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Abstract—Graph1 processing has always been a challenge, as 

there are inherent complexities in it. These include scalability to 

larger data sets and clusters, dependencies between vertices in 

the graph, irregular memory accesses during processing and 

traversals, minimal locality of reference, etc. In literature, there 

are several implementations for parallel graph processing on 

single GPU systems but only few for single and multi-node multi-

GPU systems. In this paper, the prospects of improvement in 

large graph traversals by utilizing multi-GPU cluster for Breadth 

First Search algorithm has been studied. In this regard, a 

DiGPU, a CUDA-based implementation for graph traversal in 

shared memory multi-GPU and distributed memory multi-GPU 

systems has been proposed. In this work, an open source software 

module has also been developed and verified through set of 

experiments. Further, evaluations have been demonstrated on 

local cluster as well as on CDER cluster. Finally, experimental 

analysis has been performed on several graph data sets using 

different system configurations to study the impact of load 

distribution with respect to GPU specification on performance of 

our implementation. 

Keywords—Graph processing; GPU cluster; distributed graph 

traversal API; CUDA; BFS; MPI 

I. INTRODUCTION 

Data processing accompanied with GPGPU techniques is 
being employed to process large amount of data with limited 
resources in several application domains throughout the globe. 
However, there are several challenges when it comes to graph 
processing. These include dependencies between vertices in 
the graph, irregular memory accesses during graph processing, 
and scalability to larger data sets. 

As graph problems grow larger in scale and more 
ambitious in their complexity, they easily outgrow the 
computation and memory capacities of single processors [1]. 
Given the success of parallel computing in many areas of 
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scientific computing, parallel processing appears to be 
necessary to overcome the resource limitations of single 
processors in graph computations. 

Utilization of parallel architectures became a viable mean 
in order to improve graph processing performance. However, 
besides the inherent complexities in graph traversal, 
parallelism is challenging in several aspects such as: finding 
the correct step to introduce parallelism in the algorithm, 
expensive memory accesses, communication overheads, poor 
locality of reference, and complex load balancing, etc. 

Utilization of the distributed GPU clusters will make 
mining of large graphs faster and cheaper. Many Big Data 
applications such as Social networks analysis, traffic 
management, and disaster management systems that rely on 
graph traversals might be able to perform better, faster, and 
cheaper. In this context, Breadth First Search (BFS) and 
Single Source Shortest Path (SSSP) algorithms are important 
graph traversal algorithms which find their applications in 
several application domains such as the all pairs‟ shortest path 
algorithm, s-t shortest path algorithm, etc. 

Since, motivated from the usability of BFS and potential of 
distributed graph processing, in this paper, a DiGPU - an API 
providing efficient implementations of these algorithms on 
distributed GPU clusters has been proposed. 

DiGPU is a flexible user friendly CUDA-based 
implementation of BFS, which can be executed both on single 
node as well as multi-node systems. DiGPU can also be run on 
single node multi-GPU systems. For this purpose, it 
incorporates Unified Virtual Access (UVA) between host and 
device and Peer-to-Peer direct access between devices. In this 
work, the BFS algorithm has been implemented on single-
node single GPU system as well as on single node multi-GPU 
systems. Further, the multi-node implementation of DiGPU 
has also planned that will help in efficient computation of 
large graphs. 
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In this regard, the initial implementation has been tested on 
two types of experimental setups. The traditional hardware 
cluster comprises of combinations of NVIDIA Tesla K40 and 
NVIDIA GTX-780 GPUs. A test system on the GPU nodes of 
Georgia State University cluster has also been setup for 
further testing. 

In summary, following are the main contributions of this 
paper: 

1) The design and development of DiGPU has been 

proposed. It is an open source software module for distributed 

graph computations on a heterogeneous GPUs cluster. 

2) The functions provided by DiGPU would become 

building blocks for many applications performing intensive 

graph computations or analysis.  Availability of these building 

blocks will facilitate a user with the ease of designing graph 

applications. 

3) A hybrid model has been developed. The model 

utilizes UVA and Peer-to-Peer access between GPUs on same 

node and CUDA-aware-MPI on different nodes of cluster. 

4) Different experiments have been performed to study 

the impact of load-distribution according to specifications of 

GPUs on the cluster. 
DiGPU will be beneficial for the community in computing 

large graphs over a series of GPU clusters. Our initial results 
are encouraging. In this work, it has been aimed to provide an 
open source version of DiGPU, to perform graph analysis 
which would make our work a true example of reusable graph 
building blocks for graph research community. The 
performance has been evaluated through an extensive 
evaluation over a large dataset and involving varying GPUs 
with heterogeneous computational power. 

The rest of the paper is organized as: Section II covers the 
background and related work in this area; Section III 
illuminates our methodology and approach toward the 
research problem; Section IV contains details about our initial 
experimental setup; Section V lists down the results of our 
preliminary experiments and Section VI concludes this paper. 

II. BACKGROUND AND RELATED WORK 

This section extensively covers the related work that has 
previously been done regarding GPU implementations of 
SSSP and BFS algorithms. 

A. Breadth First Search 

The classic queue-based parallel BFS initiates the 
computation with a root node, putting that node in an empty 
queue. During each iteration, the head of queue is pulled out 
and all of the connected nodes are visited. Neighbor nodes 
visited for the first time are placed at the end of the queue. The 
output of the algorithm is an array storing the distance from 
the source or predecessor, for each vertex. The best time 
complexity reported for sequential algorithm is O(V+E). 

The queue is a current level set of vertices. For each vertex 
in the current level, all its neighbors must be visited. The set 
of all neighbors composes the Next Level Frontier Set 
(NLFS). From the NLFS only new vertices are selected to 

build the queue for the next level. The BFS visit is divided 
into levels with a distance from the root that increases at each 
subsequent level [2]. 

Vibhav, et al. [2] performed BFS implementation for 
vertex compaction process. At particular time, small number 
of vertices may be active. They used prefix sum for assigning 
threads to active vertices only. They carried out experiments 
on various types of graphs and compared the results with the 
best sequential implementation of BFS and experiment shows 
lower performance on low degree graphs. 

P. Harish, et al. [3] proposed accelerated large graph 
algorithm using CUDA. The proposed algorithms is capable 
of handling large graphs. In their implementation, one thread 
is assigned to every vertex. They have used frontier array, 
visited array and cost array which stores the minimum count 
of edges of every vertex from the source vertex S. During each 
iteration, every vertex checks frontier array index for itself and 
in case of positive values updates the cost of itself and its 
neighbors. But this algorithm‟s performance slacks due to 
large degree at few vertices. Also, since it loops the kernel 
which causes the more lookups to device memory, hence 
slowing down the kernel execution time. 

Lijuan, Luo [4] proposed effective GPU implementation of 
BFS for designing an efficient queue structure. A hierarchical 
kernel arrangement is used in order to reduce synchronization 
overhead. Their experimentation results present similar 
computational complexity as the fastest CPU version with a 
potential speedup of  up to and they claim to 10 times. 

S. Hong, et al. implemented a novel warp-centric [5] 
method for reducing the inefficiency. Many graph algorithms 
suffer severe performance degradation in case of highly 
irregular graphs, i.e. when the distribution of degrees (number 
of edges per node) is highly skewed. Instead of assigning a 
different task to each thread, their approach allocates a chunk 
of tasks to each warp and executes distinct tasks in serial. 
They have utilized multiple threads in a warp for explicit 
SIMD operations only, thereby preventing branch-divergence 
altogether. 

A. Grimshaw, et al. report [6] deals with parallel BFS on 
GPU clusters. Their work resorts to a duplicate removal 
procedure by using a heuristic that removes a high percentage 
of duplicates at the CTA level. In contrast, our algorithm also 
eliminates every duplicate in the Next Level Frontier Set (at a 
global level). They have used four GPUs that have a unified 
memory address space with a reduced latency, compared with 
a standard network interconnection. 

Level Synchronous BFS [7] ensures the correctness of the 
computation by synchronization at the end of each level in a 
parallel implementation, . The number of levels is of the same 
order of the diameter of the graph, in real-world graphs, the 
computation is dominated by only two or three levels, for 
which the next level set of vertices is very large. 

D. Merril, et al. [8] suggested that work-efficient parallel 
BFS algorithm should perform O(n+m) work. In order to 
achieve O(n+m) complexity, each iteration should examine 
only the edges and vertices in that iteration‟s logical edge and 
vertex-frontiers, respectively. For each iteration, tasks are 
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mapped to unexplored vertices in the input vertex-frontier 
queue. Their neighbors are inspected and the unvisited ones 
are placed into the output vertex-frontier queue for the next 
iteration. The typical approach for improving utilization is to 
reduce the task granularity to a homogenous size and then 
evenly distribute these smaller tasks among threads, by 
expanding and inspecting neighbors in parallel. 

Leiserson and Schardl [2] designed an implementation for 
multi-socket systems that incorporates a novel multi-set data 
structure for tracking the vertex-frontier. In other 
implementations, hardware‟s full-empty bits are used for 
efficient queuing into an out-of core vertex frontier. Both 
approaches perform parallel adjacency list expansion, relying 
on runtimes to throttle edge-processing tasks in-core. Luo, et 
al. [4] present an implementation for GPUs that relies upon a 
hierarchical scheme for producing an out-of-core vertex 
frontier. 

Talking about frameworks and APIs multi-GPU CUDA 
implementations of BFS have been provided in Medusa [9] 
and GunRock [10]. Both are graph processing frameworks 
capable of performing on multiple-GPUS on a single node. 
Medusa uses two schemes for multi-GPU execution: 
Replication – division of  the graph into equal-sized 
partitions and store each partition on one GPU and maintain 
replicas of the head vertices of all cross-partition edges in the 
partitions where the tail vertices reside. Each cross partition 
edge is replicated in its tail partition, so messages are emitted 
directly from the replicas and every edge can access its head 
and tail vertices directly. The execution of is performed on 
each partition independently and the replicas are updated on 
each graph partition after execution. The update requires 
costly PCIe data transfer, which becomes a bottleneck. Multi-
hop replication, on the other hand, alleviates the overhead of 
inter-GPU communication by reducing the number of times of 
replica update, as multi-hop replicas aren‟t updated after every 
iteration. 

In Gunrock‟s BFS implementation; Merrill, et al.‟s expand 
method [11] has been used. During the advance stage, this 
implementation sets a label value for each vertex to show the 
distance from the source, and/or sets a predecessor value for 
each vertex that shows the predecessor vertex‟s ID. The base 
implementation uses atomics during advance to prevent 
concurrent vertex discovery. When a vertex is uniquely 
discovered, its label (depth) and/or predecessor ID is set. 
Gunrock‟s fastest BFS uses the idempotent advance operator, 
thus avoiding the cost of atomics and uses heuristics within its 
filter that reduce the concurrent discovery of child nodes. 

B. Distributed Breadth First Search 

In graph algorithms, the CPU execution time is only a 
small fraction of the overall execution time due to low 
arithmetic intensity. While dealing with a distributed 
environment, data might reside in a remote memory location, 
spending a large proportion of time in sending and receiving 
data. Furthermore, graph algorithms do not have a regular 
communication pattern; messages‟ size and the number of 

sending and receiving parties vary throughout their execution. 
It can be rightly stated that the bottleneck of a distributed BFS 
is the communication. The optimization of the communication 
among tasks is crucial for an efficient BFS algorithm on a 
distributed architecture [2]. 

In a distributed cluster of GPUs, it is not possible to use an 
algorithm based on the static mapping of vertices on arrays 
(adjacency lists). The current and the next level frontier must 
be an array of exactly |V| elements. Then, a trivial static 
mapping makes use of a thread for each vertex in the graph. 
But for large graphs, the number of vertices |V| might be too 
high to store a global array of size |V| in the memory of a 
single node. In distributed environments, vertices are scattered 
among multiple nodes and each node only holds a subset of 
the whole graph. The number of edges assigned to tasks need 
be balanced. 

P. Harish [12] and S. Hong [5] use the aforementioned 
static mapping. The authors in [4] use a global bitmask array 
to mark visited vertices which reduces the size of the global 
masking array to great extent but this solution is not much 
scalable. The maximum size of the graph that could be 
processed will be limited by the maximum size of the array 
that fits the memory of GPU. 

All the shared memory optimizations speed up the visit of 
local vertices. In the distributed problem, however, the time 
spent to execute this operation is only a small fraction of the 
total running time which is dominated by the part of the 
algorithm that copes with non-local vertices [2]. 

The multi-node multi-GPU implementations of BFS have 
been presented by E Mastrostefano, et al. [2] and SYSTAP‟s 
Blazegraph, both of which are not open source. Therefore, a 
DiGPU implementation has been proposed to perform 
distributed graph traversal using BFS. The next section 
describes the design and implementation of the proposed 
graph traversal algorithm. 

III. METHODOLOGY AND IMPLEMENTATION 

The purpose of this section is to elaborate the design and 
implementation of DiGPU. DiGPU is a flexible user friendly 
CUDA-based implementation of BFS, which can be executed 
both on a single node and a multi-node system. For this 
purpose, it incorporates Unified Virtual Access (UVA) 
between host and device, and Peer-to-Peer direct access 
between devices. The BFS algorithm has been implemented 
on single-node single GPU system as well as on single node 
multi-GPU systems. 

A. Module Overview 

DiGPU provides following features to the user shown in 
Fig. 1: 

1) _SetDataFilePath, to take the complete path of the 

location of graph data set. 

2) _CreateGraph, to read and parse graph dataset and 

create adjacency list from it. 
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Fig. 1. Generic flow of processing in the DiGPU API 

3) _ClustScan, to examine the cluster and propose the 

suitable launching configurations. 

4) _SetConfigs, to set system information, how many 

nodes have been connected and how many devices every node 

has. 

5) _BFS, to perform breadth first search on the created 

graph, with randomly selected node as root node. 
_BFS utilize the following functions to perform intended 

operations: 

a) Queue operations maintaining consistency through 

atomic operations, _enqueue, _dequeue, _copyQueue, and 

_mergeQueue. 

b) mapThreads maps created threads to the nodes in 

next level frontier set. This also handles the load distribution 

part. 

c) CUDA Kernels. 

d) _send & _receive are the functions for data exchange 

among nodes using MPI. 

Fig. 2 illuminates the generic flow of the API core 
functions. Dataset is read and parsed and then converted into 
an offset array and adjacency list shown in Fig. 3. The offset 
array and adjacency list are divided among available devices 
and kernels (repeatedly). The results are then combined and 
presented. The flow of distributed BFS in DiGPU presented in 
Fig. 2 also explains the order of execution of functions to 
accomplish BFS traversal of a graph. 

B. Data Structure and Graph Representation 

The adjacency list representation of graph has been used in 
our implementation, as there is a constraint of limited memory 
while working with GPUs, adjacency list is the better option 
than adjacency graph as it consumes lesser space. 

For a graph G = (V, E), an array „Va‟ of size 2|V| is used 
to store vertices of the graph, whereas, another array „Ea‟ of 
|E| elements is used to hold the edges. Provided i = 0 …. |V|-1, 
2Va[i] represents the offset of neighbors of node i in the Ea 

array and 2Va[i]+1 represents the number of neighbors of 
node i. Where, node b is the neighbor of node „a‟ if there is a 
directed edge from „a‟ to „b‟. 

Fig. 3 represents the graph structure used in our proposed 
system. The offset array holds the nodes of graph in form of 
pairs, one index represents the index where the first neighbor 
of a node is located in the adjacency list and the second one is 
the count of neighbors of that node. For instance, in Fig. 3, 
node 1 has its first neighbor at 2

nd
 index, and the 3 following it 

shows that it has a total of three neighbor nodes. 

C. Parallel Breadth First Search – Single Node 

 
Fig. 2. Flow Diagram of Distributed BFS in DiGPU 

 

Fig. 3. Adjacency list representation of graph data 

TABLE I. P2P ACCESS STATUS OF GPU DEVICES IN CDER CLUSTER 

From To Access Allowed 

GPU0 GPU1 Yes 

GPU1 GPU0 Yes 

GPU2 GPU3 Yes 

GPU3 GPU2 Yes 
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Fig. 4. Representation of Distributed Multi-GPU Cluster 

The algorithm proposed in [12] has been extended for 
multiple GPUs on a single node. The algorithm requires one 
thread to be created in order to process one vertex. Two arrays 
namely, frontier Fa and visited Xa each of size |V| are used to 
store the BFS frontier and the nodes that have been visited 
vertices. An array to stores the minimal number of edges of 
each vertex from the source vertex S, the cost array Ca is also 
used. In every iteration, each vertex checks its entry in the 
frontier array Fa. If it is positive, it fetches its cost from the 
cost array Ca and updates all the costs of its neighbors if more 
than its own cost plus one using the edge list Ea. The vertex 
removes its own entry from the frontier array Fa and adds to 
the visited array Xa. It also adds its neighbors to the frontier 
array if the neighbor is not already visited. This process is 
repeated until the frontier is empty.  The algorithm terminates 
when all the levels of the graph are traversed and frontier 
array is empty. 

This implementation has also been extended for shared-
memory multi-GPUs, utilizing the CUDA Peer-to-Peer (P2P) 
Direct Access (Table 1). The offset array was divided equally 
amongst the GPU devices on the node (which enable P2P 
access with other devices). The adjacency list is then divided 
such that each device gets the complete set of those nodes 
which are adjacent to the nodes assigned to it. 

Host keeps track of the allocations and utilizing the 
Unified Virtual Addressing facilitated by CUDA the devices 
could know which device has their desired node if they are 
missing any, and then using P2P access that device gets a copy 
of it. 

D. Distributed Multi-GPU Approach 

The distributed graph traversal has been implemented on 
multi-GPU cluster, following and eventually extending the 
work presented by Mastrostefano, et al. [10] towards a hybrid 
model. The cluster setup represented in Fig. 4 shows that it 

has multiple nodes, each node having more than one GPU 
devices. The system perform as a shared memory 
implementation within a node, using Peer-to-Peer direct 
access when devices are communicating with each other and 
Unified Virtual Addressing while host and device are 
communicating. The system follow distributed approach 
across the nodes, i.e., communication using _send and 
_receive functions. 

IV. EXPERIMENTAL SETUP 

The experimental setups have been used to perform the 
experimentation of the proposed DiGPU system. Details of 
these setups have been explained as follows: 

A. Cluster Setups 

Fours clusters have been used to perform our experiments 
for DiGPU. The details of hardware specifications of utilized 
clusters are enlisted below: 

1) NVIDIA Research Center (SysLab) Cluster – FAST 

NUCES 
This cluster consisting of following devices have been set 

up specifically for our experimentation purpose shown in 
Table 2: 

 Standalone PCs with: 

o NVIDIA Tesla K40 and GTX-780 
o NVIDIA GTX-780 and GTX-780 
o NVIDIA Tesla K40 and NVIDIA Tesla 

 Multi-node cluster with the nodes listed above. 

2) DER Cluster – Georgia State University 
This cluster has 19 nodes out of which three nodes have 

CUDA supported GPU cards: 

 GPU07 – 1 GeForce GTX TITAN Black 

 GPU11 – 4 GeForce GTX 770 

 GPU10 – 4 Tesla K20c. 

Above nodes have: 

 Processors Dual Intel Xeon E5-2650 with 64 GB 
memory 

 Operating system CentOS 6.7. 

 CUDA 7.5 

TABLE II. CONFIGURATIONS OF CLUSTERS INVOLVED IN EXPERIMENTS 

Configuration Nodes GPUs/node GPU Specifications P2P Access Status 

A 1 4 4 GeForce GTX 770 Refer Table 1 

B 1 4 4 Tesla K20 Refer Table 1 

C 2 2 
1 Tesla K40c 

1 GeForce GTX 780 
Enabled between devices of 1 node 

D 1 2 
1 Tesla Kxxx 

1 GeForce GTX 7xx 
Enabled 
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TABLE III. BREADTH FIRST SEARCH EXECUTION TIMES 

Experimental Setup Vertices Edges 
Processing 

Time (sec) 

Single Node – Single GPU 2394385 5021410 1635.9 

Single Node – 2 GPUs 2394385 5021410 1089.3 

TABLE IV. DISTRIBUTED BFS USING HYBRID MODEL EXECUTION TIMES 

Experimental Setup Dataset 
Processing 

Time (sec) 

CDER cluster – 

Configuration A 

WikiTalk ~ 2.3x106 vertices 349.325377 

Synthetic Graph – 10x106 

vertices 
772.945530 

CDER cluster – 

Configuration B 

WikiTalk ~ 2.3x106 vertices 363.795705 

Synthetic Graph – 10x106 

vertices 
607.428377 

SysLab cluster – 

Configuration C 

WikiTalk ~ 2.3x106 vertices 849.862036 

Synthetic Graph – 10x106 

vertices 
1809.419021 

CDER cluster – 

Configuration D 

WikiTalk ~ 2.3x106 vertices 1003.844756 

Synthetic Graph – 10x106 

vertices 
4346.329110 

3) Cloud Intances 
For our preliminary results, two categories of Amazon 

Web Services EC2 GPU instances have been used with 
following specifications: 

 High Frequency Intel Xeon E5-2670 (Sandy Bridge) 
Processor 

 NVIDIA Grid GPUs, each with 1,536 CUDA cores and 
4GB of video memory 

 Ubuntu LTS 14.04 

 CUDA 7.0 

B. Datasets 

Both synthetic datasets and real-world graph have been 
used to experiment in this research. PaRMAT [13] is used to 
generate synthetic graphs of various sizes to perform impact 
analysis of load distribution based on GPU specifications. 
Experiments have been performed on graphs as large as 10M 
vertices. 

WikiTalk dataset from SNAP [14] has been used as a real-
world graph to test the implementation. Each registered user 
of Wikipedia has a talk page, which could be edited by either 
them or other users to communicate and discuss updates to 
various articles on Wikipedia. In this SNAP WikiTalk dataset, 
there is information extracted from all user talk page changes 
and converted in the form of a network. 

The network contains all the users and discussion from the 
inception of Wikipedia till January 2008. Nodes in the 
network represent Wikipedia users and a directed edge from 
node i to node j represents that user i at least once edited a talk 
page of user j. The dataset represents a directed graph, with 
2,394,385 nodes and 5,021,410 edges [14]. 

V. RESULTS 

This section explains the outcomes of the testing of 
proposed Hybrid Model for DiGPU and also presents the 
implications of proposed load-balancing based of 
specifications of GPUs. 

A. Preliminary Results – PRAM Algorithm Implementation 

The results in Table 3 are preliminary results which had 
been obtained using a primitive single node PRAM 
implementation of BFS using Harish‟s algorithm [12]. The 
results had been computed using Amazon AWS instances on 
the WikiTalk graph dataset. 

B. Distributed BFS – Hybrid Model Implementation 

Hybrid model has been tested on several datasets for all 
four experimentation setups, the major and important results 
are those which have been obtained from the 10M vertices 
synthetic graph and WikiTalk dataset. These results have been 
summarized in Table 4. 

Traversed Edges per Second (TEPS) is a metric well 
known to measure performance related to graph operations. 
The results of execution of DiGPU hybrid model on local 
SysLab cluster (Configuration C) have been represented in the 
form of TEPS in Table 5. The TEPS for each graph traversal 
instance in Table 4 show improvement with increase in 
number of vertices in the graph. This depicts that even though 
there is network latency issue DIGPU‟s is scalable for large 
graphs and the given set of results show improvement in 
performance with increase in graph size. 

Fig. 5 is the visual representation of the comparison 
amongst the four experimentation benches, in terms of 
Thousand TEPS. Setup A, B, C all three have four GPU 
devices but Fig. 5 clearly indicates that Setup C lags behind 
both Setup A and B. The reason is network latency introduced 
by the switch used to connect nodes at SysLab. An 
improvement might be observed if there would have been an 
Infiniband switch. Also, on test bed Setup C, only one node 
offers P2P access between the two GPUs in it. 
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Fig. 5. .  Load Distribution Trend Synthetic Graph of 1 million nodes 

 

Fig. 6. Load Distribution Trend Synthetic Graph of 1.5 million nodes 

 
Fig. 7. Load Distribution Trend Synthetic Graph of 2 million nodes 

TABLE V. PERFORMANCE OF HYBRID MODEL ON LOCAL CLUSTER WITH 

VARYING DATA SIZES 

Dataset 
Processing Time 

(sec) 

Traversed Edges 

Per Second  

Synthetic Graph – 

1.0x106 nodes 
206.004216 4854.269584 

Synthetic Graph – 

1.5x106 nodes 
274.754027 5459.428625 

Synthetic Graph – 

2.0x106 nodes 
413.738531 4833.970853 

Synthetic Graph – 

2.5x106 nodes 
533.307219 4687.729531 

Synthetic Graph – 

3.0x106 nodes 
595.089924 5041.254907 

Synthetic Graph – 

10x106 nodes 
1809.419021 5526.635833 

 

Fig. 8. TEPS Comparison of Experimental Setups 

 

Fig. 9. Load Distribution Trend Synthetic Graph of 0.5M nodes 
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Fig. 10. Load Distribution Trend Synthetic Graph of 2.5 million nodes 

 
Fig. 11. Load Distribution Trend Synthetic Graph of 3 million nodes 

 
Fig. 12. Load Distribution Trend of Real World graph of WikiTalk 

C. Load Distribution 

Load distribution experiments have been performed on six 
synthetic graphs of varying sizes on SysLab systems having 
Tesla K40c and GeForce GTX 780 GPUs. 

Graphs in Fig. 6 to 12 show that execution time improved 
when the distribution of load was in favor of Tesla device. 
This is due to the fact that Tesla is better device with more 
computation power, better memory bandwidth, more CUDA 
cores and larger memory when compared to GeForce GTX 
780 device. 

Load distribution using GPU specification represents 
improvement in execution time of graph traversal. 
Performance of Hybrid model is better on CDER cluster than 
SysLab setups which is obviously due to network latencies 
[15]. 

VI. CONCLUSION AND FUTURE WORK 

DiGPU is a software module for multi-node, distributed 
cluster graph traversal in form of Breadth First Search on 
GPUs. Results show that our proposed Hybrid Model for 
graph traversal in multi-GPU clusters performs better than its 
PRAM and single node UVA-P2P counterpart. Though UVA-
P2P on a single node is the base case of the hybrid model its 
performance is greatly affected by infrastructure, for instance 
the bandwidth of interconnects between the GPUs and also the 
processor in the node. The bottleneck in performance is 
network latency which is inherent in a distributed cluster. But 
for a cluster with a better interconnect between its nodes or 
when there are multiple GPUs on a node amongst which not 
all are paired with each other, our Hybrid Model 
implementation works better, and our results from 
experiments performed on CDER cluster clearly support that. 

Our motivation behind this research was to explore aspects 
of improvement in graph analysis, the experiments performed 
to study the impact of GPU specifications also show a trend in 
favour of the better GPU device when more nodes are 
allocated to it, and after a certain increment in load 
distribution ratio the results begin to deteriorate which is 
explainable as there would definitely be more communication 
due to large imbalance in communication. 
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