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Abstract—Android malware is rapidly becoming a potential 

threat to users. The number of Android malware is growing 

exponentially; they become significantly sophisticated and cause 

potential financial and information losses for users. Hence, there 

is a need for effective and efficient techniques to detect the 

Android malware applications. This paper proposes an 

intelligent hybrid approach for Android malware detection using 

the permissions and API calls in the Android application. The 

proposed approach consists of two steps. The first step involves 

finding the most significant permissions and Application 

Programming Interfaces (API) calls that leads to efficient 

discrimination between the malware and good ware applications. 

For this purpose, two features selection algorithms, Information 

Gain (IG) and Pearson CorrCoef (PC) are employed to rank the 

individual permissions and API’s calls based on their importance 

for classification. In the second step, the proposed new hybrid 

approach for Android malware detection based on the 

combination of the Adaptive neural fuzzy Inference System 

(ANFIS) with the Particle Swarm Optimization (PSO), is 

employed to differentiate between the malware and goodware 

Android applications (apps). The PSO is intelligently utilized to 

optimize the ANFIS parameters by tuning its membership 

functions to generate reliable and more precise fuzzy rules for 

Android apps classification. Using a dataset consists of 250 

goodware and 250 malware apps collected from different 

recourse, the conducted experiments show that the suggested 

method for Android malware detection is effective and achieved 

an accuracy of 89%. 

Keywords—Android malware detection; features selection; 

fuzzy inference system; particle swarm optimization 

I. INTRODUCTION 

Recently, the use of smartphones in all aspects of our daily 
lives is increasing continuously. The global shipments of 
smartphones hit a record 1.4 billion in 2015 [1]. This number 
has grown 12% compared with the last year. The massive 
popularity of smartphones have been accompanied with a 
potential increase in the number of malwares. With Android 
dominating 82.8% of the market in 2015 [2], Android become 
the main goal for mobile malware. The number of Android 
malware applications is increasing continuously. The total 
number of malware attacking the mobile devices increased 
more than three times in 2015, compared to that of 2014 [3]. 
The dangerous threats targeting mobile devices in 2015 were 
ransomware.  Malware can access all the resources in the 
attacked mobile device, and data stealers, like business 
malware. 

Google’s Play store is a market for Android apps, also there 
are many other third-party stores for Android apps. The 
Android apps developers use the Google’s Play and third-party 
stores to publish the apps they developed, and make it available 
for download and install by users. Detecting the huge number 
of Android malware and isolating them from application 
markets is potential and great challenging issue. Very recently 
in 2016, a significantly sophisticated  new form of  Android 
ransomware/Android.Lockdroid.E is detected by Symantec, 
this variant of ransomware malware employs the accessibility 
tapjacking method to pose a real threat for more than 67% of 
Android devices [4]. 

Several research efforts have been presented for malware 
detection depending on the Android permissions used in the 
app.  However, using Android permissions only is not enough 
for accurate detection of malware [5], [6]. Moreover, the 
existence of permissions in the Android application’s 
Manifest.xml is not evident that it has been used by app code 
[7], [8]. On the other hand, some researches [9] consider the 
API level information only to get the features from big data set, 
but it requires  a large number of features for the discrimination 
between malware and goodware apps. Moreover, efficient  
detection of the  new and ever-evolving Android malware is a 
continues challenge. To address these challenges, this paper 
proposes a new hybrid method for Android malware detection 
based on the hybridization of the Adaptive neural fuzzy 
Inference System (ANFIS) with the Particle Swarm 
Optimization (PSO). This paper has the following 
contributions: 

1) Finding the most significant permissions and API 

calls that lead to efficient categorization of malware and 

goodware apps. 

2) Designing and implementing a new hybrid approach 

for Android malware detection based on the combination of 

(ANFIS) with (PSO). 

3) An accurate dataset was collected which consists of 

250 goodware and 250 malware apps from different resources 

including Google’s play. 
The rest of this paper is structured as: Section 2 presents the 

related work. Section 3 introduced the employed features and 
feature selection methods. Section 4 explains the proposed 
method for Android malware detection. Section 5 presents the 
experimental results and discussion. Section 6 includes the 
conclusion and future work. 
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II. RELATED WORK 

Android malware detection has been a very active research 
area in the recent years. The two main approaches for Android 
malware analysis are static and dynamic analysis [10]. Static 
analysis examines the Android application without executing 
it. Many static analysis approaches for Android malware 
detection have been proposed [11]-[15]. For example, Kirin’s 
approach [12], explores the used permissions in the Android 
app to determine their maliciousness. Stowaway [13] examines 
API calls to detect Malware applications and Risk Ranker [14] 
statically classifies applications based on different security 
risks. In 2014, DREBIN proposed by Arp et al. [15], it detects 
the Android malware application by performing application 
analysis using different features such as permissions, API calls, 
network address, hardware access, etc. Examples for static 
analysis tools include Smali [16] and Androguard [17], which 
facilitate the static analysis of Android apps. However, the 
static analysis approaches are unable to detect malwares that 
use dynamic code loading obfuscation techniques. 

The dynamic analysis examines the Android application by 
monitoring its behavior during execution. A number of 
dynamic analysis approaches have been proposed for Android 
malware detection [18]-[22]. DroidScope and TaintDroid 
proposed in [21] and [22], they monitor the application during 
its running in a protected environment (similar to the java sand 
box concept), by exploring different components of the 
application. Dynamic analysis approaches require many 
resources compared with static analysis, which made them 
unsuitable for the limited resources of the mobile devices. 

Machine learning approaches also have been proposed for 
Android malware detection, motivated by the problem of 
manually creating and updating detection models for Android 
malware. Aafer et al. [23] used machine learning approach to 
classify Android apps as malware or goodware. They 
compared the malware detection accuracy of four classifiers 
using the API calls and permissions as features for Android 
application. Shabtai et al. [24] used six machine learning based 
classifiers for Android malware detection, namely, k-Means, 
NB, DT, decision tree, BN, logistic regression and histogram 
using the Andromaly framework. Andromaly achieved a 
99.9% accuracy rate using the information gain algorithm for 
features selection and decision tree classifier. The main 
disadvantage of Andromaly is using self-written Android 
malware applications to test it. In contrast, 250 real-world 
malware apps were used in our approach. 

Dini et al. in [19] combined the  system calls  in kernel 
with system calls in user level. They used features set 
consisting of 12 system calls and the K-nearest neighbors 
(KNN) as  classifier for Android malware detection.  Dini et al. 
achieved an accuracy of 93% using 10 Android malwares. The 
main disadvantage of this approach is its inability to detect 
malware that use root permissions to avoid the system call. 
Therefore, Android API calls and permissions are used  in this 
research rather than using system calls only. Zhao et al. in  [25]  
used  the Support Vector machine learning method to develop  
RobotDroid  in order to detect unknown Android malware. 
RobotDroid depends on the hidden payment services and the 
privacy information leakage. They considered three malware 

types, namely, Plankton, DroidDream and Gemini. 
Consequently, this approach is limited to the considered 
Android malware types only. Amos et al. proposed STREAM 
in [26], it employs several machine learning classifiers to 
detect Android malware based on  a set of features such as 
permissions , memory and  battery usage.  However, the 
features set collected from Android emulator, which is not 
accurate as real Android device [27]. In this work, we used 
features collected from real-world malware and goodware 
apps. 

Our proposed approach is related to these methods and uses 
comparable features for detecting malicious applications, such 
API calls and permissions. However, it differs in two main 
aspects from previous research: First, we find the most 
significant permissions and API calls that leads to efficient 
discrimination between the malware and goodware 
applications. Second, we design and implement a new hybrid 
classifier for efficient Android malware detection based on  
combining  (ANFIS) [35] with the PSO. 

III. OVERVIEW 

A. Android Permissions 

Android uses the permission system to regulate the 
application’s access to the resources and data in the mobile 
device, such as camera, storage and internet access. Android 
permissions offer the security characteristics by restricting 
certain tasks an application can execute [28]. The selection of 
the most suitable permissions corresponding to the tasks 
performed by the application is the ultimate responsibility of 
the developer. The shortage of knowledge about the 
permissions could guide developers to add in essential and 
excessive permissions to the application which may leads to 
over privileged Android application [29] that make users stop 
installing the application. Moreover, adding in essential 
permissions makes the application similar to malware [30], 
causing re-delegation attacks [31]. Furthermore, the shortage of 
knowledge about permissions makes the user uncertain about 
the decision of installing the application. Currently available 
information about permissions is not quite enough to support 
the users decision regarding the installation of application [32]. 
Since the used permissions and API calls in the application 
reflect the behavior of the app, it is believed that it is 
potentially feasible to detect the malware application by 
exploring the patterns of used permissions and API calls, and 
help both developers and users in getting better understanding 
of permissions and API calls. 
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Fig. 1. Artificial neuro fuzzy inference system architecture. 
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B. Android API Calls 

APIs are functions used by the developers to interact with 
Android operating system. Since there are many Android APIs, 
it is more appropriate to consider specific APIs frequently used 
by malware and enable them to access Smartphone's sensitive 
resources, rather than considering all APIs used in the app’s 
source code.  Seo et al. [33] examined malware apps and 
specified suspicious APIs frequently used by malware. They 
compared the number of suspicious APIs in malware 
applications with the number of suspicious APIs in goodware 
apps. In this paper, the suspicious APIs from the malware and 
goodware apps  were extracted and used as part of the features 
set. The selected suspicious APIs are similar to the subspecies 
APIs defined in [33], [15], examples of the selected suspicious 
APIs include, API calls for accessing important information 
such as getSubscriberId()and getDeviceId(), and API calls for 
getting accessibility services which can activate several types 
of malicious payloads. Finding the rank of the importance of 
API calls and permissions in terms of categorization of 
malware and goodware application, and evaluating the 
efficiency of our proposed hybrid approach PSO-ANFIS for 
malware detection,  are main challenges of this research work. 

C. Artificial Neuro Fuzzy Inference System (ANFIS) 

Artificial Neuro Fuzzy Inference System (ANFIS) is 
proposed by Jang et al. [34] and it became one of the well-
known researches related to fuzzy inference systems in the 
recent years. ANFIS associates the advanced reasoning and 
explanation of fuzzy logic with the powerful computation and 
learning capabilities of neural networks [34]. There are many 
architectures for neuro-fuzzy networks, however, the most 
dominant architectural models are the Mamdani and the Takagi 
Sugeno (TSK). TSK model uses a single-spike as the output 
membership function while Mamdani model uses a fuzzy set. 
The ANFIS used in this paper is based on TSK model. Fig. 1 
shows example for ANFIS architecture that consists of five 
layers with two inputs X1 and X2 and one output Y. 

The rule base consists of Takagi–Sugeno fuzzy rules as 
follows: 

R1=IF x1 is 𝜇1i AND x2 is 𝜇2i THEN fij = pijx1 + qijx2 + 
rij 

Where, x1 and x2 are the input for the ANFIS, conditions 
specified in the IF part are called antecedent, and conditions in 
the THEN part are called the consequence. ANFIS consists of 
five layers [34]. 

Layer One: Crisp input data entered into the ANFIS are 
transformed into linguistic expressions. Membership function 
(μ) is used to transform the inputs into linguistic expressions, 
there are several types of membership functions. In this paper, 
Gaussian membership function is used because it leads to more 
smooth model behavior. The Gaussian membership function is 
defined as follow: 

     
    ( )     ( 
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Where, Oi’s are the outputs of this layer. σ and C represent 
the variance and the center of the Gaussian membership 
function, respectively. This layer includes parameters called 

antecedent parameters, which are tuned by ANFIS for 
obtaining results that are more accurate. 

Layer 2: This layer determines the level of accuracy of the 
statements specified in antecedent parts, which is also called 
the firing strength, using the following equation. 
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Layer 3: This layer normalizes all the firing strengths 
computed in the former layer (Wi), where it computes the 
proportion of the ith rule’s firing strength to the all rules firing 
strengths using the following equation: 
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Layer 4: This layer contains the consequent portion of the 
fuzzy rules, the influence of each rule in the final output is 
defined as: 

   
           (            )   (4) 

Where, mi, ni, and ri are the consequent parameters. The 
consequent parameters and the antecedent parameters in the 
first layer, are tuned by ANFIS in the learning process to 
decrease the differences between the output and the target 
result. 

Layer 5: This is the defuzzification layer where all the  
rules generated for one output are collected and defuzzified 
into numerical outputs, according to a weighted average sum as 
follow: 

  
     ∑                 
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D. The Particle Swarm Optimization (PSO) 

The particle swarm optimization (PSO) is a well-known 
method for searching, which is grounded on the behavior of 
bird flocking. In PSO, each possible answer for the 
optimization issue can be considered as a point in the 
population, the point is called a particle. The particle 
propagates in the population with a specified speed which is 
tuned based on its movement knowledge and its companions’ 
movement knowledge.  Each particle is assigned a fitness value 
specified based on the objective function and records its 
current position and current best position (recorded as pbest). 
The pbest can be considered as the particle’s own moving 
experience. Moreover, each particle records the global best 
position (recorded as gbest, which is the best value in pbest) of 
the total collection. The gbest can be considered as its 
companions’ movement knowledge for the particle [35], [36].  
Let xi (t) represent the location of  a particle i in the population 
at time t. Then, the particle’s location is adjusted by the 
addition of the velocity, vi to the current location: 

  ( )    ( )    ( )    (6) 

  ( )       (     ( )    ( ))      (     ( )  

  ( ))      (7) 

Where, c1 and c2 represent the acceleration coefficients, r1 
and r2 are random vectors. 
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IV. THE PROPOSED APPROACH FOR ANDROID MALWARE 

DETECTION 

This section explains our methodology for the detection of 
Android malware. First, the used dataset is introduced. Second, 
we used the Information Gain (IG) and Pearson CorrCoef (PC)   
to find the most significant permissions and API calls that 
leads to efficient discrimination between the malware and 
goodware applications. Third, the proposed hybrid PSO-
ANFIS is utilized to classify the Android apps as either 
goodware or malware. 

A. The Used Dataset 

To build an accurate and reliable model capable of 
efficiently classifying the Android applications as malware or 
goodware, an accurate and well-labeled dataset is required. We 
used a recent data set contains 250 benign applications  
collected from Google’s  play, the free online malware 
detection tool  VirusTotal [36] is used to confirm that the 
collected apps are benign. The data set also contains 250 
malware applications which have been downloaded from 
Genome project [37] and Drebin dataset [15], all the malware 
apps are confirmed as malware using the VirusTotal. In this 
paper, we considered  the permissions and API calls used in the 
app as features to classify the applications as either goodware 
or malware. 

B. Features selection 

In this section, the most significant permissions and API 
calls that leads to efficient discrimination between the malware 
and goodware applications are selected. For this purpose, two 
features ranking algorithms, namely, Information Gain (IG) 
and Pearson CorrCoef (PC) are employed  to rank the 
individual permissions and API calls based on their importance 
for classification. Based on the static analysis method, we used  
free analysis tools like android-apktool, dex2jar and jd-gui to 
extract the API calls and permissions from the goodware and 
malware applications. Java language is used to develop 
Android applications and they are generated as Android 
Application Package (APK) files. APK package consists of 
files required for running the application. The files in the APK 
include the following: 

DalVik Executable (DEX) file: This is a file generated by 
the compilation of the Java source code. 

Manifest file: A file holding the Android application 
characteristics such as permissions, the activities, and intents. 

eXtensible Markup Language (XML) file: A file defining 
the components of the user interface layout and the used 
values. 

Resource file: A file consists of resources needed by 
applications like sound files and images. 

 Information Gain Ratio (IGR) 

Information Gain Ratio method extracts the correlation 
between Android API calls and permissions, it gives the 
maximum scoret to the most potential permissions based on  
the class of malware and goodware Android apps belonging to 
IGR [38], the IGR equations are explained as follows: 

   n_r(X, C)  
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Where, gain_r (X,C) denotes the gain ratio of the feature X 
occurrence in the class C. Ci and |Ci| represent the occurrence 
of feature X in class C, the  ith sub-class of C and the total 
number of features in Ci, respectively. 

 The Pearson CorrCoef  

Pearson CorrCoef computes the relation between feature X 
and class C by 

 (   )   
   (   )

√   ( )   ( )
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Where, R(P;A) = 0 means the independency of feature P 
and class A, R(P;A) = 1 means the top positive correlation of 
feature P and class A and R(P;A) = -1 means the top negative 
correlation. In our paper, R(P;A) = 1 means that the application 
which request the feature P is highly suspected as malware app, 
while R(P;A) = -1 means requesting the feature P leads to 
classify the applications as goodware. 

C. PSO-based ANFIS 

The proposed approach PSO-ANFIS intelligently combines 
ANFIS method and PSO algorithm for the optimization of 
Android malware detection, by tuning the parameters of 
membership function to achieve the highest malware detection 
accuracy. ANFIS utilizes the IF-Then fuzzy rules in mapping 
the inputs to outputs, the level of ANFIS accuracy is 
significantly affected by tuning its network structure and 
parameters [40]. There is a strong relation between the 
accuracy and the used membership functions. This paper aims 
to tune the Gaussian membership function to improve the 
accuracy of ANFIS by getting the best learning parameters and 
minimum number of fuzzy rules. The best learning parameters 
which minimize the difference between the target data and 
ANFIS output, can be obtained by minimizing the Root Mean 
Square Error (RMSE) as follows: 

  *∑
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Where, α represents the number of training data items, Rm 
is the input value and ym is the predicted value. The 
Performance criterion RMSE  depends on the  center and the 
width of the Gaussian membership function (Ci, σi). The 
RMSE is considered as an objective function and its 
minimization is the research problem in this study.  PSO is a 
potential optimization technique to enhance the performance of 
ANFIS [41]. In this paper, PSO algorithm is utilized 
intelligently to realize the minimization of the objective 
function of ANFIS which is the error between the predicted 
class of Android malware and the actual class, by tuning the 
membership functions of ANFIS. Fig. 2 shows the structure of 
the proposed hybrid PSO-ANFIS approach, each learning 
process of ANFIS represents one particle and the parameters of 
the membership functions that effect the ANFIS performance 
represent the particle dimensions. 
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Fig. 2. The proposed POS-ANFIS classifier. 

The steps of the hybrid PSO-ANFIS approach are 
explained as follows: 

Step 1: Set initial value for the number of iterations C =1, 
randomly initialize the position Xiand velocity Viof the i-th 
particle in the search space using (6) and (7), respectively. 

Step 2: Compute the objective function of ANFIS using (8) 
and use it as a fitness function (  ) for the proposed PSO-
ANFIS. 

Step 3: IF the fitness function of the i-th particle in position 
X  (  ) is better than the fitness function of the same particle 
in the local best position f (Pi) THEN 

     . 
ELSE 

IF the fitness function of the i-th particle in position X 

 (  ) is better than the fitness function of the same particle in 

the  global best position (     ) THEN 
Gbest = Xi 

Step 4: IF the fitness function of global best 
position (     )  is best than stopping criteria OR the particle 
counter C is greater than the total number of iterations m 
THEN 

Stop 

ELSE 

Go to Step 2 

V. EXPERIMENTS AND RESULTS DISCUSSION 

To conduct the experiments the dataset is separated into 
two sets testing set and training set. The five-fold cross-
validation technique is selected to split the dataset. In order to 
evaluate the performance of the proposed approach for 
Android malware detection, we selected the 24 permissions 
and API calls features according to their significance for the 
discrimination, using the Pearson CorrCoef (PC) and 
Information Gain (IG) algorithms. We applied our proposed 
approach PSO-ANFIS on the selected features. The 
performance of our proposed approach PSO-ANFIS is 
compared with the well-known system ANFIS system. ANFIS 
is selected for comparing our proposed PSO-ANFIS with, 
because it proofs efficiency in many classification tasks and it 
is similar to PSO-ANFIS in terms of fuzzy rules type. The 
classification accuracy of the two classifiers is compared in 
terms of the Root Mean Square Error (RMSE). Root Mean 
Square Error measures the dissimilarity between values 
obtained by the classifier and the observed values:  

     √
 

 
∑ (     )

  
     (12) 

The total accuracy obtained by the cross-validation is 
calculated  based on the average of the RMSE in the five-folds 
method as follows: 

    
 

 
∑   
 
       (13) 

Where, CVA is the  accuracy based on the  cross-
validation, m is the number of the used  folds, and Ri is the 
calculated RMSE of each fold.  The evaluation of the fuzzy 
inference classifier requires the separation of its output into 
two main classes. To evaluate our proposed POS-ANFIS, we 
separated its continuous output by determining a threshold in 
the range between one and zero, to categorize the malware and 
goodware apps. In this experiment, four threshold values have 
been determined: 0.10, 0.25, 0.35 and 0.40. The classification 
results based on the selected features are compared in terms of 
Accuracy (ACC) and obtained error rate. The following 
confusion matrix used to classify the Android application as 
malware (1) or goodware (0). 

 

 

 

 

Classified 

 

Actual  

 1 0 

1 TP FP 

0 FN TN 

Where, 

TP: correct classification of malware as malware 

FP: incorrect classification of malware as goodware 

FN:  incorrect classification of goodware as malware 

TN: correct classification of goodware as goodware. 
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TABLE. I. MOST FREQUENTLY USED FEATURES IN MALWARE AND GOODWARE APPLICATIONS AND THEIR RANK OF IMPORTANCE 

Information Gain Algorithm Pearson CorrCoef Algorithm 

Rank Score Feature Rank Score Feature 

1 0.2746    READ_PHONE_STATE 1 0.5811 READ_PHONE_STATE 

2 0.2743     getDescription 2 0.5563 RECEIVE_BOOT_COMPLETED 

3 0.2537     AccessibilityNodeProvider 3 0.5542 SYSTEM_ALERT_WINDOW 

4 0.2537     AccessibilityNodeInfo 4 0.5403 getDescription 

5 0.2537      AccessibilityRecord 5 0.5186 AccessibilityRecord 

6 0.2537     AccessibilityStateChangeListener 6 0.5186 AccessibilityNodeProvider 

7 0.2537     AccessibilityManager 7 0.5186  AccessibilityNodeInfo 

8 0.2529    SYSTEM_ALERT_WINDOW 8 0.5186 AccessibilityManager 

9 0.2366    RECEIVE_BOOT_COMPLETED 9 0.5186 AccessibilityStateChangeListener 

10 0.0816    SEND_SMS 10 0.3151 SEND_SMS 

11 0.0776      INTERNET 11 0.3115 INTERNET 

12 0.0473    ACCESS_NETWORK_STATE 12 0.2544 ACCESS The STATE Of NETWORK  

13 0.0414    WRITE_EXTERNAL_STORAGE 13 0.2378 WRITE In The EXTERNAL STORAGE 

14 0.0124    READ_SMS 14 0.1283 READ_SMS 

15 0.0112    WRITE_SETTINGS 15 0.0427 WRITE_SETTINGS 

16 0.0109 getResolveInfo 16 0.0161 getResolveInfo 

17 0.0101 KILL_BACKGROUND_PROCESSES 17 0.0104 KILL_BACKGROUND_PROCESSES 

18 0.0019 WAKE_LOCK 18 0.0041 WAKE_LOCK 

19 0.0012    getSettingsActivityName 19 0.0040 getSettingsActivityName 

20 0.0010 GET_TASKS 20 0.0004 GET_TASKS 

TABLE. II. COMPARISON OF TESTING AND TRAINING RMSE FOR BOTH 

ANFIS AND PSO-ANFIS 

Fold 

# 
ANFIS PSO-ANFIS 

 Testing RMSE Training RMSE Testing  RMSE Training RMSE 

1 0.3318 0.3476 0.1574 0.1168 

2 0.3221 0.3296 0.1161 0.1053 

3 0.3159 0.3282 0.1458 0.1245 

4 0.3147 0.3156 0.1494 0.1265 

5 0.3113 0.3396 0.1359 0.1184 

Table 1 above shows the most frequently used features in 
malware and goodware applications and their rank of 
importance.  It is observed that using the  Information gain and 
Pearson CorrCoef Algorithm yield the same subset of 15 
features, signifying that the results of ranking are consistent. 
The most requested permissions are associated with accessing 
phone state, connecting to the Internet, checking the 
connectivity of the network, monitoring the device booting, 
writing to external storage and messages related permissions. 
Moreover, most of the applications requested the 
SYSTEM_ALERT_WINDOW permission and accessibility 
services APIs. They enable an application to create windows 
that can be shown on top of other applications and even 
execute tasks on them, these abilities made them an extremely 
attractive target for malware developers to perform tapjacking 
attacks. A significantly sophisticated new form of Android 
ransomware/Android.Lockdroid.E is detected [4], this variant 
of ransomware malware employs the accessibility tapjacking 
method to pose a real threat for more than 67% of Android 
devices. 

Table 2 above shows the testing and training RMSE for 
both ANFIS and PSO-ANFIS using the features selected by the 
proposed dual-stage method based on the five-fold cross-
validation. A low RMSE depicts greater malware detection 
accuracy, so the classifier that generates lower RMSE is 
considered as a better classifier for the differentiation between 
the malware and goodware applications. It can be observed 

from Table 2 that the proposed PSO-ANFIS achieves lowest 
RMSE for both testing and training in all five-folds. 

 
Fig. 3. The accuracy of cross-validation in terms of RMSE. 

TABLE. III. CLASSIFICATION ACCURACY OF PSO-ANFIS AND ANFIS 

Threshold Accuracy Error 

 PSO-ANFIS ANFIS PSO-ANFIS ANFIS 

0.10  45 % 41%  55 % 59% 

0.25  63 % 50%  37 % 50% 

0.35  66 % 54%  34 % 46% 

0.40  89% 69%  11 % 31% 

TABLE. IV. THE PERFORMANCE OF THE PROPOSED APPROACH COMPARED 

WITH OTHER APPROACHES 

Classification approach  Accuracy 

PSO-ANFIS 89% 

K-ANFIS [39] 75% 

Droid Permission Miner [42] 87% 

Puma [5] 86.41%. 
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0 0.1 0.2 0.3 0.4

PSO-ANFIS
Testing RMSE

PSO-ANFIS
Training…

ANFIS Testing
RMSE

ANFIS Training
RMSE
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Table 3 above shows the performance of PSO-ANFIS and 
ANFIS for each threshold in terms of accuracy and error rates. 
We can see that the proposed classifier PSO-ANFIS achieved 
better results than ANFIS for all thresholds. These results 
confirm the suitability of PSO algorithm in minimizing the 
error between the predicted class of Android application and 
the actual class, by tuning the membership functions of ANFIS. 
Fig. 3 shows a comparison between the values of CVA for 
PSO-ANFIS and ANFIS. It is clear from Fig. 3 that the results 
from PSO-ANFIS are significantly better. For example, the 
CVA of RMSE value of PSO-ANFIS testing is 0.2792 which is 
smaller than the CVA value of ANFIS testing which is 0.3271. 
Also, the CVA of RMSE value of PSO-ANFIS training is 
0.2583 which is smaller than the CVA value of ANFIS training 
which is 0.3181. All these results confirm that PSO-ANFIS 
system outperforms ANFIS. The performance of our proposed 
approach has been compared with other comparable 
approaches, including our previous research [39] and other 
approaches [5], [42] as shown in Table 4. 

VI. CONCLUSION 

Accurate detection of Android malware has been an 
important issue in recent years. In this study, we found that the 
most significant permissions and API calls lead to efficient 
discrimination between the malware and goodware 
applications. For this purpose, two features ranking algorithms, 
Information Gain (IG) and Pearson CorrCoef (PC) are 
employed to rank the individual permissions and API calls 
based on their importance for classification. In addition, we 
proposed a new hybrid method for Android malware detection 
based on the combination of the Adaptive neural fuzzy 
Inference System (ANFIS) with the Particle Swarm 
Optimization (PSO). Using dataset consists of 250 malware 
and 250 goodware collected from different recourse, the 
proposed approach achieved classification accuracy of 89%  
which is better than the classification accuracy of ANIS  and 
other approaches. For future work ensemble of classifiers will 
be considered to improve the classification accuracy of 
Android apps. 
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