently
studying his masters in software engineering at the University of
Hertfordshire, Hatfield, United Kingdom. His research interests are in
software Estimation, improving software quality, statistical and adaptive
prediction models.

