
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

60 | P a g e

www.ijacsa.thesai.org

Intelligent Hybrid Approach for Android Malware

Detection based on Permissions and API Calls

Altyeb Altaher, Omar Mohammed Barukab

Department of Information Technology, Faculty of Computing and Information Technology-Rabigh,

King Abdulaziz University, P.O. Box 344,

Jeddah, Saudi Arabia

Abstract—Android malware is rapidly becoming a potential

threat to users. The number of Android malware is growing

exponentially; they become significantly sophisticated and cause

potential financial and information losses for users. Hence, there

is a need for effective and efficient techniques to detect the

Android malware applications. This paper proposes an

intelligent hybrid approach for Android malware detection using

the permissions and API calls in the Android application. The

proposed approach consists of two steps. The first step involves

finding the most significant permissions and Application

Programming Interfaces (API) calls that leads to efficient

discrimination between the malware and good ware applications.

For this purpose, two features selection algorithms, Information

Gain (IG) and Pearson CorrCoef (PC) are employed to rank the

individual permissions and API’s calls based on their importance

for classification. In the second step, the proposed new hybrid

approach for Android malware detection based on the

combination of the Adaptive neural fuzzy Inference System

(ANFIS) with the Particle Swarm Optimization (PSO), is

employed to differentiate between the malware and goodware

Android applications (apps). The PSO is intelligently utilized to

optimize the ANFIS parameters by tuning its membership

functions to generate reliable and more precise fuzzy rules for

Android apps classification. Using a dataset consists of 250

goodware and 250 malware apps collected from different

recourse, the conducted experiments show that the suggested

method for Android malware detection is effective and achieved

an accuracy of 89%.

Keywords—Android malware detection; features selection;

fuzzy inference system; particle swarm optimization

I. INTRODUCTION

Recently, the use of smartphones in all aspects of our daily
lives is increasing continuously. The global shipments of
smartphones hit a record 1.4 billion in 2015 [1]. This number
has grown 12% compared with the last year. The massive
popularity of smartphones have been accompanied with a
potential increase in the number of malwares. With Android
dominating 82.8% of the market in 2015 [2], Android become
the main goal for mobile malware. The number of Android
malware applications is increasing continuously. The total
number of malware attacking the mobile devices increased
more than three times in 2015, compared to that of 2014 [3].
The dangerous threats targeting mobile devices in 2015 were
ransomware. Malware can access all the resources in the
attacked mobile device, and data stealers, like business
malware.

Google’s Play store is a market for Android apps, also there
are many other third-party stores for Android apps. The
Android apps developers use the Google’s Play and third-party
stores to publish the apps they developed, and make it available
for download and install by users. Detecting the huge number
of Android malware and isolating them from application
markets is potential and great challenging issue. Very recently
in 2016, a significantly sophisticated new form of Android
ransomware/Android.Lockdroid.E is detected by Symantec,
this variant of ransomware malware employs the accessibility
tapjacking method to pose a real threat for more than 67% of
Android devices [4].

Several research efforts have been presented for malware
detection depending on the Android permissions used in the
app. However, using Android permissions only is not enough
for accurate detection of malware [5], [6]. Moreover, the
existence of permissions in the Android application’s
Manifest.xml is not evident that it has been used by app code
[7], [8]. On the other hand, some researches [9] consider the
API level information only to get the features from big data set,
but it requires a large number of features for the discrimination
between malware and goodware apps. Moreover, efficient
detection of the new and ever-evolving Android malware is a
continues challenge. To address these challenges, this paper
proposes a new hybrid method for Android malware detection
based on the hybridization of the Adaptive neural fuzzy
Inference System (ANFIS) with the Particle Swarm
Optimization (PSO). This paper has the following
contributions:

1) Finding the most significant permissions and API

calls that lead to efficient categorization of malware and

goodware apps.

2) Designing and implementing a new hybrid approach

for Android malware detection based on the combination of

(ANFIS) with (PSO).

3) An accurate dataset was collected which consists of

250 goodware and 250 malware apps from different resources

including Google’s play.
The rest of this paper is structured as: Section 2 presents the

related work. Section 3 introduced the employed features and
feature selection methods. Section 4 explains the proposed
method for Android malware detection. Section 5 presents the
experimental results and discussion. Section 6 includes the
conclusion and future work.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

61 | P a g e

www.ijacsa.thesai.org

II. RELATED WORK

Android malware detection has been a very active research
area in the recent years. The two main approaches for Android
malware analysis are static and dynamic analysis [10]. Static
analysis examines the Android application without executing
it. Many static analysis approaches for Android malware
detection have been proposed [11]-[15]. For example, Kirin’s
approach [12], explores the used permissions in the Android
app to determine their maliciousness. Stowaway [13] examines
API calls to detect Malware applications and Risk Ranker [14]
statically classifies applications based on different security
risks. In 2014, DREBIN proposed by Arp et al. [15], it detects
the Android malware application by performing application
analysis using different features such as permissions, API calls,
network address, hardware access, etc. Examples for static
analysis tools include Smali [16] and Androguard [17], which
facilitate the static analysis of Android apps. However, the
static analysis approaches are unable to detect malwares that
use dynamic code loading obfuscation techniques.

The dynamic analysis examines the Android application by
monitoring its behavior during execution. A number of
dynamic analysis approaches have been proposed for Android
malware detection [18]-[22]. DroidScope and TaintDroid
proposed in [21] and [22], they monitor the application during
its running in a protected environment (similar to the java sand
box concept), by exploring different components of the
application. Dynamic analysis approaches require many
resources compared with static analysis, which made them
unsuitable for the limited resources of the mobile devices.

Machine learning approaches also have been proposed for
Android malware detection, motivated by the problem of
manually creating and updating detection models for Android
malware. Aafer et al. [23] used machine learning approach to
classify Android apps as malware or goodware. They
compared the malware detection accuracy of four classifiers
using the API calls and permissions as features for Android
application. Shabtai et al. [24] used six machine learning based
classifiers for Android malware detection, namely, k-Means,
NB, DT, decision tree, BN, logistic regression and histogram
using the Andromaly framework. Andromaly achieved a
99.9% accuracy rate using the information gain algorithm for
features selection and decision tree classifier. The main
disadvantage of Andromaly is using self-written Android
malware applications to test it. In contrast, 250 real-world
malware apps were used in our approach.

Dini et al. in [19] combined the system calls in kernel
with system calls in user level. They used features set
consisting of 12 system calls and the K-nearest neighbors
(KNN) as classifier for Android malware detection. Dini et al.
achieved an accuracy of 93% using 10 Android malwares. The
main disadvantage of this approach is its inability to detect
malware that use root permissions to avoid the system call.
Therefore, Android API calls and permissions are used in this
research rather than using system calls only. Zhao et al. in [25]
used the Support Vector machine learning method to develop
RobotDroid in order to detect unknown Android malware.
RobotDroid depends on the hidden payment services and the
privacy information leakage. They considered three malware

types, namely, Plankton, DroidDream and Gemini.
Consequently, this approach is limited to the considered
Android malware types only. Amos et al. proposed STREAM
in [26], it employs several machine learning classifiers to
detect Android malware based on a set of features such as
permissions , memory and battery usage. However, the
features set collected from Android emulator, which is not
accurate as real Android device [27]. In this work, we used
features collected from real-world malware and goodware
apps.

Our proposed approach is related to these methods and uses
comparable features for detecting malicious applications, such
API calls and permissions. However, it differs in two main
aspects from previous research: First, we find the most
significant permissions and API calls that leads to efficient
discrimination between the malware and goodware
applications. Second, we design and implement a new hybrid
classifier for efficient Android malware detection based on
combining (ANFIS) [35] with the PSO.

III. OVERVIEW

A. Android Permissions

Android uses the permission system to regulate the
application’s access to the resources and data in the mobile
device, such as camera, storage and internet access. Android
permissions offer the security characteristics by restricting
certain tasks an application can execute [28]. The selection of
the most suitable permissions corresponding to the tasks
performed by the application is the ultimate responsibility of
the developer. The shortage of knowledge about the
permissions could guide developers to add in essential and
excessive permissions to the application which may leads to
over privileged Android application [29] that make users stop
installing the application. Moreover, adding in essential
permissions makes the application similar to malware [30],
causing re-delegation attacks [31]. Furthermore, the shortage of
knowledge about permissions makes the user uncertain about
the decision of installing the application. Currently available
information about permissions is not quite enough to support
the users decision regarding the installation of application [32].
Since the used permissions and API calls in the application
reflect the behavior of the app, it is believed that it is
potentially feasible to detect the malware application by
exploring the patterns of used permissions and API calls, and
help both developers and users in getting better understanding
of permissions and API calls.

1
X

2
X

Π

Π

),(
11 2

X Xf

),(
12 2

X Xf

) X,(XW
211

) X,(XW
212

21

1

1

WW

W
W

21

2

2

WW

W
W

1

1
fW

2

2
fW

21

 X,XfY

Fig. 1. Artificial neuro fuzzy inference system architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

62 | P a g e

www.ijacsa.thesai.org

B. Android API Calls

APIs are functions used by the developers to interact with
Android operating system. Since there are many Android APIs,
it is more appropriate to consider specific APIs frequently used
by malware and enable them to access Smartphone's sensitive
resources, rather than considering all APIs used in the app’s
source code. Seo et al. [33] examined malware apps and
specified suspicious APIs frequently used by malware. They
compared the number of suspicious APIs in malware
applications with the number of suspicious APIs in goodware
apps. In this paper, the suspicious APIs from the malware and
goodware apps were extracted and used as part of the features
set. The selected suspicious APIs are similar to the subspecies
APIs defined in [33], [15], examples of the selected suspicious
APIs include, API calls for accessing important information
such as getSubscriberId()and getDeviceId(), and API calls for
getting accessibility services which can activate several types
of malicious payloads. Finding the rank of the importance of
API calls and permissions in terms of categorization of
malware and goodware application, and evaluating the
efficiency of our proposed hybrid approach PSO-ANFIS for
malware detection, are main challenges of this research work.

C. Artificial Neuro Fuzzy Inference System (ANFIS)

Artificial Neuro Fuzzy Inference System (ANFIS) is
proposed by Jang et al. [34] and it became one of the well-
known researches related to fuzzy inference systems in the
recent years. ANFIS associates the advanced reasoning and
explanation of fuzzy logic with the powerful computation and
learning capabilities of neural networks [34]. There are many
architectures for neuro-fuzzy networks, however, the most
dominant architectural models are the Mamdani and the Takagi
Sugeno (TSK). TSK model uses a single-spike as the output
membership function while Mamdani model uses a fuzzy set.
The ANFIS used in this paper is based on TSK model. Fig. 1
shows example for ANFIS architecture that consists of five
layers with two inputs X1 and X2 and one output Y.

The rule base consists of Takagi–Sugeno fuzzy rules as
follows:

R1=IF x1 is 𝜇1i AND x2 is 𝜇2i THEN fij = pijx1 + qijx2 +
rij

Where, x1 and x2 are the input for the ANFIS, conditions
specified in the IF part are called antecedent, and conditions in
the THEN part are called the consequence. ANFIS consists of
five layers [34].

Layer One: Crisp input data entered into the ANFIS are
transformed into linguistic expressions. Membership function
(μ) is used to transform the inputs into linguistic expressions,
there are several types of membership functions. In this paper,
Gaussian membership function is used because it leads to more
smooth model behavior. The Gaussian membership function is
defined as follow:

 () (

()

) (1)

Where, Oi’s are the outputs of this layer. σ and C represent
the variance and the center of the Gaussian membership
function, respectively. This layer includes parameters called

antecedent parameters, which are tuned by ANFIS for
obtaining results that are more accurate.

Layer 2: This layer determines the level of accuracy of the
statements specified in antecedent parts, which is also called
the firing strength, using the following equation.

∑
 (2)

Layer 3: This layer normalizes all the firing strengths
computed in the former layer (Wi), where it computes the
proportion of the ith rule’s firing strength to the all rules firing
strengths using the following equation:

∑
 (3)

Layer 4: This layer contains the consequent portion of the
fuzzy rules, the influence of each rule in the final output is
defined as:

 () (4)

Where, mi, ni, and ri are the consequent parameters. The
consequent parameters and the antecedent parameters in the
first layer, are tuned by ANFIS in the learning process to
decrease the differences between the output and the target
result.

Layer 5: This is the defuzzification layer where all the
rules generated for one output are collected and defuzzified
into numerical outputs, according to a weighted average sum as
follow:

 ∑

∑

∑
 (5)

D. The Particle Swarm Optimization (PSO)

The particle swarm optimization (PSO) is a well-known
method for searching, which is grounded on the behavior of
bird flocking. In PSO, each possible answer for the
optimization issue can be considered as a point in the
population, the point is called a particle. The particle
propagates in the population with a specified speed which is
tuned based on its movement knowledge and its companions’
movement knowledge. Each particle is assigned a fitness value
specified based on the objective function and records its
current position and current best position (recorded as pbest).
The pbest can be considered as the particle’s own moving
experience. Moreover, each particle records the global best
position (recorded as gbest, which is the best value in pbest) of
the total collection. The gbest can be considered as its
companions’ movement knowledge for the particle [35], [36].
Let xi (t) represent the location of a particle i in the population
at time t. Then, the particle’s location is adjusted by the
addition of the velocity, vi to the current location:

 () () () (6)

 () (() ()) (()

 ()) (7)

Where, c1 and c2 represent the acceleration coefficients, r1
and r2 are random vectors.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

63 | P a g e

www.ijacsa.thesai.org

IV. THE PROPOSED APPROACH FOR ANDROID MALWARE

DETECTION

This section explains our methodology for the detection of
Android malware. First, the used dataset is introduced. Second,
we used the Information Gain (IG) and Pearson CorrCoef (PC)
to find the most significant permissions and API calls that
leads to efficient discrimination between the malware and
goodware applications. Third, the proposed hybrid PSO-
ANFIS is utilized to classify the Android apps as either
goodware or malware.

A. The Used Dataset

To build an accurate and reliable model capable of
efficiently classifying the Android applications as malware or
goodware, an accurate and well-labeled dataset is required. We
used a recent data set contains 250 benign applications
collected from Google’s play, the free online malware
detection tool VirusTotal [36] is used to confirm that the
collected apps are benign. The data set also contains 250
malware applications which have been downloaded from
Genome project [37] and Drebin dataset [15], all the malware
apps are confirmed as malware using the VirusTotal. In this
paper, we considered the permissions and API calls used in the
app as features to classify the applications as either goodware
or malware.

B. Features selection

In this section, the most significant permissions and API
calls that leads to efficient discrimination between the malware
and goodware applications are selected. For this purpose, two
features ranking algorithms, namely, Information Gain (IG)
and Pearson CorrCoef (PC) are employed to rank the
individual permissions and API calls based on their importance
for classification. Based on the static analysis method, we used
free analysis tools like android-apktool, dex2jar and jd-gui to
extract the API calls and permissions from the goodware and
malware applications. Java language is used to develop
Android applications and they are generated as Android
Application Package (APK) files. APK package consists of
files required for running the application. The files in the APK
include the following:

DalVik Executable (DEX) file: This is a file generated by
the compilation of the Java source code.

Manifest file: A file holding the Android application
characteristics such as permissions, the activities, and intents.

eXtensible Markup Language (XML) file: A file defining
the components of the user interface layout and the used
values.

Resource file: A file consists of resources needed by
applications like sound files and images.

 Information Gain Ratio (IGR)

Information Gain Ratio method extracts the correlation
between Android API calls and permissions, it gives the
maximum scoret to the most potential permissions based on
the class of malware and goodware Android apps belonging to
IGR [38], the IGR equations are explained as follows:

 n_r(X, C)
 ()

 ()
 (8)

 ()=∑ (
| |

| |
)

| |

| |
 (9)

Where, gain_r (X,C) denotes the gain ratio of the feature X
occurrence in the class C. Ci and |Ci| represent the occurrence
of feature X in class C, the ith sub-class of C and the total
number of features in Ci, respectively.

 The Pearson CorrCoef

Pearson CorrCoef computes the relation between feature X
and class C by

 ()
 ()

√ () ()
 (10)

Where, R(P;A) = 0 means the independency of feature P
and class A, R(P;A) = 1 means the top positive correlation of
feature P and class A and R(P;A) = -1 means the top negative
correlation. In our paper, R(P;A) = 1 means that the application
which request the feature P is highly suspected as malware app,
while R(P;A) = -1 means requesting the feature P leads to
classify the applications as goodware.

C. PSO-based ANFIS

The proposed approach PSO-ANFIS intelligently combines
ANFIS method and PSO algorithm for the optimization of
Android malware detection, by tuning the parameters of
membership function to achieve the highest malware detection
accuracy. ANFIS utilizes the IF-Then fuzzy rules in mapping
the inputs to outputs, the level of ANFIS accuracy is
significantly affected by tuning its network structure and
parameters [40]. There is a strong relation between the
accuracy and the used membership functions. This paper aims
to tune the Gaussian membership function to improve the
accuracy of ANFIS by getting the best learning parameters and
minimum number of fuzzy rules. The best learning parameters
which minimize the difference between the target data and
ANFIS output, can be obtained by minimizing the Root Mean
Square Error (RMSE) as follows:

 *∑
()

 +

 (11)

Where, α represents the number of training data items, Rm
is the input value and ym is the predicted value. The
Performance criterion RMSE depends on the center and the
width of the Gaussian membership function (Ci, σi). The
RMSE is considered as an objective function and its
minimization is the research problem in this study. PSO is a
potential optimization technique to enhance the performance of
ANFIS [41]. In this paper, PSO algorithm is utilized
intelligently to realize the minimization of the objective
function of ANFIS which is the error between the predicted
class of Android malware and the actual class, by tuning the
membership functions of ANFIS. Fig. 2 shows the structure of
the proposed hybrid PSO-ANFIS approach, each learning
process of ANFIS represents one particle and the parameters of
the membership functions that effect the ANFIS performance
represent the particle dimensions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

64 | P a g e

www.ijacsa.thesai.org

Fig. 2. The proposed POS-ANFIS classifier.

The steps of the hybrid PSO-ANFIS approach are
explained as follows:

Step 1: Set initial value for the number of iterations C =1,
randomly initialize the position Xiand velocity Viof the i-th
particle in the search space using (6) and (7), respectively.

Step 2: Compute the objective function of ANFIS using (8)
and use it as a fitness function () for the proposed PSO-
ANFIS.

Step 3: IF the fitness function of the i-th particle in position
X () is better than the fitness function of the same particle
in the local best position f (Pi) THEN

 .
ELSE

IF the fitness function of the i-th particle in position X

 () is better than the fitness function of the same particle in

the global best position () THEN
Gbest = Xi

Step 4: IF the fitness function of global best
position () is best than stopping criteria OR the particle
counter C is greater than the total number of iterations m
THEN

Stop

ELSE

Go to Step 2

V. EXPERIMENTS AND RESULTS DISCUSSION

To conduct the experiments the dataset is separated into
two sets testing set and training set. The five-fold cross-
validation technique is selected to split the dataset. In order to
evaluate the performance of the proposed approach for
Android malware detection, we selected the 24 permissions
and API calls features according to their significance for the
discrimination, using the Pearson CorrCoef (PC) and
Information Gain (IG) algorithms. We applied our proposed
approach PSO-ANFIS on the selected features. The
performance of our proposed approach PSO-ANFIS is
compared with the well-known system ANFIS system. ANFIS
is selected for comparing our proposed PSO-ANFIS with,
because it proofs efficiency in many classification tasks and it
is similar to PSO-ANFIS in terms of fuzzy rules type. The
classification accuracy of the two classifiers is compared in
terms of the Root Mean Square Error (RMSE). Root Mean
Square Error measures the dissimilarity between values
obtained by the classifier and the observed values:

 √

∑ ()

 (12)

The total accuracy obtained by the cross-validation is
calculated based on the average of the RMSE in the five-folds
method as follows:

∑

 (13)

Where, CVA is the accuracy based on the cross-
validation, m is the number of the used folds, and Ri is the
calculated RMSE of each fold. The evaluation of the fuzzy
inference classifier requires the separation of its output into
two main classes. To evaluate our proposed POS-ANFIS, we
separated its continuous output by determining a threshold in
the range between one and zero, to categorize the malware and
goodware apps. In this experiment, four threshold values have
been determined: 0.10, 0.25, 0.35 and 0.40. The classification
results based on the selected features are compared in terms of
Accuracy (ACC) and obtained error rate. The following
confusion matrix used to classify the Android application as
malware (1) or goodware (0).

Classified

Actual

 1 0

1 TP FP

0 FN TN

Where,

TP: correct classification of malware as malware

FP: incorrect classification of malware as goodware

FN: incorrect classification of goodware as malware

TN: correct classification of goodware as goodware.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

65 | P a g e

www.ijacsa.thesai.org

TABLE. I. MOST FREQUENTLY USED FEATURES IN MALWARE AND GOODWARE APPLICATIONS AND THEIR RANK OF IMPORTANCE

Information Gain Algorithm Pearson CorrCoef Algorithm

Rank Score Feature Rank Score Feature

1 0.2746 READ_PHONE_STATE 1 0.5811 READ_PHONE_STATE

2 0.2743 getDescription 2 0.5563 RECEIVE_BOOT_COMPLETED

3 0.2537 AccessibilityNodeProvider 3 0.5542 SYSTEM_ALERT_WINDOW

4 0.2537 AccessibilityNodeInfo 4 0.5403 getDescription

5 0.2537 AccessibilityRecord 5 0.5186 AccessibilityRecord

6 0.2537 AccessibilityStateChangeListener 6 0.5186 AccessibilityNodeProvider

7 0.2537 AccessibilityManager 7 0.5186 AccessibilityNodeInfo

8 0.2529 SYSTEM_ALERT_WINDOW 8 0.5186 AccessibilityManager

9 0.2366 RECEIVE_BOOT_COMPLETED 9 0.5186 AccessibilityStateChangeListener

10 0.0816 SEND_SMS 10 0.3151 SEND_SMS

11 0.0776 INTERNET 11 0.3115 INTERNET

12 0.0473 ACCESS_NETWORK_STATE 12 0.2544 ACCESS The STATE Of NETWORK

13 0.0414 WRITE_EXTERNAL_STORAGE 13 0.2378 WRITE In The EXTERNAL STORAGE

14 0.0124 READ_SMS 14 0.1283 READ_SMS

15 0.0112 WRITE_SETTINGS 15 0.0427 WRITE_SETTINGS

16 0.0109 getResolveInfo 16 0.0161 getResolveInfo

17 0.0101 KILL_BACKGROUND_PROCESSES 17 0.0104 KILL_BACKGROUND_PROCESSES

18 0.0019 WAKE_LOCK 18 0.0041 WAKE_LOCK

19 0.0012 getSettingsActivityName 19 0.0040 getSettingsActivityName

20 0.0010 GET_TASKS 20 0.0004 GET_TASKS

TABLE. II. COMPARISON OF TESTING AND TRAINING RMSE FOR BOTH

ANFIS AND PSO-ANFIS

Fold

ANFIS PSO-ANFIS

 Testing RMSE Training RMSE Testing RMSE Training RMSE

1 0.3318 0.3476 0.1574 0.1168

2 0.3221 0.3296 0.1161 0.1053

3 0.3159 0.3282 0.1458 0.1245

4 0.3147 0.3156 0.1494 0.1265

5 0.3113 0.3396 0.1359 0.1184

Table 1 above shows the most frequently used features in
malware and goodware applications and their rank of
importance. It is observed that using the Information gain and
Pearson CorrCoef Algorithm yield the same subset of 15
features, signifying that the results of ranking are consistent.
The most requested permissions are associated with accessing
phone state, connecting to the Internet, checking the
connectivity of the network, monitoring the device booting,
writing to external storage and messages related permissions.
Moreover, most of the applications requested the
SYSTEM_ALERT_WINDOW permission and accessibility
services APIs. They enable an application to create windows
that can be shown on top of other applications and even
execute tasks on them, these abilities made them an extremely
attractive target for malware developers to perform tapjacking
attacks. A significantly sophisticated new form of Android
ransomware/Android.Lockdroid.E is detected [4], this variant
of ransomware malware employs the accessibility tapjacking
method to pose a real threat for more than 67% of Android
devices.

Table 2 above shows the testing and training RMSE for
both ANFIS and PSO-ANFIS using the features selected by the
proposed dual-stage method based on the five-fold cross-
validation. A low RMSE depicts greater malware detection
accuracy, so the classifier that generates lower RMSE is
considered as a better classifier for the differentiation between
the malware and goodware applications. It can be observed

from Table 2 that the proposed PSO-ANFIS achieves lowest
RMSE for both testing and training in all five-folds.

Fig. 3. The accuracy of cross-validation in terms of RMSE.

TABLE. III. CLASSIFICATION ACCURACY OF PSO-ANFIS AND ANFIS

Threshold Accuracy Error

 PSO-ANFIS ANFIS PSO-ANFIS ANFIS

0.10 45 % 41% 55 % 59%

0.25 63 % 50% 37 % 50%

0.35 66 % 54% 34 % 46%

0.40 89% 69% 11 % 31%

TABLE. IV. THE PERFORMANCE OF THE PROPOSED APPROACH COMPARED

WITH OTHER APPROACHES

Classification approach Accuracy

PSO-ANFIS 89%

K-ANFIS [39] 75%

Droid Permission Miner [42] 87%

Puma [5] 86.41%.

0.2792

0.2583

0.3271

0.3181

0 0.1 0.2 0.3 0.4

PSO-ANFIS
Testing RMSE

PSO-ANFIS
Training…

ANFIS Testing
RMSE

ANFIS Training
RMSE

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

66 | P a g e

www.ijacsa.thesai.org

Table 3 above shows the performance of PSO-ANFIS and
ANFIS for each threshold in terms of accuracy and error rates.
We can see that the proposed classifier PSO-ANFIS achieved
better results than ANFIS for all thresholds. These results
confirm the suitability of PSO algorithm in minimizing the
error between the predicted class of Android application and
the actual class, by tuning the membership functions of ANFIS.
Fig. 3 shows a comparison between the values of CVA for
PSO-ANFIS and ANFIS. It is clear from Fig. 3 that the results
from PSO-ANFIS are significantly better. For example, the
CVA of RMSE value of PSO-ANFIS testing is 0.2792 which is
smaller than the CVA value of ANFIS testing which is 0.3271.
Also, the CVA of RMSE value of PSO-ANFIS training is
0.2583 which is smaller than the CVA value of ANFIS training
which is 0.3181. All these results confirm that PSO-ANFIS
system outperforms ANFIS. The performance of our proposed
approach has been compared with other comparable
approaches, including our previous research [39] and other
approaches [5], [42] as shown in Table 4.

VI. CONCLUSION

Accurate detection of Android malware has been an
important issue in recent years. In this study, we found that the
most significant permissions and API calls lead to efficient
discrimination between the malware and goodware
applications. For this purpose, two features ranking algorithms,
Information Gain (IG) and Pearson CorrCoef (PC) are
employed to rank the individual permissions and API calls
based on their importance for classification. In addition, we
proposed a new hybrid method for Android malware detection
based on the combination of the Adaptive neural fuzzy
Inference System (ANFIS) with the Particle Swarm
Optimization (PSO). Using dataset consists of 250 malware
and 250 goodware collected from different recourse, the
proposed approach achieved classification accuracy of 89%
which is better than the classification accuracy of ANIS and
other approaches. For future work ensemble of classifiers will
be considered to improve the classification accuracy of
Android apps.

ACKNOWLEDGEMENT

This work was supported by the Deanship of Scientific
Research (DSR), King Abdulaziz University, Jeddah, under
Grant No. (G-160-830-37). The authors, therefore, gratefully
acknowledge the DSR technical and financial support.

REFERENCES

[1] Rawal, Priyanka, Alka Awasthi, and Shekhar Upadhayay. “Creating a
Hunger Driven Smartphone Market by Xiaomi.” International Journal of
Engineering Science, pp. 11250-11255,2017.

[2] Azfar, Abdullah, Kim-Kwang Raymond Choo, and Lin Liu. “Forensic
taxonomy of android productivity apps.” Multimedia Tools and
Applications .76, no. 3 ,pp. 3313-3341, 2017.

[3] Kambourakis, Georgios, Dimitrios Damopoulos, Dimitrios
Papamartzivanos, and Emmanouil Pavlidakis. “Introducing touchstroke:
keystroke‐based authentication system for smartphones.” Security and
Communication Networks, 9, no. 6, pp. 542-554, 2016.

[4] Narudin, Fairuz Amalina, Ali Feizollah, Nor Badrul Anuar, and
Abdullah Gani. “Evaluation of machine learning classifiers for mobile
malware detection.” Soft Computing, 20, no. 1, pp.343-357, 2016

[5] Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Bringas, P. G., &
Álvarez, G. Puma: Permission usage to detect malware in android.

InInternational Joint Conference CISIS’12-ICEUTE´ 12-SOCO´ 12
Special Sessions, Springer Berlin Heidelberg, pp: 289-298, 2013.

[6] Wei, X., Gomez, L., Neamtiu, I., & Faloutsos, M. Permission evolution
in the android ecosystem. In Proceedings of the 28th Annual Computer
Security Applications Conference, ACM, pp: 31-40,2012.

[7] Sharma, Akanksha, and Subrat Kumar Dash. Mining API Calls and
Permissions for Android Malware Detection. In Cryptology and
Network Security, Springer International Publishing, pp: 191-205, 2014.

[8] Grace, M. C., Zhou, Y., Wang, Z., & Jiang, X. Systematic Detection of
Capability Leaks in Stock Android Smartphones. In NDSS ,Vol. 14,. pp.
19,2012.

[9] Aafer, Y., Du, W., & Yin, H. Droidapiminer: Mining api-level features
for robust malware detection in android. In International Conference on
Security and Privacy in Communication Systems ,Springer International
Publishing, pp: 86-103,2013.

[10] Egele, Manuel, Theodoor Scholte, Engin Kirda, and Christopher
Kruegel. “A survey on automated dynamic malware-analysis techniques
and tools.” ACM Computing Surveys (CSUR) 44, no. 2,pp. 6, 2012.

[11] Enck, W., Octeau, D., McDaniel, P., & Chaudhuri, S. A Study of
Android Application Security. In USENIX security symposium,Vol. 2
,pp. 2. 2011.

[12] Enck, W., Ongtang, M., & McDaniel, P. On lightweight mobile phone
application certification. In Proceedings of the 16th ACM conference on
Computer and communications security, ACM, pp: 235-245, 2009.

[13] Felt, A. P., Chin, E., Hanna, S., Song, D., & Wagner, D. Android
permissions demystified. In Proceedings of the 18th ACM conference on
Computer and communications security ,ACM, pp.627-638,2011.

[14] Grace, M., Zhou, Y., Zhang, Q., Zou, S., & Jiang, X. Riskranker:
scalable and accurate zero-day android malware detection. In
Proceedings of the 10th international conference on Mobile systems,
applications, and services, ACM, pp. 281-294, 2012.

[15] Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., &
Siemens, C. E. R. T. DREBIN: Effective and Explainable Detection of
Android Malware in Your Pocket. In NDSS, 2014.

[16] J. Freke. An assembler/disassembler for android’s dex format. Google
Code, http://code.google.com/p/smali/, visited February, 2013.
Desnos, A., & Gueguen, G. Android: From reversing to decompilation.
Proc. of Black Hat Abu Dhabi, pp.77-101, 2011

[17] Burguera, I., Zurutuza, U., & Nadjm-Tehrani, S. Crowdroid: behavior-
based malware detection system for android. In Proceedings of the 1st
ACM workshop on Security and privacy in smartphones and mobile
devices ACM, pp. 15-26,2011.

[18] Dini, G., Martinelli, F., Saracino, A., & Sgandurra, D. MADAM: a
multi-level anomaly detector for android malware. In International
Conference on Mathematical Methods, Models, and Architectures for
Computer Network Security ,Springer Berlin Heidelberg,pp. 240-253,
2012.

[19] Zhou, Y., Wang, Z., Zhou, W., & Jiang, X. February. Hey, you, get off
of my market: detecting malicious apps in official and alternative
android markets. In NDSS ,Vol. 25, No. 4, pp. 50-52,2012.

[20] Yan, L. K., & Yin, H. DroidScope: Seamlessly Reconstructing the OS
and Dalvik Semantic Views for Dynamic Android Malware Analysis. In
USENIX security symposium, pp. 569-584,2012.

[21] Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B. G., Cox, L. P., ...
& Sheth, A. N. TaintDroid: an information-flow tracking system for
realtime privacy monitoring on smartphones. ACM Transactions on
Computer Systems (TOCS), 32(2), 2014.

[22] Aafer, Y., Du, W., & Yin, H. Droidapiminer: Mining api-level features
for robust malware detection in android. In International Conference on
Security and Privacy in Communication Systems, Springer International
Publishing, pp. 86-103, 2013.

[23]] Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., & Weiss, Y.
“Andromaly”: a behavioral malware detection framework for android
devices. Journal of Intelligent Information Systems, 38(1), pp. 161-190,
2012.

[24] Zhao, M., Zhang, T., Ge, F., & Yuan, Z. RobotDroid: A Lightweight
Malware Detection Framework On Smartphones. JNW, 7(4), pp. 715-
722,2012.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

67 | P a g e

www.ijacsa.thesai.org

[25] Amos B, Turner H, White J. Applying machine learning classifiers to
dynamic android malware detection at scale. In: Proceedings of the 9th
international wireless communications and mobile computing
conference (IWCMC), Sardinia, Italy, pp. 1666–1671, 2013.

[26] Raffetseder T, Kruegel C, Kirda E. Detecting system emulators.In:
Proceedings of the 10th international conference ISC, Valparaíso, Chile,
pp. 1–18,2007.

[27] Android, “Andriod developers guides,”

[28] http://developer.android.com/guide/topics/security

[29] Felt, A. P., Chin, E., Hanna, S., Song, D., & Wagner, D. Android
permissions demystified. In Proceedings of the 18th ACM conference on
Computer and communications security ,ACM, pp. 627-638, 2011.

[30] Grace, M. C., Zhou, Y., Wang, Z., & Jiang, X. Systematic Detection of
Capability Leaks in Stock Android Smartphones. In NDSS ,Vol. 14, pp.
19,2012.

[31] Felt, A. P., Wang, H. J., Moshchuk, A., Hanna, S., & Chin, E.
Permission Re-Delegation: Attacks and Defenses. In USENIX Security
Symposium , 2011.

[32] Kelley, P. G., Consolvo, S., Cranor, L. F., Jung, J., Sadeh, N., &
Wetherall, D. A conundrum of permissions: installing applications on an
android smartphone. In Financial Cryptography and Data Security
,Springer Berlin Heidelberg, pp. 68-79,2012.

[33] Seo, S. H., Gupta, A., Sallam, A. M., Bertino, E., & Yim, K. Detecting
mobile malware threats to homeland security through static analysis.
Journal of Network and Computer Applications, 38, pp. 43-53,2014.

[34] Jang, J. S. ANFIS: adaptive-network-based fuzzy inference system.
IEEE transactions on systems, man, and cybernetics, 23(3), pp. 665-685,
1993

[35] Trelea, I. C. The particle swarm optimization algorithm: convergence
analysis and parameter selection. Information processing letters, 85(6),
pp. 317-325, 2003.

[36] Kennedy, J., & Eberhart, R. Particle swarm optimization, IEEE
International of first Conference on Neural Networks, 1995.

[37] Jarabek, Chris, David Barrera, and John Aycock. “ThinAV: truly
lightweight mobile cloud-based anti-malware.” In Proceedings of the
28th Annual Computer Security Applications Conference, pp. 209-218,
2012.

[38] Zhou, Y. and Jiang, X. Dissecting android malware: Characterization
and evolution. In Security and Privacy (SP), 2012 IEEE Symposium on
,pp. 95-109, 2012.

[39] Mori, T. Information gain ratio as term weight: The case of
summarization of IR results. Proceedings of the 19th International
Conference on Computational Linguistics, (COLING ’02), Association
for Computational Linguistics, pp. 1-7,2002.

[40] Abdulla, S., & Altaher, A. Intelligent Approach for Android Malware
Detection. KSII Transactions on Internet and Information Systems
(TIIS), 9(8),pp. 2964-2983, 2015.

[41] Jiang, H.M., Kwong, C.K., Ip, W.H. and Wong, T.C. Modeling
customer satisfaction for new product development using a PSO-based
ANFIS approach. Applied Soft Computing, 12(2), , pp.726-734,2012.

[42] T.Fushiki. Estimation of prediction error by using K-fold cross-
validation, Statistics and Computing,vol.21, pp.137-146,2011.

[43] Aswini, A.M., Vinod, P. Droid Permission Miner: Mining Prominent
Permissions for Android Malware Analysis. In: 5th International
Conference on the Applications of the Digital Information and Web
Technologies (ICADIWT 2014), pp. 81–86 ,2014.

