
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

101 | P a g e

www.ijacsa.thesai.org

Real-Time Analysis of Students’ Activities on an

E-Learning Platform based on Apache Spark

Abdelmajid Chaffai

RITM LAB, CED ENSEM

Hassan II University

Casablanca, Morocco

Larbi Hassouni

RITM LAB, CED ENSEM

Hassan II University

Casablanca, Morocco

Houda Anoun

RITM LAB CED ENSEM

Hassan II University

Casablanca, Morocco

Abstract—Real time analytics is the capacity to extract

valuables insights from data that comes continuously from

activities on the web or network sensors. It is largely used in web

based business to drive decisions based on user’s experiences,

such dynamic pricing and personalized advertising. Many

universities have adopted web based learning in their learning

process. They use data-mining techniques to better understand

students’ behavior, and most of the tools developed are based on

historical and stored data, and do not allow real time reactivity.

Online activities of learners generate at high speed a huge

amount of data in form of users’ interactions which have all

characteristics to be considered as Big data. Deal with volume

and velocity of these data in order to inform and enable

decisions-makers to act at right time lead us to use new methods

to capture E-Learning data, and process it in real time.

This paper focuses on the design and implementation of

modern and hybrid real time data pipeline architecture using

Apache Flume to collect data, Apache Spark as an unified engine

computation for performing analytics on students’ activities data

and Apache Hive as a data warehouse for storing the processed

data and for use by various reporting tools. To conceive this

platform we conduct an experiment on Moodle database source.

Keywords—Real time analytics; e-learning; big data; Hadoop;

spark; Moodle; change data capture; streaming; data visualization

clustering

I. INTRODUCTION

E-Learning is a revolutionary and very promising field that
brings about a radical change in the field of learning. Web
based technologies are used to create virtual classrooms with
attractive materials and resources, and provides a wide range of
solutions that support the learning process and services that are
accessible anytime from anywhere.

Interactions of students with an E-Learning platform often
come in three forms:

 Learner-learner

 Learner-instructor

 Learner-content

Learning Analytics (LA) is a recent field of research and
development of tools and technologies that help to analyze and
understand the interactions of learners with educational
resources. In the first international Conference on Learning
Analytics and Knowledge (LAK 2011), it was defined as “the
measurement, collection, analysis and reporting of data about

learners and their contexts, for purposes of understanding and
optimizing learning and the environments in which it occurs”
[1]. A related domain is Educational data mining (EDM) which
is a data-driven field defined in the community site [2] as
“Educational Data Mining is an emerging discipline, concerned
with developing methods for exploring the unique and
increasingly large-scale data that come from educational
settings, and using those methods to better understand students,
and the settings which they learn in.” LA aims to improve E-
Learning [3] based on the analysis of the learners’ behavior
during their interactions with the course.

As more the learning in Higher education are occurring on
the web, online activities generate, at high speed, huge
amounts of information in the form of users’ traces. Deal with
volume and velocity of data in order to extract valuable
information that can support real-time decision making, lead us
to design a modern and flexible architecture that can manage
and scale to the continuous stream data.

In this work, we propose a solution for the near-real time
analysis of students’ activities on a web based learning
platform, the most widely used in Moroccan higher education
institutions which is Moodle. For this, we have built a system
of complete Data Analytics Pipeline which is composed of
three main layers. The first layer ensures the data capture from
Moodle database. The second layer performs real time
processing. The third layer provides a flexible data persistence
which can be used by different reporting tools.

All operations are executed in a distributed environment on
inexpensive hardware. We use open source technologies such
Apache Spark as the main computing engine and Hive to
conceive the data warehouse on top of Hadoop cluster.

Analyzing data stream that come continuously from the
Moodle platform can greatly help us to track students’ progress
in courses and detect the students at risk. It can also allow us to
monitor the daily health of the E-Learning platform by using
fresh reports which can be useful to deduct smart ideas in order
to redefine the decisions strategies at right time by adjusting
and improving the courses content that respond to students’
needs.

The rest of the paper is structured as follows. Section 2
defines big data analytics. Section 3 discusses related work.
Section 4 presents the tools used in our work. Section 5
presents the structure of the proposed system and the data
processing methodology adopted. Then, it presents and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

102 | P a g e

www.ijacsa.thesai.org

discusses the experiment results. Finally, Section 6 concludes
the paper and describes the future research directions.

II. BIG DATA ANALYTICS

Big data [4] is a huge amount of data that is generated from
various sources. It may be structured when data come from flat
files or relational databases, and unstructured or semi
structured when data come from the web activities or
equipment sensors. Acquiring data very fast does not create the
value to the business [5], it needs additional efforts to be
meaningful. Big data analytics is the process to apply statistical
analysis, data mining, predictive analytics, and text mining on
large amount of data using a distributed platform. It depends on
speed at which data arrives, and can be divided in two
categories [6]:

1) Batch Processing: Computation and analysis are applied
on data that comes in big batches, then fixed and stored in
distributed file system. This type of processing is largely used
to learn from historical data by using clustering and
classification techniques to create machine learning models
which can be applied on new data.

2) Streaming Processing: Computation and analysis are
applied in real time on recent data that come in continuous
records. There are two distinct approaches to analyze live data.
The first is to process each record individually, and the second
is to split the input data in discretized units called mini-batch
according to the interval batch. Stream processing solution
must be connected with the source in real time in order to
continuously ensure the capturing data.

III. RELATED WORK

P.K. Udupi et al. [7] proposed a smart learning system
model, they describe the possibilities to integrate the E-
Learning paradigm with the big data analytics concept and
smart utilization. The proposed system contains three layers of
different technology framework. The first layer is an E-
Learning framework which contains the information and data
of user performance evaluation. The second layer is a big data
framework which performs a set of different tasks like data
extraction, data process and analysis. The third layer is a smart
technology framework which enables support of technology
need for capturing, predicting, analyzing, decision making and
initiates necessary actions as control parameters.

B. Logica et al. [8] lead a study where they discuss the
benefits of the use of big data technologies, in order to resolve
the problem of managing the massive increase in the produced
data volume in educational setting and extracting value from
these data to enhance the learning process. They proposed a
model for big learning data on cloud architecture based on
Hadoop cluster, which can be integrated with the existing
Learning Management System (LMS) that the universities
usually already own. The different levels of the proposed
architecture are designed for collecting any type of data,
processing them using Hadoop cluster, performing
classification on data stored, and exploring unstructured data
using the graphical Gephi tool.

Sunita B Aher et al. [9] proposed a framework for
recommendation of courses in E-Learning system Moodle.

They use the enrolled data related to a specific set of courses
collected from Moodle database. They use different machine
learning algorithms: classification, association rules, and
clustering to produce a final model for recommendation. All
steps of building the dataflow and model are performed on
Weka.

Yassine Tabaa et al. [10] described a learning analytics
system for MOOCs based on Hadoop cluster deployed on a
private cloud. The main core component of this system is the
analytics engine which relies on Map and Reduce model
programming, for performing many different analytics jobs, on
data that comes from relational database, by using a data
integrator based on Apache Sqoop for bulk transfer data from
sql sources to HDFS. The analytics platform can help the
decision-makers to early identify the students at risk.

San et al. [11] conducted a study in the field of smart grid
research. They proposed a complete automation system, where
large pool of sensors is embedded in the existing power grids
system for controlling and monitoring it by utilizing modern
information technologies. Data used in the experiment is in
form of times series data available from Texas Synchrophasor
Network. The proposed solution uses Apache Kafka to ingest
data in real time into the processing layer based on Apache
Spark, responsible to perform analytics in fast way.
Computation is done in parallel across the cluster of machines.

IV. TOOLS

A. Apache Hadoop

Apache Hadoop [12], [13] is an open source framework
written in java. It is used to build a cluster for both distributed
storage and computation on inexpensive hardware. Hadoop is a
master slave architecture which hides technical complexity
with high level abstraction in terms of network I/O operations
management, fault tolerance and easy horizontal scalability.
The main subsystems of Hadoop distributed system are (see
Fig. 1):

Fig. 1. Hadoop architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

103 | P a g e

www.ijacsa.thesai.org

 HDFS: It is a distributed file system, inspired from the
Google file system GFS [14].When data is stored in
HDFS, it is divided into a set of blocks over different
nodes of the cluster. The default size of a block is 128
MB.

 Yarn (Yet Another Resource Negociator): It is a
distributed resource manager introduced in Hadoop
version 2.

 MapReduce: It is a distributed and batch-based
computing model developed after Google paper on
MapReduce [15]. It allows parallelizing the job in small
functions map and reducing, and moving the tasks to
data locality across a cluster. MapReduce in Hadoop
version 2 runs as Yarn application.

B. Apache Hive

Apache Hive [16], [17] is a data warehouse and an analysis
system initially developed at Facebook [18]. It allows query
and manage large datasets stored in Hadoop distributed cluster
using a language called Hive Query Language (HQL) similar
to SQL. Hive converts the queries in one or more MapReduce
jobs that are executed on Hadoop cluster and returns the results
to the user. Hive stores all metadata in a relational database,
and uses by default Derby which is an embedded Java
relational database. We used MySQL because Derby cannot be
used in a multi-user environment.

C. Apache Spark

Apache Spark [19], [20] is an open source distributed
Framework built in Scala, developed at the University of
California Berkeley. It is a Java Virtual Machine designed for
fast data processing in the main memory of nodes in the
cluster. It can interact with HDFS and Hive and can run as
YARN application. The strength of spark resides in its
programming model based on high level abstraction of
representing a data structure in cluster memory called Resilient
Distributed Dataset. RDD [21] is the main component of
Spark core. It is resilient because it is capable to rebuild data in
case of failures in cluster. RDD is an immutable distributed
collection of objects partitioned across different nodes of
cluster, and can be created in different ways from external
sources or in local and from transformations or actions on
existent RDDs. Spark contains several components built on its
core like Spark SQL, Spark Streaming, MLlib (Machine
Learning library), and GraphX (graph processing), thus it
offers to programmers an unified programming [22] platform.
This is the main motivation for choosing it to build our system.
It allows data sharing between jobs instead of storing
intermediate results in the disk compared to MapReduce; and is
well suited for iterative operations. Any application submitted
to Spark cluster which is master/workers architecture, activates
five elements in the following order (see Fig. 2):

Fig. 2. Spark components architecture.

1) Driver program: Any program submitted to spark starts

with an instantiation of SparkContext object, which is the main

entry point to use spark library. SparkContext object use an

instance of SparkConf which allows setting parameters and the

required resources to run the application.

2) Workers: Worker is a slave node, which provides

resources such computing (CPU), storage, and memory.

3) Cluster manager: Spark uses a cluster manager to

allocate cluster resources for executing a job, and manage the

resources across the cluster of worker nodes.

4) Executor: Each application has its own executors.

Executor is a Java virtual machine process which is created on

a worker for executing tasks.

5) Task: This is the smallest unit work of executor that will

be sent to one executor which is launched to compute a RDD

partition.

Spark streaming library [23], [24] allows consuming live
data; it divides the stream in mini batch into time periods equal
to batch interval. After every batch it produces a DStream (see
Fig. 3), which is a sequence of Resilient Distributed Dataset
(RDD). From there, live data can be processed by spark library
in the same way like a batch processing.

D. Apache Flume

Apache Flume [25] is a distributed service designed to
ingest the streaming data into Hadoop storage system. The data
loading process is triggered by an event using an event driven
pipeline architecture based on the principle of the data flow.
The Event flows from Source to Channel to Sink (see Fig. 4),
orchestrated by a JVM process called “flume agent”
responsible to manage the following components:

Fig. 3. Discretized stream abstraction.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

104 | P a g e

www.ijacsa.thesai.org

Fig. 4. Dataflow architecture in Apache Flume.

1) Sources: It allows connecting to the data sources and

collecting the events. There are different types of sources,

below we cite the main used in real world applications:

 SpoolingDirectorySource: Retrieves the contents of log
files that arrive in a directory.

 ExecSource: Executes a bash command. The most used
one is tail command which, when it is executed,
retrieves the last line from a log file.

 SyslogSource: Redirects the logs data from a syslog
server to Flume.

 AvroSource: Allows setting the flume agent to listen on
a TCP port and pump logs in Avro format.

2) Channel: It ensures the storage of collected data and the

fault tolerance in case of failure of the flume agent. Channel

keeps the event until a sink consumes it. Flume provides three

types of storage:

 FileChannel: Persists data on a file system.

 MemoryChannel: Stores data in memory for better
performance.

 JDBCChannel: Uses a JDBC as persistence solution.

3) Sink: Removes and consumes the event from the

channel, and moves it to the external destination. Below, we

cite two types of sinks:

 AvroSink: Redirects data in Avro format to a distant
TCP port.

 HDFSSink: Delivers and writes the events to a local file
system.

V. EXPERIMENT

A. Description

We have conducted this experiment since October 2016.
We started by setting up our system around the Moodle E-
Learning platform which is used in HASSAN II University. In
collaboration with a team of teachers, we have submitted and
published the following courses:

 Object Oriented Programming with java.

 Programming in C ++.

 Programming in Android.

 Software Analysis with UML.

We have authorized access to the courses only to three
groups of students. We gave them the following services:

 Consult the course content and download as PDF.

 View the videos.

 Click on web links to references in relation to content.

 Take tests.

Our goal is to build a real time data pipeline system around
the existent data source; this system ensures the following
tasks:

 Data Integration in two modes offline and online.

 In- memory Data processing.

 Storage of data aggregation and result in a distributed
data warehouse in real time. This data warehouse is
flexible in order to interact and respond to queries
performed by different client applications such the
reporting and analysis tools.

B. Data

Moodle stores its data in the relational database natively
Mysql. We used Workbench to visualize the schema of the
database which contains about 250 tables. The tables we are
interested in are those which contain data profile about students
and courses such as mdl_course, mdl_user, and those which
contain information about interactions with the platform and
more specifically with courses such as
mdl_log_store_standard, mdl_lastaccess, mdl_quizz_attempts.

C. Data Integration Methodology

To capture data changes on the Moodle database in order to
integrate them in our system processing layer, different
approaches are possible depending on the data changes’ nature
(INSERT or UPDATE) carried out during students’ activities
on the Moodle platform.

The tables required in our context are divided into two
categories:

1) Tables whose content does not change during the web

activity, such as mdl_course, mdl_user, mdl_groups, and

mdl_role_assignements. These tables are used as the reference

where we can retrieve the profile information about users and

courses, such as username, course name, etc.

We perform the batch replication of these tables to Hive
data warehouse by using Apache Sqoop [26] which is an
efficient tool designed to transfer bulk data between a
relational databases and HDFS. Sqoop allows to extract the
content of table using SQL queries, import the updates made in
a database and export the result to Hive data warehouse.
Several solutions in big data management and analytics use
Sqoop as main part of data ingestion.

Code Example :

-Create database in Hive called moodle-experiment from

hive terminal:

Hive> create database moodle_experiment

-Bulk transfer data from mdl_user to our data warehouse

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

105 | P a g e

www.ijacsa.thesai.org

moodle_experiment

$ sqoop import --connect jdbc:mysql://URL/moodle_db

 --username root -P

 --table mdl_user

 --hive-import

 --hive-table moodle-experiment.users -m 1

2) Tables whose content changes during the web activity,

such as mdl_ logstore_standard_log , mdl_user_lastaccess.

The mdl_log_store_standard table is the table where
Moodle inserts rows in an incremental way. The other tables
undergo changes in their columns like mdl_user_lastaccess, to
capture data from these tables; we created Mysql triggers on
these tables to capture the transactions occurring on them, and
incrementally populate new tables we created in Moodle
database.

Intercept recent data from different tables via multiple
Flume agents generate a lot of streams. To organize the data
traffic in subjects and manageable categories, we need a
middleware or a central hub capable to interact with Spark and
enable real-time data processing. For this, we use Apache
Kafka [27] as a pivot point in our system to receive records
from Flume and push them into Apache Spark.

Kafka is a distributed persistent subscribe messaging
system initially developed at LinkedIn. Kafka stores streams of
events in categories called topics. A topic is a logical collection
that will receive data from Flume in our context. Kafka uses
Zookeeper [28] to manage its components and check the
operations status.

We created manually different topics in Kafka cluster using
the script Kafka-topics.sh which is a part of Kafka bin files.

Example:

 Creation of a topic named log_action_1

kafka-topics.sh --create --zookeeper localhost:2181 --
replication-factor 1--partitions 1 --topic log_action_1

We use Apache Flume to intercept the latest lines in the
tables, in order to interact with both Moodle database and
Kafka cluster, by adding to the flume library the following jar
files: Flume-ng-sql [29], mysql connector, kafka_2.11-
0.10.0.0.

The created topic log_action_1 receives fresh records from
Flume via a customized flume-agent configuration file where
we set the parameters of source, channel, sink and topic
(=log_action_1).

Example:

#flume-agent configuration file

#channel & source

agent.channels = ch1

agent.sinks = kafkaSink

agent.sources = sql-source

agent.channels.ch1.type = memory

agent.channels.ch1.capacity = 1000000

agent.sources.sql-source.channels = ch1

agent.sources.sql-source.type =

org.keedio.flume.source.SQLSource

database

agent.sources.sql-source.connection.url

=jdbc:mysql://URL/moodle_experiment

agent.sources.sql-source.user = root

agent.sources.sql-source.password = password

agent.sources.sql-source.table =

moodl_experiment.mdl_logstore_standard_log

#seclect colums to intercept

agent.sources.sql-source.columns.to.select =

courseid,userid,action

agent.sources.sql-source.incremental.column.name = id

agent.sources.sql-source.incremental.value = 0

agent.sources.sql-source.run.query.delay=10000

agent.sources.sql-source.status.file.path = /var/lib/flume

agent.sources.sql-source.status.file.name = sql-source.status

agent.sinks.kafkaSink.type=org.apache.flume.sink.kafka.Kafka

Sink

#topic

agent.sinks.kafkaSink.brokerList=master:9093

agent.sinks.kafkaSink.topic= log_action_1

agent.sinks.kafkaSink.channel=ch1

agent.sinks.kafkaSink.batchSize=10

D. Environment Experiment

We deployed a small local cluster for Hadoop and Spark on
11 nodes running Ubuntu 14.04 LTS and interconnected via
one switch of 1Gb/s. The Hadoop cluster is built using Hadoop
version 2.7.3. The Spark cluster is built using Spark version
2.0.0. One machine is designed as Master for both Spark and
Hadoop, the others nodes are both the Hadoop slaves and
Spark workers. The configuration is the same for all nodes:

 Intel(R) Core(TM) i5-3470 CPU 3.20GHz (4CPUs).

 1Gb/s network connection.

 300GB hard disk.

 8GB Memory.

We built the different layers using Java version 8, Scala
version 2.11.8, Flume version 1.7.0, Kafka version 2.11-0.10,
Hive version1.7.4, Sqoop version 1.4.6.

As Fig. 5 shows, our real time data pipeline architecture is
composed of three main layers:

 Data capture and integration layer: Responsible for
capturing data change from Moodle and ingesting data
in the processing layer using Flume, Sqoop, and Kafka.

 Data processing layer: Consumes and processes live
data and stores the result continuously in the persistence
layer.

 Persistence layer: Hosts the data warehouse and
responds to queries from different client applications
like reporting tool.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

106 | P a g e

www.ijacsa.thesai.org

Fig. 5. Real time data pipeline architecture.

E. Event Processing

An event is the latest row added in Mysql table, intercepted
by the corresponding flume agent and respectively stored in
Kafka topic. We write different streaming programs in Scala in
order to ensure the following tasks:

1) Capture the incoming data from Kafka topic and create

the DStream via the customized receivers.

2) Extract the value from the raw RDDs in the DStream,

apply transformations such cleaning, parsing in objects and

finally generate the new RDDs.

3) Convert the new RDDs to data frame then create a

temporary view table to store the new events in a structured

format which can be queried.

4) Use Spark SQL to extract statistics from the temporary

view tables and tables already stored in data warehouse like

profile data.

5) Persists the result continuously in Hive data warehouse.

KafkaUtils API is used to create the input stream in order to
consume data from Kafka topic by using the
createDirectStream method. Each event which comes from
Flume is a line text that contains the headers data and the data
in interest. From DStream we extract the value and clean
message with different map operations.

After cleaning the message, we obtain a new RDD in a
string comma separated values, then we create a RDD of row
objects by inferring schema corresponding to a data type using
Scala case class that encapsulates data as objects.

To process each RDD in real time we use foreachRDD
method. The following sample code explains briefly the main
steps:

//parameters required to subscribe to a given Topic:

log_action1

 "key.deserializer" ->classOf[StringDeserializer],

 "value.deserializer" ->classOf[StringDeserializer],

 "group.id" -> "moodle-consumer-group",

 "auto.offset.reset" -> "earliest",

 "enable.auto.commit"-> "true",

"auto.commit.interval.ms"-> "1000",

"session.timeout.ms"-> "30000"

)

val kafkaTopics = " log_action1"

val topicsSet = kafkaTopics.split(",").toSet

//receive events from a Topic in plain text format
val stream = KafkaUtils.createDirectStream[String,

String](ssc,PreferConsistent,Subscribe[String,

String](topicsSet, kafkaParams))

//Extract the value from a stream and process each RDD

with foreachRDD

 val lines = stream.map(_.value)

 lines.foreachRDD { rdd =>

if (!rdd.isEmpty) {

val sqc = new SQLContext(sc)

import sqc.implicits._

// Clean Convert RDD[String] to RDD[case class] to

DataFrame

val linesDataFrame =

lines.map(_.replace('"',''))..map(_.split(",")).

map(p =>logCaseExemple(p(0).toDouble, p(1).toDouble,

p(2))) .toDF()

// Creates a temporary view table using the DataFrame

 linesDataFrame.createOrReplaceTempView("view")

//Insert continuous streams into hive table
 sqc.sql("insert into table logm_hive_table select * from

view")

// select the parsed messages from table using SQL and

print it
 val linesDFquery = sqc.sql("SELECT courseid,

count(distinct userid) from view where courseid> 1 group by

courseid ") } }

linesDFquery.show()

 // Start the computation on data stream

ssc.start()

ssc.awaitTermination()

F. Data Visualization

Hive provides a service called hiveserver2 [30] based on
Thrift RPC [31], which allows any client like Java, C++, php,
and Javascript to interact with its data warehouse.

We build a web application connected to our data
warehouse in order to retrieve live result and visualize a
dashboard containing a set of indicators as student progress in
courses, count course views, active courses, and student
performance. Fig. 6 illustrates the visualization in near real
time of the data extracted from the table named progress stored
in data warehouse.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

107 | P a g e

www.ijacsa.thesai.org

Fig. 6. Learners progress.

Fig. 7. Real time course view.

It summarizes information about students’ progress in each
course, such student name, course name, number of visits, the
first visit, number of access, total of completed activities, status
of progress in activities (completed or incomplete).

The dashboard offers the possibility to apply filters on the
result. Fig. 7 illustrates the real time count view in all courses.
The data is extracted from the table in data warehouse named
count_vcourse.

G. Analysis of Students’ Behavior using Clustering

Clustering is an unsupervised machine learning technique,
used in data exploratory, knowledge discovery and is also the
starting point of building a recommender system. Clustering
algorithm attempts to find natural groups of similar items in
data, and put these data points in the same cluster. Two
standard methods are used in clustering [32] hierarchical
clustering and partitioning clustering.

K-means is the best known partitioning algorithm and can
be described as follows:

1) Choose random k points as initial cluster centers called

centroids.

2) Assign each data point to their nearest centroid

according to the Euclidean distance function.

3) Update the centroids for the clusters by calculating the

mean value of the points assigned to the cluster.

4) Repeat phases 2 and 3 until the centroids do not change

or the maximum number of iterations is reached.

 A good K-means clustering model will split the objects in
clusters by minimizing the total within-cluster variation or total
within-cluster sum of square (known as WCSS) defined by the
following formula:

1

2

1

() ()
kC

K

i k

k x

WCSS K x

Where, xi is a data point in cluster Ck and µk is the mean
value of the points assigned to the cluster Ck .

The dataset used in this section is extracted from data
warehouse and contains 179 observations. Each observation is
described by 9 attributes (see Table 1) related to the students’
actions in the most active course which is Object Oriented
Programming with Java.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

108 | P a g e

www.ijacsa.thesai.org

Analysis is performed in Rstudio by using a SparkR library
[33] which enables large scale data analysis in Spark engine
from the R environment.

 We did not include the attributes student_id, student_name
in data preparation so the resulting dataset consists of 7
attributes. We have normalized all numerical data with z-score
standardization method, in order to avoid the dominance of
some features since they vary in range.

The appropriate cluster number is found as follow:

1) Execute k-means clustering algorithm for different

numbers of k from 1 to 15 by using an implementation of k-

means algorithm which is included in Spark MLlib (Spark

Machine Learning library).

2) Compute the total within-cluster sum of square (WCSS)

for each number of cluster and plot the curve of WCSS

corresponding to values of k.

3) According to the Elbow method, the curve looks like an

arm (see Fig. 8), the location of the “elbow” represents the

optimal number of clusters.
As the goal of this analysis is to study the clusters of the

students with similar browsing behavior we give in Fig. 9 the
coordinates of cluster centroids. Because values are
standardized, positive values represent the values that are
above the overall mean for all students in dataset, and negative
values represent the values that are below the mean.

In Fig. 10 below, the values represent variable means for
each cluster in the original metric.

TABLE I. ATTRIBUTES DESCRIPTION OF THE DATASET

Attribute Description

student_id Student identifier

studentname Student name

totalAcess
Number of times the student has visited the

course

total_sectionsvisite Number of views on sections

total_videovisited Total of viewed videos

total_linksvisited Total of visited links

time_spentcourse Time spent in sections in minutes

time_spent_test Time spent in tests in minutes

avgscore
Average score obtained in all tests (from 0 to
10)

Fig. 8. Find optimal number of clusters with Elbow method.

Examining Fig. 9 and 10, we note that:

 The average of all actions of students in cluster 1 is
below the global mean except the score.

 The average of the number of visits to the course, the
number of views on sections and the time spent in
course by the students in cluster 1 fall between those of
the other clusters.

 The students of cluster 1 have consulted less videos and
links, and have spent less time doing tests compared to
students in other clusters.

 The cluster 2 represents the students at risk.

 The cluster 3 is the group of the average students.

Fig. 9. Coordinates of the cluster centroids

Fig. 10. Variable means in original metric

We can deduce that the cluster 1 is the group of students
who have adopted a moderate behavior in all actions and
achieved good results.

It is very early to confirm or deny that the strong presence
in a platform guarantees a good result; therefore we can’t
generalize this result. To do this, we need more additional
information, so we have to study how to feed our data
warehouse with other data that are related to the students’
profile, such as the academic past, personal data and other data
interactions with the platform which are not available in the
database of the E-Learning platform.

VI. CONCLUSION

In this paper we addressed the challenge to implement an
event-driven system around a web based learning platform.
This system is in the form of a real time data pipeline capable
to capture data change from RDBMS database source and
extract valuable information. We adopt a big data concept to
design, on inexpensive hardware, a flexible and distributed
architecture composed of three layers: data capture, data
processing and data persistence. We combine Apache Flume
and Sqoop to collect fixed and live data. Apache Kafka is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

109 | P a g e

www.ijacsa.thesai.org

responsible for organizing the data traffic. To process data in
real time we use Spark Streaming library. Apache Hive is
used to build our data warehouse hosted in a distributed storage
system.

During this work which is based on a real experience we
have identified new directions to extend the proposed work.
The first is to study and investigate new methods to combine
social networks data, past academic and personal data with
actual data in data warehouse, to get more information about
students. The second is to develop an adaptive learning
system based on machine learning models like predictive and
recommender system in order to apply these models to assist
students during their interactions with the E-Learning platform.

REFERENCES

[1] G. Siemens and D. Gasevic (2012). Guest Editorial –“Learning and
Knowledge Analytics”. Educational Technology & Society, 15 (3), 1–2.

[2] EDM: http://www.educationaldatamining.org/.

[3] G. Siemens and R.S.J.d. Baker, “Learning Analytics and Educational
Data Mining: Towards Communication and Collaboration”, LAK '12
Proceedings of the 2nd International Conference on Learning Analytics
and Knowledge Pages 252-254.

[4] S. Khan, X. Liu, K. A. Shakil, M. Alam, A survey on scholarly data:
From big data perspective, Information Processing & Management,
Volume 53, Issue 4, 2017, Pages 923-944, ISSN 0306-4573,
http://dx.doi.org/10.1016/j.ipm.2017.03.006.

[5] M. Ali-ud-din Khan, M. F. Uddin, N. Gupta, “Seven V’s of Big Data
Understanding Big Data to extract Value”, Proceedings of 2014 Zone 1
Conference of the American Society for Engineering Education (ASEE
Zone 1).

[6] Tom White, “Hadoop - The Definitive Guide: Storage an d Analysis at
Internet Scale (2. ed.)”, Publisher: O'Reilly, ISBN: 978-1-449-38973-4.

[7] P.K. Udupi, P. Malali and H. Noronha, “Big data integration for
transition from e-learning to smart learning framework”, 2016 3rd MEC
International Conference on Big Data and Smart City (ICBDSC),
Muscat, 2016, pp. 1-4. doi: 10.1109/ICBDSC.2016.7460379.

[8] B. Logica and R. Magdalena, “Using Big Data in the Academic
Environment”, Procedia Economics and Finance, Volume 33, 2015,
Pages 277-286, ISSN 2212-5671, http://dx.doi.org/10.1016/S2212-
5671(15)017128.(http://www.sciencedirect.com/science/article/pii/S221
2567115017128).

[9] S.B. Aher and Lobo L.M.R.J., “Course Recommender System in E-
learning”, International Journal of Computer Science and
Communication, Vol. 3, No. 1, January-June 2012, pp. 159-164.

[10] Y. Tabaa and A. Medouri, “LASyM: A Learning Analytics System for
MOOCs”, (IJACSA) International Journal of Advanced Computer
Science and Applications, Vol. 4, No. 5, 2013.

[11] Shyam R., Bharathi Ganesh HB, Sachin Kumar S, Prabaharan
Poornachandran and Soman K P, “Apache Spark a Big Data Analytics
Platform for Smart Grid”, Procedia Technology 21 (2015): 171-178.
DOI: 10.1016/j.protcy.2015.10.085.

[12] Han Hu, Yonggang Wen, Tat-Seng Chua and Xuelong Li, “Toward
Scalable Systems for Big Data Analytics: A Technology Tutorial”, IEEE

Access, Vol. 2, 2014, pp.652-687, DOI:
10.1109/ACCESS.2014.2332453.

[13] Apache Hadoop: http://hadoop.apache.org/.

[14] S. Ghemawat, H. Gobioff and Shun-Tak Leung, “The Google File
System”, ACM SIGOPS operating systems review, vol. 37, no. 5,p. 29-
43. ACM, 2003.

[15] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters”, In Proceedings of the 6th USENIX OSDI, pages 137–
150,2004.

[16] Apache Hive: https://hive.apache.org/.

[17] G.P. Haryono and Y. Zhou, “Profiling apache HIVE query from run
time logs”, Big Data and Smart Computing (BigComp), 2016,IEEE
DOI: 10.1109/BIGCOMP.2016.7425802.

[18] A. Thusoo, J.S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S.
Antony, H. Liu and R. Murth, “Hive - a petabyte scale data warehouse
using Hadoop”, In Proceedings of International Conference on Data
Engineering (ICDE), 2010, pp. 996- 1005.

[19] Apache Spark: http://spark.apache.org/ .

[20] A. Shkapsky , M. Yang, M. Interlandi, H. Chiu, T. Condie and C.
Zaniolo, “Big Data Analytics with Datalog Queries on Spark”,
SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA,2016
ACM, DOI: http://dx.doi.org/10.1145/2882903.2915229.

[21] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.
J. Franklin, S. Shenker, I. Stoica, “Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing”, in Proc. 9th
USENIX Conf. Netw. Syst. Des. Implement., 2012, p. 2.

[22] M. Zaharia, R.S. Xin, P. Wendell, M. Armbrust, A. Dave, X. Meng, J.
Rosen, S. Venkataraman, M.J. Franklin, A. Ghodsi, J. Gonzalez, S.
Shenker, I. Stoica, “Apache Spark: a unified engine for big data
processing”, Magazine Communications of the ACM, Vol. 59 No. 11,
Pages 56-65.

[23] Spark streaming: http://spark.apache.org/streaming/.

[24] W. Wingerath, F. Gessert, S. Friedrich, and Norbert Ritter, “Real-time
stream processing for Big Data”, it – Information Technology 2016;
58(4): 186–194,DOI 10.1515/itit-2016-0002.

[25] Deepak Vohra, “Practical Hadoop Ecosystem: A Definitive Guide to
Hadoop-Related Frameworks and Tools”, Publisher: Apress, ISBN: 978-
1-4842-2199-0, pp.287-300.

[26] Apache Sqoop: http://sqoop.apache.org/.

[27] Apache Kafka: https://kafka.apache.org/.

[28] Apache Zookeeper: https://zookeeper.apache.org/.

[29] Flume-ng-sql:
https://mvnrepository.com/artifact/org.keedio.flume.flume-ng-
sources/flume-ng-sql-source/1.3.7.

[30] Hiveserver2:
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients.

[31] Apache Thrift: http://thrift.apache.org/docs/concepts.

[32] Tuffery Stéphane, “Data Mining et statistique décisionnelle
L'intelligence des données- 4 ème édition”, Publisher: Technip, ISBN:
9782710810179, pp. 265-317.

[33] S. Venkataraman, Z. Yang, D. Liu, E. Liang, H. Falaki, X. Meng, R.
Xin, A. Ghodsi, M. Franklin, I. Stoica, M. Zaharia, “SparkR: Scaling R
Programs with Spark”, SIGMOD’16, June 26–July 1, 2016, San
Francisco, CA, USA. ACM, 2016.

https://doi.org/10.1109/ACCESS.2014.2332453
http://thrift.apache.org/docs/concepts
http://www.editionstechnip.com/fr/catalogue-auteur/1065/tuffery-stephane.html

