
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

338 | P a g e

www.ijacsa.thesai.org

Towards Efficient Graph Traversal using a Multi-

GPU Cluster

Hina Hameed

Systems Research Lab, Department of Computer Science,

FAST National University of Computer and Emerging

Sciences

Karachi, Pakistan

Nouman M Durrani

Systems Research Lab, Department of Computer Science,

FAST National University of Computer and Emerging

Sciences

Karachi, Pakistan

Sehrish Hina
Systems Research Lab, Department of Computer Science,

FAST National University of Computer and Emerging

Sciences

Karachi, Pakistan

Jawwad A. Shamsi

Systems Research Lab, Department of Computer Science,

FAST National University of Computer and Emerging

Sciences

Karachi, Pakistan

Abstract—Graph1 processing has always been a challenge, as

there are inherent complexities in it. These include scalability to

larger data sets and clusters, dependencies between vertices in

the graph, irregular memory accesses during processing and

traversals, minimal locality of reference, etc. In literature, there

are several implementations for parallel graph processing on

single GPU systems but only few for single and multi-node multi-

GPU systems. In this paper, the prospects of improvement in

large graph traversals by utilizing multi-GPU cluster for Breadth

First Search algorithm has been studied. In this regard, a

DiGPU, a CUDA-based implementation for graph traversal in

shared memory multi-GPU and distributed memory multi-GPU

systems has been proposed. In this work, an open source software

module has also been developed and verified through set of

experiments. Further, evaluations have been demonstrated on

local cluster as well as on CDER cluster. Finally, experimental

analysis has been performed on several graph data sets using

different system configurations to study the impact of load

distribution with respect to GPU specification on performance of

our implementation.

Keywords—Graph processing; GPU cluster; distributed graph

traversal API; CUDA; BFS; MPI

I. INTRODUCTION

Data processing accompanied with GPGPU techniques is
being employed to process large amount of data with limited
resources in several application domains throughout the globe.
However, there are several challenges when it comes to graph
processing. These include dependencies between vertices in
the graph, irregular memory accesses during graph processing,
and scalability to larger data sets.

As graph problems grow larger in scale and more
ambitious in their complexity, they easily outgrow the
computation and memory capacities of single processors [1].
Given the success of parallel computing in many areas of

This research has been supported by NVIDIA Teaching and Research Center

Awards.

scientific computing, parallel processing appears to be
necessary to overcome the resource limitations of single
processors in graph computations.

Utilization of parallel architectures became a viable mean
in order to improve graph processing performance. However,
besides the inherent complexities in graph traversal,
parallelism is challenging in several aspects such as: finding
the correct step to introduce parallelism in the algorithm,
expensive memory accesses, communication overheads, poor
locality of reference, and complex load balancing, etc.

Utilization of the distributed GPU clusters will make
mining of large graphs faster and cheaper. Many Big Data
applications such as Social networks analysis, traffic
management, and disaster management systems that rely on
graph traversals might be able to perform better, faster, and
cheaper. In this context, Breadth First Search (BFS) and
Single Source Shortest Path (SSSP) algorithms are important
graph traversal algorithms which find their applications in
several application domains such as the all pairs‟ shortest path
algorithm, s-t shortest path algorithm, etc.

Since, motivated from the usability of BFS and potential of
distributed graph processing, in this paper, a DiGPU - an API
providing efficient implementations of these algorithms on
distributed GPU clusters has been proposed.

DiGPU is a flexible user friendly CUDA-based
implementation of BFS, which can be executed both on single
node as well as multi-node systems. DiGPU can also be run on
single node multi-GPU systems. For this purpose, it
incorporates Unified Virtual Access (UVA) between host and
device and Peer-to-Peer direct access between devices. In this
work, the BFS algorithm has been implemented on single-
node single GPU system as well as on single node multi-GPU
systems. Further, the multi-node implementation of DiGPU
has also planned that will help in efficient computation of
large graphs.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

339 | P a g e

www.ijacsa.thesai.org

In this regard, the initial implementation has been tested on
two types of experimental setups. The traditional hardware
cluster comprises of combinations of NVIDIA Tesla K40 and
NVIDIA GTX-780 GPUs. A test system on the GPU nodes of
Georgia State University cluster has also been setup for
further testing.

In summary, following are the main contributions of this
paper:

1) The design and development of DiGPU has been

proposed. It is an open source software module for distributed

graph computations on a heterogeneous GPUs cluster.

2) The functions provided by DiGPU would become

building blocks for many applications performing intensive

graph computations or analysis. Availability of these building

blocks will facilitate a user with the ease of designing graph

applications.

3) A hybrid model has been developed. The model

utilizes UVA and Peer-to-Peer access between GPUs on same

node and CUDA-aware-MPI on different nodes of cluster.

4) Different experiments have been performed to study

the impact of load-distribution according to specifications of

GPUs on the cluster.
DiGPU will be beneficial for the community in computing

large graphs over a series of GPU clusters. Our initial results
are encouraging. In this work, it has been aimed to provide an
open source version of DiGPU, to perform graph analysis
which would make our work a true example of reusable graph
building blocks for graph research community. The
performance has been evaluated through an extensive
evaluation over a large dataset and involving varying GPUs
with heterogeneous computational power.

The rest of the paper is organized as: Section II covers the
background and related work in this area; Section III
illuminates our methodology and approach toward the
research problem; Section IV contains details about our initial
experimental setup; Section V lists down the results of our
preliminary experiments and Section VI concludes this paper.

II. BACKGROUND AND RELATED WORK

This section extensively covers the related work that has
previously been done regarding GPU implementations of
SSSP and BFS algorithms.

A. Breadth First Search

The classic queue-based parallel BFS initiates the
computation with a root node, putting that node in an empty
queue. During each iteration, the head of queue is pulled out
and all of the connected nodes are visited. Neighbor nodes
visited for the first time are placed at the end of the queue. The
output of the algorithm is an array storing the distance from
the source or predecessor, for each vertex. The best time
complexity reported for sequential algorithm is O(V+E).

The queue is a current level set of vertices. For each vertex
in the current level, all its neighbors must be visited. The set
of all neighbors composes the Next Level Frontier Set
(NLFS). From the NLFS only new vertices are selected to

build the queue for the next level. The BFS visit is divided
into levels with a distance from the root that increases at each
subsequent level [2].

Vibhav, et al. [2] performed BFS implementation for
vertex compaction process. At particular time, small number
of vertices may be active. They used prefix sum for assigning
threads to active vertices only. They carried out experiments
on various types of graphs and compared the results with the
best sequential implementation of BFS and experiment shows
lower performance on low degree graphs.

P. Harish, et al. [3] proposed accelerated large graph
algorithm using CUDA. The proposed algorithms is capable
of handling large graphs. In their implementation, one thread
is assigned to every vertex. They have used frontier array,
visited array and cost array which stores the minimum count
of edges of every vertex from the source vertex S. During each
iteration, every vertex checks frontier array index for itself and
in case of positive values updates the cost of itself and its
neighbors. But this algorithm‟s performance slacks due to
large degree at few vertices. Also, since it loops the kernel
which causes the more lookups to device memory, hence
slowing down the kernel execution time.

Lijuan, Luo [4] proposed effective GPU implementation of
BFS for designing an efficient queue structure. A hierarchical
kernel arrangement is used in order to reduce synchronization
overhead. Their experimentation results present similar
computational complexity as the fastest CPU version with a
potential speedup of up to and they claim to 10 times.

S. Hong, et al. implemented a novel warp-centric [5]
method for reducing the inefficiency. Many graph algorithms
suffer severe performance degradation in case of highly
irregular graphs, i.e. when the distribution of degrees (number
of edges per node) is highly skewed. Instead of assigning a
different task to each thread, their approach allocates a chunk
of tasks to each warp and executes distinct tasks in serial.
They have utilized multiple threads in a warp for explicit
SIMD operations only, thereby preventing branch-divergence
altogether.

A. Grimshaw, et al. report [6] deals with parallel BFS on
GPU clusters. Their work resorts to a duplicate removal
procedure by using a heuristic that removes a high percentage
of duplicates at the CTA level. In contrast, our algorithm also
eliminates every duplicate in the Next Level Frontier Set (at a
global level). They have used four GPUs that have a unified
memory address space with a reduced latency, compared with
a standard network interconnection.

Level Synchronous BFS [7] ensures the correctness of the
computation by synchronization at the end of each level in a
parallel implementation, . The number of levels is of the same
order of the diameter of the graph, in real-world graphs, the
computation is dominated by only two or three levels, for
which the next level set of vertices is very large.

D. Merril, et al. [8] suggested that work-efficient parallel
BFS algorithm should perform O(n+m) work. In order to
achieve O(n+m) complexity, each iteration should examine
only the edges and vertices in that iteration‟s logical edge and
vertex-frontiers, respectively. For each iteration, tasks are

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

340 | P a g e

www.ijacsa.thesai.org

mapped to unexplored vertices in the input vertex-frontier
queue. Their neighbors are inspected and the unvisited ones
are placed into the output vertex-frontier queue for the next
iteration. The typical approach for improving utilization is to
reduce the task granularity to a homogenous size and then
evenly distribute these smaller tasks among threads, by
expanding and inspecting neighbors in parallel.

Leiserson and Schardl [2] designed an implementation for
multi-socket systems that incorporates a novel multi-set data
structure for tracking the vertex-frontier. In other
implementations, hardware‟s full-empty bits are used for
efficient queuing into an out-of core vertex frontier. Both
approaches perform parallel adjacency list expansion, relying
on runtimes to throttle edge-processing tasks in-core. Luo, et
al. [4] present an implementation for GPUs that relies upon a
hierarchical scheme for producing an out-of-core vertex
frontier.

Talking about frameworks and APIs multi-GPU CUDA
implementations of BFS have been provided in Medusa [9]
and GunRock [10]. Both are graph processing frameworks
capable of performing on multiple-GPUS on a single node.
Medusa uses two schemes for multi-GPU execution:
Replication – division of the graph into equal-sized
partitions and store each partition on one GPU and maintain
replicas of the head vertices of all cross-partition edges in the
partitions where the tail vertices reside. Each cross partition
edge is replicated in its tail partition, so messages are emitted
directly from the replicas and every edge can access its head
and tail vertices directly. The execution of is performed on
each partition independently and the replicas are updated on
each graph partition after execution. The update requires
costly PCIe data transfer, which becomes a bottleneck. Multi-
hop replication, on the other hand, alleviates the overhead of
inter-GPU communication by reducing the number of times of
replica update, as multi-hop replicas aren‟t updated after every
iteration.

In Gunrock‟s BFS implementation; Merrill, et al.‟s expand
method [11] has been used. During the advance stage, this
implementation sets a label value for each vertex to show the
distance from the source, and/or sets a predecessor value for
each vertex that shows the predecessor vertex‟s ID. The base
implementation uses atomics during advance to prevent
concurrent vertex discovery. When a vertex is uniquely
discovered, its label (depth) and/or predecessor ID is set.
Gunrock‟s fastest BFS uses the idempotent advance operator,
thus avoiding the cost of atomics and uses heuristics within its
filter that reduce the concurrent discovery of child nodes.

B. Distributed Breadth First Search

In graph algorithms, the CPU execution time is only a
small fraction of the overall execution time due to low
arithmetic intensity. While dealing with a distributed
environment, data might reside in a remote memory location,
spending a large proportion of time in sending and receiving
data. Furthermore, graph algorithms do not have a regular
communication pattern; messages‟ size and the number of

sending and receiving parties vary throughout their execution.
It can be rightly stated that the bottleneck of a distributed BFS
is the communication. The optimization of the communication
among tasks is crucial for an efficient BFS algorithm on a
distributed architecture [2].

In a distributed cluster of GPUs, it is not possible to use an
algorithm based on the static mapping of vertices on arrays
(adjacency lists). The current and the next level frontier must
be an array of exactly |V| elements. Then, a trivial static
mapping makes use of a thread for each vertex in the graph.
But for large graphs, the number of vertices |V| might be too
high to store a global array of size |V| in the memory of a
single node. In distributed environments, vertices are scattered
among multiple nodes and each node only holds a subset of
the whole graph. The number of edges assigned to tasks need
be balanced.

P. Harish [12] and S. Hong [5] use the aforementioned
static mapping. The authors in [4] use a global bitmask array
to mark visited vertices which reduces the size of the global
masking array to great extent but this solution is not much
scalable. The maximum size of the graph that could be
processed will be limited by the maximum size of the array
that fits the memory of GPU.

All the shared memory optimizations speed up the visit of
local vertices. In the distributed problem, however, the time
spent to execute this operation is only a small fraction of the
total running time which is dominated by the part of the
algorithm that copes with non-local vertices [2].

The multi-node multi-GPU implementations of BFS have
been presented by E Mastrostefano, et al. [2] and SYSTAP‟s
Blazegraph, both of which are not open source. Therefore, a
DiGPU implementation has been proposed to perform
distributed graph traversal using BFS. The next section
describes the design and implementation of the proposed
graph traversal algorithm.

III. METHODOLOGY AND IMPLEMENTATION

The purpose of this section is to elaborate the design and
implementation of DiGPU. DiGPU is a flexible user friendly
CUDA-based implementation of BFS, which can be executed
both on a single node and a multi-node system. For this
purpose, it incorporates Unified Virtual Access (UVA)
between host and device, and Peer-to-Peer direct access
between devices. The BFS algorithm has been implemented
on single-node single GPU system as well as on single node
multi-GPU systems.

A. Module Overview

DiGPU provides following features to the user shown in
Fig. 1:

1) _SetDataFilePath, to take the complete path of the

location of graph data set.

2) _CreateGraph, to read and parse graph dataset and

create adjacency list from it.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

341 | P a g e

www.ijacsa.thesai.org

Fig. 1. Generic flow of processing in the DiGPU API

3) _ClustScan, to examine the cluster and propose the

suitable launching configurations.

4) _SetConfigs, to set system information, how many

nodes have been connected and how many devices every node

has.

5) _BFS, to perform breadth first search on the created

graph, with randomly selected node as root node.
_BFS utilize the following functions to perform intended

operations:

a) Queue operations maintaining consistency through

atomic operations, _enqueue, _dequeue, _copyQueue, and

_mergeQueue.

b) mapThreads maps created threads to the nodes in

next level frontier set. This also handles the load distribution

part.

c) CUDA Kernels.

d) _send & _receive are the functions for data exchange

among nodes using MPI.

Fig. 2 illuminates the generic flow of the API core
functions. Dataset is read and parsed and then converted into
an offset array and adjacency list shown in Fig. 3. The offset
array and adjacency list are divided among available devices
and kernels (repeatedly). The results are then combined and
presented. The flow of distributed BFS in DiGPU presented in
Fig. 2 also explains the order of execution of functions to
accomplish BFS traversal of a graph.

B. Data Structure and Graph Representation

The adjacency list representation of graph has been used in
our implementation, as there is a constraint of limited memory
while working with GPUs, adjacency list is the better option
than adjacency graph as it consumes lesser space.

For a graph G = (V, E), an array „Va‟ of size 2|V| is used
to store vertices of the graph, whereas, another array „Ea‟ of
|E| elements is used to hold the edges. Provided i = 0 …. |V|-1,
2Va[i] represents the offset of neighbors of node i in the Ea

array and 2Va[i]+1 represents the number of neighbors of
node i. Where, node b is the neighbor of node „a‟ if there is a
directed edge from „a‟ to „b‟.

Fig. 3 represents the graph structure used in our proposed
system. The offset array holds the nodes of graph in form of
pairs, one index represents the index where the first neighbor
of a node is located in the adjacency list and the second one is
the count of neighbors of that node. For instance, in Fig. 3,
node 1 has its first neighbor at 2

nd
 index, and the 3 following it

shows that it has a total of three neighbor nodes.

C. Parallel Breadth First Search – Single Node

Fig. 2. Flow Diagram of Distributed BFS in DiGPU

Fig. 3. Adjacency list representation of graph data

TABLE I. P2P ACCESS STATUS OF GPU DEVICES IN CDER CLUSTER

From To Access Allowed

GPU0 GPU1 Yes

GPU1 GPU0 Yes

GPU2 GPU3 Yes

GPU3 GPU2 Yes

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

342 | P a g e

www.ijacsa.thesai.org

Fig. 4. Representation of Distributed Multi-GPU Cluster

The algorithm proposed in [12] has been extended for
multiple GPUs on a single node. The algorithm requires one
thread to be created in order to process one vertex. Two arrays
namely, frontier Fa and visited Xa each of size |V| are used to
store the BFS frontier and the nodes that have been visited
vertices. An array to stores the minimal number of edges of
each vertex from the source vertex S, the cost array Ca is also
used. In every iteration, each vertex checks its entry in the
frontier array Fa. If it is positive, it fetches its cost from the
cost array Ca and updates all the costs of its neighbors if more
than its own cost plus one using the edge list Ea. The vertex
removes its own entry from the frontier array Fa and adds to
the visited array Xa. It also adds its neighbors to the frontier
array if the neighbor is not already visited. This process is
repeated until the frontier is empty. The algorithm terminates
when all the levels of the graph are traversed and frontier
array is empty.

This implementation has also been extended for shared-
memory multi-GPUs, utilizing the CUDA Peer-to-Peer (P2P)
Direct Access (Table 1). The offset array was divided equally
amongst the GPU devices on the node (which enable P2P
access with other devices). The adjacency list is then divided
such that each device gets the complete set of those nodes
which are adjacent to the nodes assigned to it.

Host keeps track of the allocations and utilizing the
Unified Virtual Addressing facilitated by CUDA the devices
could know which device has their desired node if they are
missing any, and then using P2P access that device gets a copy
of it.

D. Distributed Multi-GPU Approach

The distributed graph traversal has been implemented on
multi-GPU cluster, following and eventually extending the
work presented by Mastrostefano, et al. [10] towards a hybrid
model. The cluster setup represented in Fig. 4 shows that it

has multiple nodes, each node having more than one GPU
devices. The system perform as a shared memory
implementation within a node, using Peer-to-Peer direct
access when devices are communicating with each other and
Unified Virtual Addressing while host and device are
communicating. The system follow distributed approach
across the nodes, i.e., communication using _send and
_receive functions.

IV. EXPERIMENTAL SETUP

The experimental setups have been used to perform the
experimentation of the proposed DiGPU system. Details of
these setups have been explained as follows:

A. Cluster Setups

Fours clusters have been used to perform our experiments
for DiGPU. The details of hardware specifications of utilized
clusters are enlisted below:

1) NVIDIA Research Center (SysLab) Cluster – FAST

NUCES
This cluster consisting of following devices have been set

up specifically for our experimentation purpose shown in
Table 2:

 Standalone PCs with:

o NVIDIA Tesla K40 and GTX-780
o NVIDIA GTX-780 and GTX-780
o NVIDIA Tesla K40 and NVIDIA Tesla

 Multi-node cluster with the nodes listed above.

2) DER Cluster – Georgia State University
This cluster has 19 nodes out of which three nodes have

CUDA supported GPU cards:

 GPU07 – 1 GeForce GTX TITAN Black

 GPU11 – 4 GeForce GTX 770

 GPU10 – 4 Tesla K20c.

Above nodes have:

 Processors Dual Intel Xeon E5-2650 with 64 GB
memory

 Operating system CentOS 6.7.

 CUDA 7.5

TABLE II. CONFIGURATIONS OF CLUSTERS INVOLVED IN EXPERIMENTS

Configuration Nodes GPUs/node GPU Specifications P2P Access Status

A 1 4 4 GeForce GTX 770 Refer Table 1

B 1 4 4 Tesla K20 Refer Table 1

C 2 2
1 Tesla K40c

1 GeForce GTX 780
Enabled between devices of 1 node

D 1 2
1 Tesla Kxxx

1 GeForce GTX 7xx
Enabled

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

343 | P a g e

www.ijacsa.thesai.org

TABLE III. BREADTH FIRST SEARCH EXECUTION TIMES

Experimental Setup Vertices Edges
Processing

Time (sec)

Single Node – Single GPU 2394385 5021410 1635.9

Single Node – 2 GPUs 2394385 5021410 1089.3

TABLE IV. DISTRIBUTED BFS USING HYBRID MODEL EXECUTION TIMES

Experimental Setup Dataset
Processing

Time (sec)

CDER cluster –

Configuration A

WikiTalk ~ 2.3x106 vertices 349.325377

Synthetic Graph – 10x106

vertices
772.945530

CDER cluster –

Configuration B

WikiTalk ~ 2.3x106 vertices 363.795705

Synthetic Graph – 10x106

vertices
607.428377

SysLab cluster –

Configuration C

WikiTalk ~ 2.3x106 vertices 849.862036

Synthetic Graph – 10x106

vertices
1809.419021

CDER cluster –

Configuration D

WikiTalk ~ 2.3x106 vertices 1003.844756

Synthetic Graph – 10x106

vertices
4346.329110

3) Cloud Intances
For our preliminary results, two categories of Amazon

Web Services EC2 GPU instances have been used with
following specifications:

 High Frequency Intel Xeon E5-2670 (Sandy Bridge)
Processor

 NVIDIA Grid GPUs, each with 1,536 CUDA cores and
4GB of video memory

 Ubuntu LTS 14.04

 CUDA 7.0

B. Datasets

Both synthetic datasets and real-world graph have been
used to experiment in this research. PaRMAT [13] is used to
generate synthetic graphs of various sizes to perform impact
analysis of load distribution based on GPU specifications.
Experiments have been performed on graphs as large as 10M
vertices.

WikiTalk dataset from SNAP [14] has been used as a real-
world graph to test the implementation. Each registered user
of Wikipedia has a talk page, which could be edited by either
them or other users to communicate and discuss updates to
various articles on Wikipedia. In this SNAP WikiTalk dataset,
there is information extracted from all user talk page changes
and converted in the form of a network.

The network contains all the users and discussion from the
inception of Wikipedia till January 2008. Nodes in the
network represent Wikipedia users and a directed edge from
node i to node j represents that user i at least once edited a talk
page of user j. The dataset represents a directed graph, with
2,394,385 nodes and 5,021,410 edges [14].

V. RESULTS

This section explains the outcomes of the testing of
proposed Hybrid Model for DiGPU and also presents the
implications of proposed load-balancing based of
specifications of GPUs.

A. Preliminary Results – PRAM Algorithm Implementation

The results in Table 3 are preliminary results which had
been obtained using a primitive single node PRAM
implementation of BFS using Harish‟s algorithm [12]. The
results had been computed using Amazon AWS instances on
the WikiTalk graph dataset.

B. Distributed BFS – Hybrid Model Implementation

Hybrid model has been tested on several datasets for all
four experimentation setups, the major and important results
are those which have been obtained from the 10M vertices
synthetic graph and WikiTalk dataset. These results have been
summarized in Table 4.

Traversed Edges per Second (TEPS) is a metric well
known to measure performance related to graph operations.
The results of execution of DiGPU hybrid model on local
SysLab cluster (Configuration C) have been represented in the
form of TEPS in Table 5. The TEPS for each graph traversal
instance in Table 4 show improvement with increase in
number of vertices in the graph. This depicts that even though
there is network latency issue DIGPU‟s is scalable for large
graphs and the given set of results show improvement in
performance with increase in graph size.

Fig. 5 is the visual representation of the comparison
amongst the four experimentation benches, in terms of
Thousand TEPS. Setup A, B, C all three have four GPU
devices but Fig. 5 clearly indicates that Setup C lags behind
both Setup A and B. The reason is network latency introduced
by the switch used to connect nodes at SysLab. An
improvement might be observed if there would have been an
Infiniband switch. Also, on test bed Setup C, only one node
offers P2P access between the two GPUs in it.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

344 | P a g e

www.ijacsa.thesai.org

Fig. 5. . Load Distribution Trend Synthetic Graph of 1 million nodes

Fig. 6. Load Distribution Trend Synthetic Graph of 1.5 million nodes

Fig. 7. Load Distribution Trend Synthetic Graph of 2 million nodes

TABLE V. PERFORMANCE OF HYBRID MODEL ON LOCAL CLUSTER WITH

VARYING DATA SIZES

Dataset
Processing Time

(sec)

Traversed Edges

Per Second

Synthetic Graph –

1.0x106 nodes
206.004216 4854.269584

Synthetic Graph –

1.5x106 nodes
274.754027 5459.428625

Synthetic Graph –

2.0x106 nodes
413.738531 4833.970853

Synthetic Graph –

2.5x106 nodes
533.307219 4687.729531

Synthetic Graph –

3.0x106 nodes
595.089924 5041.254907

Synthetic Graph –

10x106 nodes
1809.419021 5526.635833

Fig. 8. TEPS Comparison of Experimental Setups

Fig. 9. Load Distribution Trend Synthetic Graph of 0.5M nodes

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

345 | P a g e

www.ijacsa.thesai.org

Fig. 10. Load Distribution Trend Synthetic Graph of 2.5 million nodes

Fig. 11. Load Distribution Trend Synthetic Graph of 3 million nodes

Fig. 12. Load Distribution Trend of Real World graph of WikiTalk

C. Load Distribution

Load distribution experiments have been performed on six
synthetic graphs of varying sizes on SysLab systems having
Tesla K40c and GeForce GTX 780 GPUs.

Graphs in Fig. 6 to 12 show that execution time improved
when the distribution of load was in favor of Tesla device.
This is due to the fact that Tesla is better device with more
computation power, better memory bandwidth, more CUDA
cores and larger memory when compared to GeForce GTX
780 device.

Load distribution using GPU specification represents
improvement in execution time of graph traversal.
Performance of Hybrid model is better on CDER cluster than
SysLab setups which is obviously due to network latencies
[15].

VI. CONCLUSION AND FUTURE WORK

DiGPU is a software module for multi-node, distributed
cluster graph traversal in form of Breadth First Search on
GPUs. Results show that our proposed Hybrid Model for
graph traversal in multi-GPU clusters performs better than its
PRAM and single node UVA-P2P counterpart. Though UVA-
P2P on a single node is the base case of the hybrid model its
performance is greatly affected by infrastructure, for instance
the bandwidth of interconnects between the GPUs and also the
processor in the node. The bottleneck in performance is
network latency which is inherent in a distributed cluster. But
for a cluster with a better interconnect between its nodes or
when there are multiple GPUs on a node amongst which not
all are paired with each other, our Hybrid Model
implementation works better, and our results from
experiments performed on CDER cluster clearly support that.

Our motivation behind this research was to explore aspects
of improvement in graph analysis, the experiments performed
to study the impact of GPU specifications also show a trend in
favour of the better GPU device when more nodes are
allocated to it, and after a certain increment in load
distribution ratio the results begin to deteriorate which is
explainable as there would definitely be more communication
due to large imbalance in communication.

ACKNOWLEDGMENT

This research has been supported by NVIDIA Teaching
and Research Center awards. The authors also acknowledge
the Georgia State University, for providing us the testing
environment. The authors would like to thank Mr. Muhammad
Rafi, and Mr. Ali Ahmed for their valuable input.

REFERENCES

[1] Lumsdaine, Andrew, et al. "Challenges in parallel graph processing."
Parallel Processing Letters 17.01 (2007): 5-20.

[2] Vibhav Vineet and P. J. Narayanan,“Large graph algorithms for
massively multithreaded architecture” in Proc. HiPC, 2009.

[3] S. Kumar, A. Misra, R. S. Tomar,“A Modified Parallel Approach to
Single Source Shortest Path Problem for Massively Dense Graphs Using
CUDA”, Int. Conf. on Computer & Comm. Tech. (ICCCT), IEEE, 2011.

[4] L. Luo, M. Wong, and W.-M. Hwu, An Effective GPU Implementation
of Breadth-First Search, in Proc. DAC, 2010, pp. 52-55.

[5] S. Hong, S.K. Kim, T. Oguntebi, and K. Olukotun, “Accelerating
CUDA Graph Algorithms at Maximum Warp,” in Proc. PPoPP, 2011,
pp. 267-276

[6] Hong, Sungpack, Tayo Oguntebi, and Kunle Olukotun. "Efficient
parallel graph exploration on multi-core CPU and GPU." Parallel
Architectures and Compilation Techniques (PACT), 2011 International
Conference on. IEEE, 2011.

[7] Merrill, Duane, Michael Garland, and Andrew Grimshaw. "Scalable
GPU graph traversal." ACM SIGPLAN Notices. Vol. 47. No. 8. ACM,
2012.

[8] A. Grimshaw, D. Merrill, M. Garland, “High Performance and Scalable
GPU Graph Traversal”, Technical Report, Nvidia, 2011.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

346 | P a g e

www.ijacsa.thesai.org

[9] Wang, Yangzihao, et al. "Gunrock: A high-performance graph
processing library on the GPU." Proceedings of the 20th ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming. ACM, 2015.

[10] Mastrostefano, Enrico, and Massimo Bernaschi. "Efficient breadth first
search on multi-GPU systems." Journal of Parallel and Distributed
Computing 73.9 (2013): 1292-1305.

[11] Leskovec, Jure, and Andrej Krevl. "{SNAP Datasets}:{Stanford} Large
Network Dataset Collection." (2014).

[12] P. Harish and P. J. Narayanan, “Accelerating large graph algorithms on
the GPU using CUDA”, High Performance Computing – HiPC 2007, S.
Aluru, M. Parashar et al. (Eds.), Springer Berlin Heidelberg 2007, pp.
197-208.

[13] Khorasani, Farzad and Vora, Keval and Gupta, Rajiv, " PaRMAT: A
Parallel Generator for Large R-MAT Graphs", Proceedings of the 24th
International Conference on Parallel Architectures and Compilation
Techniques, 2015.

[14] Bernaschi, Massimo, et al. "Enhanced GPU-based distributed breadth
first search." Proceedings of the 12th ACM International Conference on
Computing Frontiers. ACM, 2015.

[15] Durrani, Muhammad Nouman, and Jawwad A. Shamsi. "Volunteer
computing: requirements, challenges, and solutions." Journal of
Network and Computer Applications 39 (2014): 369-380.

