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Abstract—Real time analytics is the capacity to extract 

valuables insights from data that comes continuously from 

activities on the web or network sensors. It is largely used in web 

based business to drive decisions based on user’s experiences, 

such dynamic pricing and personalized advertising. Many 

universities have adopted web based learning in their learning 

process. They use data-mining techniques to better understand 

students’ behavior, and most of the tools developed are based on 

historical and  stored data, and do not allow real time reactivity. 

Online activities of learners generate at high speed a huge 

amount of data in form of users’ interactions which have all 

characteristics to be considered as Big data. Deal with volume 

and velocity of these data in order to inform and enable 

decisions-makers to act at right time lead us to use new methods 

to capture E-Learning data, and process it in real time. 

This paper focuses on the design and implementation of 

modern and hybrid real time data pipeline architecture using 

Apache Flume to collect data, Apache Spark as an unified engine 

computation for performing analytics on students’ activities data  

and Apache Hive as a data warehouse for storing the processed 

data and for use by various reporting tools. To conceive this 

platform we conduct an experiment on Moodle database source. 

Keywords—Real time analytics; e-learning; big data; Hadoop; 

spark; Moodle; change data capture; streaming; data visualization 

clustering 

I. INTRODUCTION  

E-Learning is a revolutionary and very promising field that 
brings about a radical change in the field of learning. Web 
based technologies are used to create virtual classrooms with 
attractive materials and resources, and provides a wide range of 
solutions that support the learning process and services that are 
accessible anytime  from anywhere.  

Interactions of students with an E-Learning platform often 
come in three forms: 

 Learner-learner 

 Learner-instructor 

 Learner-content 

Learning Analytics (LA) is a recent field of research and 
development of tools and technologies that help to analyze and 
understand the interactions of learners with educational 
resources.  In the first international Conference on Learning 
Analytics and Knowledge (LAK 2011), it was defined as “the 
measurement, collection, analysis and reporting of data about 

learners and their contexts, for purposes of understanding and 
optimizing learning and the environments in which it occurs” 
[1]. A related domain is Educational data mining (EDM) which 
is a data-driven field defined in the community site [2] as 
“Educational Data Mining is an emerging discipline, concerned 
with developing methods for exploring the unique and 
increasingly large-scale data that come from educational 
settings, and using those methods to better understand students, 
and the settings which they learn in.” LA aims to improve E-
Learning [3] based on the analysis of the learners’ behavior 
during their interactions with the course. 

As more the learning in Higher education are occurring on 
the web, online activities generate, at high speed, huge 
amounts of information in the form of users’ traces. Deal with 
volume and velocity of data in order to extract valuable 
information that can support real-time decision making, lead us 
to design a modern and flexible architecture that can manage 
and scale to the continuous stream data. 

In this work, we propose a solution for the near-real time 
analysis of students’ activities on a web based learning 
platform, the most widely used in Moroccan higher education 
institutions which is Moodle. For this, we have built a system 
of complete Data Analytics Pipeline which is composed of 
three main layers. The first layer ensures the data capture from 
Moodle database. The second layer performs real time 
processing. The third layer provides a flexible data persistence 
which can be used by different reporting tools. 

All operations are executed in a distributed environment on 
inexpensive hardware. We use open source technologies such 
Apache Spark as the main computing engine and Hive to 
conceive the data warehouse on top of Hadoop cluster. 

Analyzing data stream that come continuously from the 
Moodle platform can greatly help us to track students’ progress 
in courses and detect the students at risk. It can also allow us to 
monitor the daily health of the E-Learning platform by using 
fresh reports which can be useful to deduct smart ideas in order 
to redefine the decisions strategies at right time by adjusting 
and improving the courses content that respond to students’ 
needs. 

The rest of the paper is structured as follows. Section 2 
defines big data analytics. Section 3 discusses related work. 
Section 4 presents the tools used in our work. Section 5 
presents the structure of the proposed system and the data 
processing methodology adopted. Then, it presents and 
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discusses the experiment results. Finally, Section 6 concludes 
the paper and describes the future research directions. 

II. BIG DATA ANALYTICS 

Big data [4] is a huge amount of data that is generated from 
various sources. It may be structured when data come from flat 
files or relational databases, and unstructured or semi 
structured when data come from the web activities or 
equipment sensors. Acquiring data very fast does not create the 
value to the business [5], it needs additional efforts to be 
meaningful. Big data analytics is the process to apply statistical 
analysis, data mining, predictive analytics, and text mining on 
large amount of data using a distributed platform. It depends on 
speed at which data arrives, and can be divided in two 
categories [6]: 

1) Batch Processing: Computation and analysis are applied 
on data that comes in big batches, then fixed and stored in 
distributed file system. This type of processing is largely used 
to learn from historical data by using clustering and 
classification techniques to create machine learning models 
which can be applied on new data. 

2) Streaming Processing: Computation and analysis are 
applied in real time on recent data that come in continuous 
records. There are two distinct approaches to analyze live data. 
The first is to process each record individually, and the second 
is to split the input data in discretized units called mini-batch 
according to the interval batch. Stream processing solution 
must be connected with the source in real time in order to 
continuously ensure the capturing data. 

III. RELATED WORK 

P.K. Udupi et al. [7] proposed a smart learning system 
model, they describe the possibilities to integrate the E-
Learning paradigm with the big data analytics concept and 
smart utilization. The proposed system contains three layers of 
different technology framework. The first layer is an E-
Learning framework which contains the information and data 
of user performance evaluation. The second layer is a big data 
framework which performs a set of different tasks like data 
extraction, data process and analysis. The third layer is a smart 
technology framework which enables support of technology 
need for capturing, predicting, analyzing, decision making and 
initiates necessary actions as control parameters. 

B. Logica et al. [8] lead a study where they discuss the 
benefits of the use of big data technologies, in order to resolve 
the problem of managing the massive increase in the produced 
data volume in educational setting and extracting value from 
these data to enhance the learning process. They proposed a 
model for big learning data on cloud architecture based on 
Hadoop cluster, which can be integrated with the existing 
Learning Management System (LMS) that the universities 
usually already own. The different levels of the proposed 
architecture are designed for collecting any type of data, 
processing them using Hadoop cluster, performing 
classification on data stored, and exploring unstructured data 
using the graphical Gephi tool. 

Sunita B Aher et al. [9] proposed a framework for 
recommendation of courses in E-Learning system Moodle. 

They use the enrolled data related to a specific set of courses 
collected from Moodle database. They use different machine 
learning algorithms: classification, association rules, and 
clustering to produce a final model for recommendation.  All 
steps of building the dataflow and model are performed on 
Weka. 

Yassine Tabaa et al. [10] described a learning analytics 
system for MOOCs based on Hadoop cluster deployed on a 
private cloud. The main core component of this system is the 
analytics engine which relies on Map and Reduce model 
programming, for performing many different analytics jobs, on 
data that comes from relational database, by using a data 
integrator based on Apache Sqoop for bulk transfer data from 
sql sources to HDFS. The analytics platform can help the 
decision-makers to early identify the students at risk. 

San et al. [11] conducted a study in the field of smart grid 
research. They proposed a complete automation system, where 
large pool of sensors is embedded in the existing power grids 
system for controlling and monitoring it by utilizing modern 
information technologies. Data used in the experiment is in 
form of times series data available from Texas Synchrophasor 
Network. The proposed solution uses Apache Kafka to ingest 
data in real time into the processing layer based on Apache 
Spark, responsible to perform analytics in fast way. 
Computation is done in parallel across the cluster of machines. 

IV. TOOLS 

A. Apache Hadoop 

Apache Hadoop [12], [13] is an open source framework 
written in java. It is used to build a cluster for both distributed 
storage and computation on inexpensive hardware. Hadoop is a 
master slave architecture which hides technical complexity 
with high level abstraction in terms of network I/O operations 
management, fault tolerance and easy horizontal scalability. 
The main subsystems of Hadoop distributed system are (see 
Fig. 1): 

 

Fig. 1. Hadoop architecture. 
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 HDFS: It is a distributed file system, inspired from the 
Google file system GFS [14].When data is stored in 
HDFS, it is divided into a set of blocks over different 
nodes of the cluster. The default size of a block is 128 
MB. 

 Yarn (Yet Another Resource Negociator): It is a 
distributed resource manager introduced in Hadoop 
version 2. 

 MapReduce: It is a distributed and batch-based 
computing model developed after Google paper on 
MapReduce [15]. It allows parallelizing the job in small 
functions map and reducing, and moving the tasks to 
data locality across a cluster. MapReduce in Hadoop 
version 2 runs as Yarn application. 

 

B. Apache Hive 

Apache Hive [16], [17] is a data warehouse and an analysis 
system initially developed at Facebook [18]. It allows query 
and manage large datasets stored in Hadoop distributed cluster 
using a language called Hive Query Language (HQL) similar 
to SQL. Hive converts the queries in one or more MapReduce 
jobs that are executed on Hadoop cluster and returns the results 
to the user. Hive stores all metadata in a relational database, 
and uses by default Derby which is an embedded Java 
relational database. We used MySQL because Derby cannot be 
used in a multi-user environment.  

C. Apache Spark 

Apache Spark [19], [20] is an open source distributed 
Framework built in Scala, developed at the University of 
California Berkeley. It is a Java Virtual Machine designed for 
fast data processing in the main memory of nodes in the 
cluster. It can interact with HDFS and Hive and can run as 
YARN application. The strength of spark resides in its 
programming model based on high level abstraction of 
representing a data structure in cluster memory called Resilient 
Distributed Dataset.  RDD [21] is the main component of 
Spark core. It is resilient because it is capable to rebuild data in 
case of failures in cluster. RDD is an immutable distributed 
collection of objects partitioned across different nodes of 
cluster, and can be created in different ways from external 
sources or in local and from transformations or actions on 
existent RDDs. Spark contains several components built on its 
core like Spark SQL, Spark Streaming, MLlib (Machine 
Learning library), and GraphX (graph processing), thus it 
offers   to programmers an unified programming [22] platform. 
This is the main motivation for choosing it to build our system. 
It allows data sharing between jobs instead of storing 
intermediate results in the disk compared to MapReduce; and is 
well suited for iterative operations. Any application submitted 
to Spark cluster which is master/workers architecture, activates 
five elements in the following order (see Fig. 2): 

 

 

 
Fig. 2. Spark components architecture. 

1) Driver program: Any program submitted to spark starts 

with an instantiation of SparkContext object, which is the main 

entry point to use spark library. SparkContext object use an 

instance of SparkConf which allows setting parameters and the 

required resources to run the application. 

2) Workers: Worker is a slave node, which provides 

resources such computing (CPU), storage, and memory. 

3) Cluster manager: Spark uses a cluster manager to 

allocate cluster resources for executing a job, and manage the 

resources across the cluster of worker nodes.  

4) Executor: Each application has its own executors. 

Executor is a Java virtual machine process which is created on 

a worker for executing tasks. 

5) Task: This is the smallest unit work of executor that will 

be sent to one executor which is launched to compute a RDD 

partition. 

Spark streaming library [23], [24] allows consuming live 
data; it divides the stream in mini batch into time periods equal 
to batch interval. After every batch it produces a DStream (see 
Fig. 3), which is a sequence of Resilient Distributed Dataset 
(RDD). From there, live data can be processed by spark library 
in the same way like a batch processing. 

D. Apache Flume 

Apache Flume [25] is a distributed service designed to 
ingest the streaming data into Hadoop storage system. The data 
loading process is triggered by an event using an event driven 
pipeline architecture based on the principle of the data flow. 
The Event flows from Source to Channel to Sink (see Fig. 4), 
orchestrated by a JVM process called “flume agent” 
responsible to manage the following components: 

 

Fig. 3. Discretized stream abstraction. 
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Fig. 4. Dataflow architecture in Apache Flume. 

1) Sources:  It allows connecting to the data sources and 

collecting the events. There are different types of sources, 

below we cite the main used in real world applications: 

 SpoolingDirectorySource: Retrieves the contents of log 
files that arrive in a directory. 

 ExecSource: Executes a bash command. The most used 
one is tail command which, when it is executed, 
retrieves the last line from a log file. 

 SyslogSource: Redirects the logs data from a syslog 
server to Flume. 

 AvroSource: Allows setting the flume agent to listen on 
a TCP port and pump logs in Avro format. 

2) Channel: It ensures the storage of collected data and the 

fault tolerance in case of failure of the flume agent. Channel 

keeps the event until a sink consumes it. Flume provides three 

types of storage: 

 FileChannel: Persists data on a file system. 

 MemoryChannel: Stores data in memory for better 
performance. 

 JDBCChannel: Uses a JDBC as persistence solution. 

3) Sink: Removes and consumes the event from the 

channel, and moves it to the external destination. Below, we 

cite two types of sinks: 

 AvroSink: Redirects data in Avro format to a distant 
TCP port. 

 HDFSSink: Delivers and writes the events to a local file 
system. 

V. EXPERIMENT 

A. Description 

We have conducted this experiment since October 2016. 
We started by setting up our system around the Moodle E-
Learning platform which is used in HASSAN II University. In 
collaboration with a team of teachers, we have submitted and 
published the following courses: 

 Object Oriented Programming with java. 

 Programming in C ++. 

 Programming in Android. 

 Software Analysis with UML. 

We have authorized access to the courses only to three 
groups of students. We gave them the following services: 

 Consult the course content and download as PDF. 

 View the videos. 

 Click on web links to references in relation to content. 

 Take tests. 

Our goal is to build a real time data pipeline system around 
the existent data source; this system ensures the following 
tasks: 

 Data Integration in two modes offline and online.  

 In- memory Data processing. 

 Storage of data aggregation and result in a distributed 
data warehouse in real time. This data warehouse is 
flexible in order to interact and respond to queries 
performed by different client applications such the 
reporting and analysis tools. 

B. Data 

Moodle stores its data in the relational database natively 
Mysql. We used Workbench to visualize the schema of the 
database which contains about 250 tables. The tables we are 
interested in are those which contain data profile about students 
and courses such as mdl_course, mdl_user, and those which 
contain information about interactions with the platform and 
more specifically with courses such as 
mdl_log_store_standard, mdl_lastaccess, mdl_quizz_attempts. 

C. Data Integration Methodology 

To capture data changes on the Moodle database in order to 
integrate them in our system processing layer, different 
approaches are possible depending on the data changes’ nature 
(INSERT or UPDATE) carried out during students’ activities 
on the Moodle platform. 

The tables required in our context are divided into two 
categories: 

1) Tables whose content does not change during the web 

activity, such as mdl_course, mdl_user, mdl_groups, and 

mdl_role_assignements. These tables are used as the reference 

where we can retrieve the profile information about users and 

courses, such as username, course name, etc. 

We perform the batch replication of these tables to Hive 
data warehouse by using Apache Sqoop [26] which is an 
efficient tool designed to transfer bulk data between a 
relational databases and HDFS. Sqoop allows to extract the 
content of table using SQL queries, import the updates made in 
a database and export the result to Hive data warehouse. 
Several solutions in big data management and analytics use 
Sqoop as main part of data ingestion. 

Code Example : 

-Create database in Hive called moodle-experiment from 

hive terminal: 

Hive> create database moodle_experiment 

-Bulk transfer data from  mdl_user to our data warehouse 
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moodle_experiment 

$ sqoop import --connect jdbc:mysql://URL/moodle_db 

   --username root -P  

   --table mdl_user 

   --hive-import  

   --hive-table moodle-experiment.users -m 1 

2) Tables whose content changes during the web activity, 

such as mdl_ logstore_standard_log , mdl_user_lastaccess. 

The mdl_log_store_standard table is the table where 
Moodle inserts rows in an incremental way. The other tables 
undergo changes in their columns like mdl_user_lastaccess, to 
capture data from these tables; we created Mysql triggers on 
these tables to capture the transactions occurring on them, and 
incrementally populate new tables we created in Moodle 
database. 

Intercept recent data from different tables via multiple 
Flume agents generate a lot of streams. To organize the data 
traffic in subjects and manageable categories, we need a 
middleware or a central hub capable to interact with Spark and 
enable real-time data processing. For this, we use Apache 
Kafka [27] as a pivot point in our system to receive records 
from Flume and push them into Apache Spark. 

Kafka is a distributed persistent subscribe messaging 
system initially developed at LinkedIn. Kafka stores streams of 
events in categories called topics. A topic is a logical collection 
that will receive data from Flume in our context. Kafka uses 
Zookeeper [28] to manage its components and check the 
operations status. 

We created manually different topics in Kafka cluster using 
the script Kafka-topics.sh which is a part of Kafka bin files. 

Example: 

 Creation of a topic named  log_action_1 

kafka-topics.sh --create --zookeeper localhost:2181 --
replication-factor 1--partitions 1 --topic log_action_1 

We use Apache Flume to intercept the latest lines in the 
tables, in order to interact with both Moodle database and 
Kafka cluster, by adding to the flume library the following jar 
files: Flume-ng-sql [29], mysql connector, kafka_2.11-
0.10.0.0. 

The created topic log_action_1 receives fresh records from 
Flume via a customized flume-agent configuration file where 
we set the parameters of source, channel, sink and topic 
(=log_action_1). 

Example: 

#flume-agent configuration file 

#channel  & source 

agent.channels = ch1 

agent.sinks = kafkaSink 

agent.sources = sql-source 

agent.channels.ch1.type = memory 

agent.channels.ch1.capacity = 1000000 

agent.sources.sql-source.channels = ch1 

agent.sources.sql-source.type = 

org.keedio.flume.source.SQLSource 

# database 

agent.sources.sql-source.connection.url 

=jdbc:mysql://URL/moodle_experiment 

agent.sources.sql-source.user = root 

agent.sources.sql-source.password = password 

agent.sources.sql-source.table = 

moodl_experiment.mdl_logstore_standard_log 

#seclect colums to intercept 

agent.sources.sql-source.columns.to.select = 

courseid,userid,action 

agent.sources.sql-source.incremental.column.name = id 

agent.sources.sql-source.incremental.value = 0 

agent.sources.sql-source.run.query.delay=10000 

agent.sources.sql-source.status.file.path = /var/lib/flume 

agent.sources.sql-source.status.file.name = sql-source.status 

agent.sinks.kafkaSink.type=org.apache.flume.sink.kafka.Kafka

Sink 

#topic 

agent.sinks.kafkaSink.brokerList=master:9093 

agent.sinks.kafkaSink.topic= log_action_1 

agent.sinks.kafkaSink.channel=ch1 

agent.sinks.kafkaSink.batchSize=10 

D. Environment Experiment 

We deployed a small local cluster for Hadoop and Spark on 
11 nodes running Ubuntu 14.04 LTS and interconnected via 
one switch of 1Gb/s. The Hadoop cluster is built using Hadoop 
version 2.7.3. The Spark cluster is built using Spark version 
2.0.0. One machine is designed as Master for both Spark and 
Hadoop, the others nodes are both the Hadoop slaves and 
Spark workers. The configuration is the same for all nodes: 

 Intel(R) Core(TM) i5-3470 CPU 3.20GHz (4CPUs). 

 1Gb/s network connection. 

 300GB hard disk. 

 8GB Memory. 

We built the different layers using Java version 8, Scala 
version 2.11.8, Flume version 1.7.0, Kafka version 2.11-0.10, 
Hive version1.7.4, Sqoop version 1.4.6. 

As Fig. 5 shows, our real time data pipeline architecture is 
composed of three main layers: 

 Data capture and integration layer: Responsible for 
capturing data change from Moodle and ingesting data 
in the processing layer using Flume, Sqoop, and Kafka. 

 Data processing layer: Consumes and processes live 
data and stores the result continuously in the persistence 
layer.  

 Persistence layer: Hosts the data warehouse and 
responds to queries from different client applications 
like reporting tool. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 7, 2017 

106 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 5. Real time data pipeline architecture. 

E. Event Processing 

An event is the latest row added in Mysql table, intercepted 
by the corresponding flume agent and respectively stored in 
Kafka topic. We write different streaming programs in Scala in 
order to ensure the following tasks: 

1) Capture the incoming data from Kafka topic and create 

the DStream via the customized receivers. 

2) Extract the value from the raw RDDs in the DStream, 

apply transformations such cleaning, parsing in objects and 

finally generate the new RDDs. 

3) Convert the new RDDs to data frame then create a 

temporary view table to store the new events in a structured 

format which can be queried. 

4) Use Spark SQL to extract statistics from the temporary 

view tables and tables already stored in data warehouse like 

profile data. 

5) Persists the result continuously in Hive data warehouse. 

KafkaUtils API is used to create the input stream in order to 
consume data from Kafka topic by using the 
createDirectStream method. Each event which comes from 
Flume is a line text that contains the headers data and the data 
in interest. From DStream we extract the value and clean 
message with different map operations. 

After cleaning the message, we obtain a new RDD in a 
string comma separated values, then we create a RDD of row 
objects by inferring schema corresponding to a data type using 
Scala case class that encapsulates data as objects. 

To process each RDD in real time we use foreachRDD 
method. The following sample code explains briefly the main 
steps: 

//parameters required to subscribe to a given Topic: 

log_action1 

  "key.deserializer" ->classOf[StringDeserializer], 

  "value.deserializer" ->classOf[StringDeserializer], 

  "group.id" -> "moodle-consumer-group", 

  "auto.offset.reset" -> "earliest", 

  "enable.auto.commit"-> "true", 

"auto.commit.interval.ms"-> "1000", 

"session.timeout.ms"-> "30000" 

) 

val kafkaTopics = " log_action1" 

val topicsSet = kafkaTopics.split(",").toSet 

//receive events from a Topic in plain text format 
val stream = KafkaUtils.createDirectStream[String, 

String](ssc,PreferConsistent,Subscribe[String, 

String](topicsSet, kafkaParams))   

//Extract the value from a stream and process each RDD 

with foreachRDD 

    val lines = stream.map(_.value) 

      lines.foreachRDD { rdd => 

if (!rdd.isEmpty) { 

val sqc = new SQLContext(sc) 

import sqc.implicits._ 

// Clean Convert RDD[String] to RDD[case class] to 

DataFrame 

val linesDataFrame = 

lines.map(_.replace('"',''))..map(_.split(",")). 

map(p =>logCaseExemple(p(0).toDouble, p(1).toDouble, 

p(2))) .toDF() 

// Creates a temporary view table using the DataFrame 

      linesDataFrame.createOrReplaceTempView("view") 

//Insert continuous streams into hive table 
     sqc.sql("insert into table logm_hive_table select * from 

view") 

// select the parsed messages from table using SQL and 

print it 
      val linesDFquery = sqc.sql("SELECT courseid, 

count(distinct userid) from view where courseid> 1 group by 

courseid ")  } } 

linesDFquery.show() 

    // Start the computation on data stream 

ssc.start() 

ssc.awaitTermination() 

F. Data Visualization 

Hive provides a service called hiveserver2 [30] based on 
Thrift RPC [31], which allows any client like Java, C++, php, 
and Javascript to interact with its data warehouse. 

We build a web application connected to our data 
warehouse in order to retrieve live result and visualize a 
dashboard containing a set of indicators as student progress in 
courses, count course views, active courses, and student 
performance. Fig. 6 illustrates the visualization in near real 
time of the data extracted from the table named progress stored 
in data warehouse.  
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Fig. 6. Learners progress. 

 

Fig. 7. Real time course view.

It summarizes information about students’ progress in each 
course, such student name, course name, number of visits, the 
first visit, number of access, total of completed activities, status 
of progress in activities (completed or incomplete). 

The dashboard offers the possibility to apply filters on the 
result. Fig. 7 illustrates the real time count view in all courses.   
The data is extracted from the table in data warehouse named 
count_vcourse. 

G. Analysis of Students’ Behavior using Clustering 

Clustering is an unsupervised machine learning technique, 
used in data exploratory, knowledge discovery  and is also the 
starting point of building a recommender system. Clustering 
algorithm attempts to find natural groups of similar items in 
data, and put these data points in the same cluster. Two 
standard methods are used in clustering [32] hierarchical 
clustering and partitioning clustering. 

K-means is the best known partitioning algorithm and can 
be described as follows: 

1) Choose random k points as initial cluster centers called 

centroids. 

2) Assign each data point to their nearest centroid 

according to the Euclidean distance function. 

3) Update the centroids for the clusters by calculating the 

mean value of the points assigned to the cluster. 

4) Repeat phases 2 and 3 until the centroids do not change 

or the maximum number of iterations is reached. 

 A good K-means clustering model will split the objects in 
clusters by minimizing the total within-cluster variation or total 
within-cluster sum of square (known as WCSS) defined by the 
following formula: 

1

2

1

( ) ( )
kC

K

i k

k x

WCSS K x 
 

     

Where, xi is a data point in cluster Ck and µk is the mean 
value of the points assigned to the cluster Ck . 

The dataset used in this section is extracted from data 
warehouse and contains 179 observations. Each observation is 
described by 9 attributes (see Table 1) related to the students’ 
actions in the most active course which is Object Oriented 
Programming with Java. 
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Analysis is performed in Rstudio by using a SparkR library 
[33] which enables large scale data analysis in Spark engine 
from the R environment. 

 We did not include the attributes student_id, student_name 
in data preparation so the resulting dataset consists of 7 
attributes. We have normalized all numerical data with z-score 
standardization method, in order to avoid the dominance of 
some features since they vary in range. 

The appropriate cluster number is found as follow: 

1) Execute k-means clustering algorithm for different 

numbers of   k from 1 to 15 by using an implementation of k-

means algorithm which is included in Spark MLlib (Spark 

Machine Learning library). 

2) Compute the total within-cluster sum of square (WCSS) 

for each number of cluster and plot the curve of WCSS 

corresponding to values of k. 

3) According to the Elbow method, the curve looks like an 

arm (see Fig. 8), the location of the “elbow” represents the 

optimal number of clusters. 
As the goal of this analysis is to study the clusters of the 

students with similar browsing behavior we give in Fig. 9 the 
coordinates of cluster centroids. Because values are 
standardized, positive values represent the values that are 
above the overall mean for all students in dataset, and negative 
values represent the values that are below the mean. 

In Fig. 10 below, the values represent variable means for 
each cluster in the original metric. 

TABLE I.  ATTRIBUTES DESCRIPTION OF THE DATASET 

Attribute Description 

student_id Student identifier 

studentname Student name 

totalAcess 
Number of times the student has visited the 

course 

total_sectionsvisite Number of views on   sections 

total_videovisited Total of viewed videos 

total_linksvisited Total of visited links 

time_spentcourse Time spent in sections in minutes 

time_spent_test Time spent in tests in minutes 

avgscore 
Average score obtained in all tests (from 0 to 
10) 

 
Fig. 8. Find optimal number of clusters with Elbow method. 

Examining Fig. 9 and 10, we note that: 

 The average of all actions of students in cluster 1 is 
below the global mean except the score. 

 The average of the number of visits to the course, the 
number of views on sections and the time spent in 
course by the students in cluster 1 fall between those of 
the other clusters.  

 The students of cluster 1 have consulted less videos and 
links, and have spent less time doing tests compared to 
students in other clusters. 

 The cluster 2 represents the students at risk. 

 The cluster 3 is the group of the average students. 

 
Fig. 9. Coordinates of the cluster centroids 

 
Fig. 10. Variable means in original metric 

We can deduce that the cluster 1 is the group of students 
who have adopted a moderate behavior in all actions and 
achieved good results.  

It is very early to confirm or deny that the strong presence 
in a platform guarantees a good result; therefore we can’t 
generalize this result. To do this, we need more additional 
information, so we have to study how to feed our data 
warehouse with other data that are related to the students’ 
profile, such as the academic past, personal data and other data 
interactions with the platform which are not available in the 
database of the E-Learning platform. 

VI. CONCLUSION 

In this paper we addressed the challenge to implement an    
event-driven system around a web based learning platform. 
This system is in the form of   a real time data pipeline capable 
to capture data change from RDBMS database source and 
extract valuable information. We adopt a big data concept to 
design, on inexpensive hardware, a flexible and distributed 
architecture composed of three layers: data capture, data 
processing and data persistence. We combine Apache Flume 
and Sqoop to collect fixed and live data. Apache Kafka is 
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responsible for organizing the data traffic. To process data in 
real time we use Spark Streaming library. Apache Hive is 
used to build our data warehouse hosted in a distributed storage 
system. 

During this work which is based on a real experience we 
have identified new directions to extend the proposed work. 
The first is to study and investigate new methods to combine 
social networks data, past academic and personal data with 
actual data in data warehouse, to get more information about 
students. The second is to develop an adaptive learning 
system based on machine learning models like predictive and 
recommender system in order to apply these models to assist 
students during their interactions with the E-Learning platform. 
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