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Abstract—This paper deals with a spatiotemporal traffic 

events generator for real highway networks. The goal is to use 

the event generator to test real-time and batch traffic analysis 

applications. In this context, we represent a highway network as 

an oriented graph based on the geographic data of the different 

sensors locations. The traffic is generated based on a socio-

cultural calendar using a virtual clock to speed up the simulation 

process. In order to enable our generator to support the global 

worldwide highway networks, we propose a dynamic sized 

distributed architecture based on multi-agent systems. In this 

platform, we distinguish the physical model based on sensors 

from the logical model based on an oriented graph. The 

architecture of the simulator and the results of some of its 

implementations applied to the Moroccan highway network are 

presented. 

Keywords—Event generator; smart highway; simulation; multi-
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I. INTRODUCTION 

Intelligent highways must be instrumented by a set of 
sensors that detect the passage of vehicles at various strategic 
points of the infrastructure. Sensors generate immutable 
events that are collected for real-time or delayed processing 
depending on the needs of the applications. The availability of 
reliable real-time measurements or estimations of traffic 
conditions is a prerequisite for successful traffic control on 
these highways. The availability and generation of these large 
masses of data becomes increasingly easy and reliable through 
the introduction of a number of new automation and 
communication systems in new vehicles. The main aim of 
these systems is to improve the safety and convenience of 
driving, but they are also of great help in alleviating traffic 
congestion [1]. 

To achieve improvements in the efficiency of traffic flows 
on highways, it is essential to develop new methodologies for 
modeling, estimating and controlling traffic. The literature is 
very rich in terms of approaches related to modeling and 
traffic flow control [2]-[5]. 

To develop and test such Big-data applications before the 
installation of the sensor infrastructure and the integration of 
any useful information source, it is important to carry out a 

simulation step, which generates the Traffic, and all related 
events. Such a Big-data platform must merge and harmonize 
heterogeneous and dynamic data flows. It must also take into 
account the qualitative and quantitative aspects most relevant 
to defining the main data, namely: 

 Volume, from the always increased data collected. 

 Speed, growth of data acquisition. 

 Variety, based on the heterogeneity of the data formats 
and the protocols used. 

 Take into account the quality of the data. 

 Ability to cope with existing data standards to ensure 
harmonization of data. 

 Provide a robust and scalable storage system. 

Not to mention the interoperability of the data considered, 
as well as the production of missing data in the absence of 
sensors or information sources, remains an important 
challenge. For example, in the case of conventional traffic, 
sensors installed in specific road locations must provide the 
necessary measures. When the density of the sensors is 
sufficiently high (e.g. every 500 m), the measurements 
collected are generally sufficient for monitoring and traffic 
control; Whereas for a low sensor density, appropriate 
estimators should be used to reproduce the traffic condition at 
the required spatial resolution (usually 500 m). The works in 
[6]-[9] represent some examples dealing with estimation of 
motorway traffic by the use of conventional detector data. 

In a real context, the implementation and maintenance of 
all instruments dedicated to a road or highway require high 
costs. To overcome this weakness, various research projects 
[10]-[14] address the use of other less costly data sources, 
such as the mobile phone or GPS (Global Positioning System) 
to estimate road traffic variables. 

Over the past decades, technology has changed the way 
people live, interact and work. The revolution produced by 
smartphones, the Internet and sensors, results in the daily 
collection of large volumes of data. For example, Intelligent 
Transport Systems (ITS) have become flooded with data from 
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road sensors, mobile device detectors, cameras, radio 
frequency identification readers, microphones, social media 
streams and other sources [15]. 

All ITS actors behave as suppliers and consumers of data, 
and must react to these large masses of data in their decision-
making processes. Their big challenge is not how to collect, 
but how to process and model large volumes of unstructured 
data for later analyzes that cannot be effectively addressed 
through traditional approaches. Thus, it is necessary to 
develop innovative services and applications capable of 
processing and inferring information in real time to better 
support decision-making, but also to anticipate complex 
situations related to traffic before they occur and to take 
proactive measures. 

In order to meet the challenges outlined above, data must 
be collected, cleaned, processed and stored efficiently. The 
ETL process, which means Extract -Transform - Load, is a 
concept in which data is loaded from a source to a unified data 
repository. The developers of the ETL platform have extended 
their solutions to the “Big ETL” platform [16] to provide large 
data extraction, transformation and loading between large data 
platforms and traditional data management platforms. 

This work proposes a simulator that generates multitudes 
of events and data to be processed by other modules that draw 
on the functionalities of ETL and other dedicated platforms 
such as ITS services, capable of predicting flows Real-time 
traffic, or to detect traffic-related events [17]-[20]. 

We validate the performance of estimation schemes 
developed using simulations using a traffic flow model well 
known as the ground truth for the state of traffic. 

This article is organized as follows: We will begin by 
giving an overview on highway network, its constituent 
elements and a smart highway. We then model a highway 
network by an oriented graph and show the transformations to 
be carried out until obtaining all the possible paths. We then 
describe the models used and the architecture of the simulator. 
Before concluding, we show some results obtained using the 
first implementation of the simulator applied to the Moroccan 
motorway network. 

II. SMART HIGHWAYS MODEL 

A. Highway Network Components 

A highway network (Fig. 1) consists of several highways 
that can be interconnected by exchangers. Each highway is 
viewed as bidirectional graph. It is described in a single 
direction by a list of elements representing nodes. For the sake 
of simplicity Table 1 gives a description of an example of 
highway part from a given city 1 to city 2, giving the 
properties of ach node. 

Any highway consists of a symmetric set of elements 
describing it in one direction; it always starts from an entry 
followed by several intermediate elements and ends in an exit. 
The second direction is drawn by inverting the input and the 
output. 

 
Fig. 1. Highway network. 

 
Fig. 2. Segments and sensors. 

TABLE I.  LIST OF  HIGHWAY ELEMENTS   

From city  1 to city 2 

 Type Km Location  

 Entrance 0 Location 1  

 Entrance/Exit 16 Location2  

 Exchanger 24 Location3    

 Service Area 44 Location4  

 Entrance/ Exit 64 Location5  

 Toll 92 Location6  

 Exit 108 Location7  

B. Smart Highways 

In an intelligent highway, all the elements must be 
instrumented by vehicle traffic sensors (Fig. 2). The sensors 
delimit segments for which the number of vehicles can be 
timely determined. Other sensors can be interposed between 
the elements at strategic points to increase the number of 
monitored segments. 

When a vehicle passes through a sensor, the latter 
generates a time-stamped immutable event containing 
information about the vehicle. By processing the events, it is 
possible to know at any time the number of vehicles in the 
corresponding segment. 

The data collected will be used in real time: firstly by the 
network management applications, secondly by the network 
users’ applications such as drivers, smart vehicles, etc. 

C. Highway Network Graph 

From the description lists of the highways, an initial 
oriented graph IOG is constructed. The elements of the lists 
are represented by IOGV vertices or nodes. The edges IOGE 
of the graph represent the succession of these elements. The 
representation of the IOG graph is given in XML file. 
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In order to determine all the possible paths from all the 
entrances of the network to all the possible exits, the IOG 
must be transformed into a new oriented graph TOG 
describing the entire network in both directions. The TOG 
nodes will be represented by TOGV and the edges by TOGE. 

From TOG, the Dijkstra Shortest Path Algorithm (DSPA) 
is performed to determine the list of all possible paths. 

As mentioned above, the IOG description is given in an 
XML file consisting of a collection of vertices and a collection 
of edges. A vertex is represented by an XML Element 
“vertex” having the following Attributes: 

 name: Sensor identifier (ID) 

 type: Element type (Enumeration) 

 label: Name of the highway (string) 

 locality: The locality name of the sensor position 
(string) 

 long: Longitude (double) 

 lat: Latitude (double) 

 factor: Attendance factor 

The edges are represented by the XML Element “edge” 
having the following Attributes: 

 source: Source node (IDREF) 

 target: Destination node (IDREF) 

 speed: Segment limit speed (double) 

 distance: Distance between the two nodes (double) 

 lanes : Number of lanes (int) 

The “type” attribute of the “vertex” Element can take one 
of the following values: {I (Entrance), IO (Entrance/Exit), X 
(Exchange), R (Service Area), T ), S (Sensor), O (Exit)}. 

The TOG is obtained by performing an elementary 
transformation at each vertex of the IOG. 

To avoid boundary effects and make all these 
transformations independent, we have inserted white vertices 
by splitting each of the edges of the IOG (Fig. 3). 

Depending on the type of vertex, an elementary 
transformation will be provided. Table 2 presents a summary 
of these transformations. 

 

Fig. 3. Isolation of nodes before transformation. 

TABLE II.  ELEMENTARY TRANSFORMATIONS 

Type IOG Element WTOG Element 

   

 

  

 

  

 
  

 
  

 
  

   
 

 

Fig. 4. Transforming an exchanger. 

Except for the exchangers, all the elementary 
transformations generate two independent sub-graphs for the 
two directions. These sub-graphs are inserted into a temporary 
intermediate graph WTOG: 

WTOGV = {v1, v2, v3, …, vn}  

WTOGE = {e1, e2, e3, …, em} where ei = (si, ti) 

The transformation of an exchanger shown in Fig. 4 is 
performed in two stages: 

1) Initialization: 
 BV = Basis Vertex  // Elementary Vertex to be transformed 

 NWV = { wv1, wv2, … wvn } // White Vertices neighbor of BV 
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 EV = {} // External Vertices 

 ME = {} // Mixed Edges 

 IV = {} // Internal Vertices 

 IE = {} // Internal Edges 

Stage 1:  

 For each white vertex wvi from NWV 

     Create ev1i (Clone of wvi) and insert it into EV,  

     Create its peer vertex ev2i and insert it into EV 

     // ev2i represents the sensor for the opposite direction, 

     Create iv1i (Clone of BV) and insert it into IV, 

     Create its peer vertex iv2i and insert it into IV, 

     // iv2i represents the sensor for the opposite direction 

     IF  wvi is successor of BV 

  Create the edge (iv1i,wv1i) and insert it into ME 

  Create the edge (wv2i, iv2i) and insert it into ME 

     Else  

  Create the edge (wv1i, iv1i) and insert it into ME 

  Create the edge (iv2i,wv2i) and insert it into ME 

     End IF 

 End For 

Stage 2: 

 For each edge mei = (si, ti) in ME 

     IF  ti ϵ IV 

         For each edge mei = (si, ti) in ME 

             IF  i ≠j and  ti not a peer of sj and sj ϵ IV  

      Create edge (ti, sj) and insert it into IE 

  End IF 

         End For 

     End IF 

 End For  

2) Sub-graph result: 
    WTOGV = UNION(EV, IV) 

    WTOGE = UNION (ME, IE) 

Obtaining the final graph TOG is done by linking the 
WTOG. This operation consists of removing all the white 
vertices and restoring the links between the transformed 
vertices (see Fig. 5). 

Finally, we used DSPA to determine all possible paths in 
the highway network. 

Algorithm: 

Inputs :  

 Entries = Vertices of type « I » from TOGV  

 Exits  = Vertices of type « O » from TOGV 

 Paths = {}  

Begin 

 For each  vi from Entries 

      For each  vj from Exits 

           path := Dijkstra(vi, vj)  

           IF path is not null 

                Insert path into Paths 

           End IF 

 End For 

End 

 

Fig. 5. TOG linking. 

 

Fig. 6. Logical sensors. 

D. Physical and Logical Sensors 

The paths determined in the previous section of the TOG 
are normalized so that the nodes forming them belong to the 
IOG graph (only vertices appearing in the highways 
description lists). To express the opposite direction of the 
network, we have added for each edge e (si, ti) of the graph 
IOG, an opposite edge e (ti, si). 

The logical graph corresponds to the graph IOG (Fig. 6). 
The simulation will use IOG and the list of possible paths to 
generate traffic. 

When passing a vehicle, a logical sensor generates an 
event that must distinguish the origin and destination of the 
vehicle. The sensor ca8 of Fig. 6 has possible origins ca7 and 
ca9 and for possible destinations ca9 and ca7. Therefore, it 
must be decomposed into two physical sensors ca-1-8 for one 
direction and ca-2-8 for the opposite direction. The 
entrance/exit and exchangers have structures that are more 
complex. Fig. 7 describes the composition of an entrance/exit. 

In Fig. 7 the logical sensor ca7 is broken down into six 
physical sensors. Each physical sensor is viewed as a triplet 
consisting of, the predecessor logical sensor, the current 
logical sensor and the following logical sensor.  

For the logical sensor ca7, the physical sensors will have 
the triplets of Table 3: 

 
Fig. 7. Physical sensors of an entrance/exit node. 

TABLE III.  PHYSICAL SENSORS IDENTIFICATION 

Logical 
Sensor 

Direction 
Physical 
Sensor 

Physical sensor identification 

Ca7 

1 
Ca-1-7-1 (null, ca7, ca8) 
Ca-1-7-2 (ca6, ca7, ca8) 
Ca-1-7-3 (ca6, ca7, null) 

2 
Ca-2-7-1 (ca8, ca7, null) 
Ca-2-7-2 (ca8, ca7, ca6) 
Ca-2-7-3 (null, ca7, ca6) 
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E. Event Model 

Depending on the type of sensor, various information can 
be detected when passing a vehicle. The most common are the 
speed, the length and the weight of the vehicle. Each time a 
vehicle passes, an event is generated and a message is sent 
either directly or via a gateway to an ingestion server. The 
message must contain at least three basic information; the 
sensor identifier (previous, current, next), date (Timestamp) 
and vehicle speed. Here is the general format of the message: 

 Identifier of predecessor sensor 

 Identifier of the current sensor 

 Successor sensor identifier 

 Timestamp 

 Speed 

 Further information about the vehicle depending on the 
type of sensor. 

In the simulation, each vehicle is granted a unique 
identifier. This makes it possible to track its movement 
through the highway network. 

The simulator is equipped with a virtual clock which 
allows us to speed up the simulation process. The following 
section describes the architecture of the proposed simulator. 

III. SIMULATOR ARCHITECTURE 

A.  Overview  

The simulator consists of four modules (Fig. 8): 

1) Supervisor: This module communicates with the 

coordinator using web sockets to configure and monitor the 

simulation. 

2) Controller: This module centralizes the configuration 

of the highway network infrastructure through the 

“highway.xml” file. 

3) Worker: This module runs on several nodes, it starts on 

each node as many schedulers as processors. Each scheduler 

uses a random generator to choose a path from the possible 

paths list, starts a vehicle and assigns it to that path. The 

vehicle takes the selected path and travels it autonomously by 

regulating its speed according to the densities of the segments 

traveled. Each time a vehicle crosses the boundary of a 

segment an event is generated and sent to the gateway. 

4) Gateway: This module receives all traffic events 

generated by all sensors on the network and ingest them to a 

destination according to the gateway implementation. 

B. Simulator Operation 

The simulation cluster consists of a node executing the 
“Controller”, several nodes running “Workers” and one or 
more nodes performing the “Gateway” module. The controller 
module must be started first, followed by workers and 
gateways. The Supervisor module runs on an external node 
from the cluster. 

Fig. 9 shows a “Worker” running on a node with two 
processors in a simulation cluster of four “Workers”. 

 
Fig. 8. Simulator architecture. 

 
Fig. 9. Worker module architecture.
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Fig. 10. Passing a vehicle from one segment to another.

The controller distributes the agents responsible for the 
segments into as many partitions as workers. This distribution 
is done in such a way that the number of messages exchanged 
between the workers to update the segment densities is fairly 
balanced.  

At regular intervals, each scheduler generates a defined 
number of vehicles, assigns random paths to them, and starts 
them. Vehicles move from segment to segment until the end 
of their path. At the beginning of each segment (Fig. 10), the 
vehicle registers itself to be informed about the state of the 
next segment. When a vehicle arrives at the end of a segment, 
it generates a time-stamped event and sends it to the 
coordinator. The vehicle then calculates the average speed of 
the current segment, unregisters itself from this current 
segment, where it is engaged. Then it registers itself to listen 
to the next segment. 

The coordinator receives the generated events messages 
and puts them on one side in a buffer before sending them to 
the gateways. On the other hand, these messages are used to 
update the segment agent counters (see Fig. 9). 

Each segment agent monitor the density of its corresponding 
segment, when it reaches the critical density, it informs the 
coordinator who in turn alerts the concerned vehicles. 

C. Spatial Traffic Variation 

To generate near realistic highway traffic, we added the 
“factor” attribute in the XML file denoted f with 0 <f ≤ 1. This 
attribute is used only in the entrance and exit vertices. The 
closer this factor gets to 1, the higher the peak is used by 
vehicles. 

The value of the vertex attribute is related to its 
neighboring population density.  

 fi = Pi / P 

Where, P is the total of population in the vicinity of the 
highway network and Pi is the neighboring population of 
vertex i. 

For a given path Pathi = {v1, v2, v3, ..., vn}, the path factor fpi 

is given by the relation:  

                            (2) 

Where, 

 fpi: Path factor, 

 fi1: Path entrance vertex factor, 

 fin: Path exit vertex factor, 

 fiL:      
              

         
 . The length factor, 0<fi<1  

 Li : Path length, 

 Lmax : Length of the longest path in the paths list, 

 α, β and γ : the associated weights for factors fi1, fin, 

 and fiL respectively.            

 
In the simulator, we will use a uniform random distribution 

(3) based on the path factor fp to determine the path to be 
assigned to a given vehicle. 

Paths = {path1, path2, path3, ..., pathm} // Paths 

FP = {fp1, fp2, fp3, ..., fpm} // Path factors 

P = {p1, p2, p3, ..., pm} // Probabilities 

So we have: 

    
   

∑    
 
 

  (3) 

 
Path selection algorithm: 

Inputs: 

 Paths = {path1, path2, path3, …, pathm} 

 P = {p1, p2, p3, …, pm}  

Begin 

 s = 0 

 r = getRandomDouble()    // 0 ≤ r  < 1 

 For each pi from P 
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      IF r ≥ s AND  r < s + pi 

  Return pathi 

      End IF 

      s = s + pi 

 End For 

End 

 

D. Temporal Traffic Variation 

Highway traffic is conditioned by the life and occupations 
of drivers over time. Most people travel a day rather than a 
night. During the working days of the week, people travel to 
work in the morning and return at the end of the day. There is 
also a significant increase in travel at the beginning and end of 
holidays. These variations are defined in the XML file “peak-
hours.xml”. This file represents the variations related to a 
nominal state having the value unit. We considered only the 
variations per day of the week as in the curve of Fig. 11 and 
12. 

At regular time interval T, the scheduler starts q(iT) 
vehicles. Where, i is a positive integer. If the duration of the 
simulation is D and assuming that D is multiple of T, then the 
total number of vehicles Nv that are started during D is: 

    ∑  (  )

 

 

   
  

  

 
     (4) 

Where, qa is the average of q(t). 

If we consider that the duration of the simulation is 
sufficiently long, we will have: 

    ∑   

 

   
                       (5) 

Where, M is the number of possible paths in the graph, Nj 
is the number of times that Pathj has been taken, and pj is the 
probability associated with the choice of this route. 

The total distance KVD (6) traveled by all the vehicles that 
will be engaged during the duration D is the sum of the 
products of the distances dj and the number of times Nj that 
the path j has been chosen and traveled by a vehicle: 

 

Fig. 11. Peak-hours.xml file. 

 

Fig. 12. Traffic variation over one day. 

     ∑        

 

   

        ∑  

 

   

    (6) 

    
   

  
  ∑  

 

   

    (7) 

Where, dA is the average of all chosen paths in the 
duration D. 

The nominal period T is obtained from relations (4) and 
(7): 

   
             

   
 (8) 

The KVD indicator is often given for a period of one year 
and is marked KVY (Vehicles-Kilometers per Year): 

  
                

    
 (9) 

E. Simulation Speed 

When the objective of the simulation is to generate the 
data of a long duration to do batch processing, it is important 
to be able to increase the speed of the simulation process (see 
Fig. 13).  

The time factor (TF) is the ratio between the target 
duration of the highway traffic and the actual duration of the 
simulation (10). It expresses the speed of the simulation. 

   
(  

     
 )

(      )
  

(      
 )

(     )
 

     (     )             
  

(10) 

Where, t0 and t1 are the starting and ending dates 
respectively of the simulation. 

To increase the speed of the simulation the generator of a 
scheduler will use the generation period Tg0 : 

     
 

  
 (11) 

Where, TF ≥ 1 

With TF = 365, the events of one year are generated in 24 
hours of simulation. 

The events produced by the simulation are time-stamped 
with the value of t'. 

To be able to simulate large highway networks, a single 
generator will not suffice. The load should therefore be 
distributed over several processing nodes. 

 
Fig. 13. Event time and processing time. 

<peak-hours> 

… 

<peak day="3" from="07:00" to="21:00" factor="1" /> 

<peak day="3" from="06:00" to="09:00" factor="2" /> 

<peak day="3" from="12:00" to="13:30" factor="1" /> 

<peak day="3" from="16:00" to="19:00" factor="2" /> 

… 
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F. Distribution and Load Balancing of Traffic Generators 

1) Schedulers distribution 
In a cluster of N workers nodes each having M processors, 

NxM traffic generators can be executed. The load is 
automatically distributed proportionally using the vehicle 
commitment period Tg :  

        
 

   
 (12) 

Whenever a vehicle leaves one segment to enter another, it 
must inform the agents responsible for these two segments. 
The number of these agents is equivalent to the number of 
segments of the highway network.  

These agents must also be deployed equitably on the N 
workers nodes. 

2) Partitioning and Distributing Segment Agents 
The agent is responsible for the segments (Fig. 9), must be 

partitioned equitably and distributed on all workers in the 
cluster. A path i is a sequence of one or more segments. A 
segment belongs to one or more paths. The number of 
messages arriving at a given segment is related to its 
frequentation. Knowing the paths probabilities, we can 
determine the level of attendance at each segment. To do this, 
we give for each segment (Edge) a weight (ws) which will 
have the sum of all the probabilities of the paths to which this 
segment belongs. 

The partitioning is done by quasi-balancing the sums of 
the weights of the segments of each partition. 

Initialization: 

Amounts = ArrayOfDouble(k)  

Partitions = ArrayOfSegments(k)  

Segments = {s1, s2, …, sn}   

WS = {ws1, ws2, …, wsn}   

Begin : 

     For each Segment sj in Segments 

          // get the index of the minimum Amounts 

          index = getMinIndexOf(Amounts) 

          Insert  sj in Partitions[index] 

     End for 
End 

G. Events Density over Time 

When the time factor TF increases, the number of events 
generated also increases in a given time. It is then important to 
know in advance this events density (DE) with respect to time 
(Events/s) in order to size the simulator modules. 

         
  

 
    ∑            

 

   

 (13) 

Where, Ncj is the number of sensors in the path j. 

H. Vehicle Itinerary 

Before entering the highway, the vehicle registers to be 
informed about the state of the density of the first segment. 
After a certain delay, the vehicle calculates its speed, 
determines the duration of the crossing of the segment and 
starts a timer to warn it at the end of the segment. 

 

Fig. 14. Relationship between velocity factor and segment density. 

The nominal speed Vn (14) is calculated using the speed 
limit Vl in that segment and a random component representing 
the temperament of the driver. Vl is indicated in the 
highway.xml file: 

        (
          

 
) (14) 

Where, r is the temperament factor of the driver, it is a 
random number with 0 ≤ r <1, α is the speed excess factor 
with α ≥ 1 and Vl is the speed limit of the next segment. 

The speed of the vehicle (15) is obtained by weighting the 
nominal speed by the velocity factor Fv (16) which depends 
on the density of the segment according to Fig. 14. 

When a vehicle arrives on a segment, it registers itself to 
be informed about the density of the next segment. Messages 
are sent only to concerned vehicles and only when the density 
of a given segment reaches or exceeds the critical value 
(Fig. 14). 

   

{
 

 
                             

    

     
        

                                      

 (15) 

IV. APPLICATION: MOROCCAN HIGHWAY NETWORK  

A. Simulator Implementation Approach  

In order to scale and simulate large highway networks, the 
simulator’s architecture must be distributed and based on 
loosely coupled components. The reactive-programming (RP) 
proposed in the “manifesto of reactive programming”, 
provides a general framework for this kind of applications. 
The RP systems are responsive, resilient, elastic and message 
driven. In this article, we proposed an architecture using 
multi-agent systems in which agents are autonomous and 
collaborate with each other by exchanging messages. The 
scheduler, vehicle, agents responsible for highway segments 
are the examples of agents used in this application. When a 
vehicle is created by a scheduler, it becomes autonomous and 
is the only one to have access to its state. To make decisions, 
it needs to be informed about the state of its environment. To 
do so it proceeds by exchanging messages with the agents to 
get information. Whenever a vehicle arrives at the end of a 
segment, a message is sent to a gateway which itself is an 
agent. In the case of a large network, multiple balanced 
gateways can be used. Each worker hosts a partition of 
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representative agents of the segments. These agents receive 
regular messages when vehicles enter or leave their segment. 
When the density reaches a critical threshold, the agents must 
inform all vehicles that are about to arrive in that segment. 

From a functional point of view, the application must 
manage a large number of autonomous agents and must be 
intensive messaging oriented. Since the application is 
distributed, the data network exchange is also intensive. 

Our first implementation of the simulator uses the toolkit 
Eclipse Vert.x which facilitates the implementation of the RP. 

B. Platform Materials 

The proposed simulator is tested using a real example of 
Moroccan highway network. The seven highways of the 
Moroccan network (Fig. 15) are entered in the highway.xml 
file (Fig. 16). The function q(t) expresses the temporal traffic 
variations in highway (Fig. 17). Table 4 shows some highway 
network features. We performed a test with the topology 
shown in Table 5 using the parameters in given in Table 6. 

 
Fig. 15. Map of the Moroccan highway network. 

 

Fig. 16. Highway.xml. 

 
Fig. 17. Values of q(t) extracted from peack-hours.xml. 

TABLE IV.  MOROCCAN HIGHWAY NETWORK FEATURES 

Number of highways 7 

Network total length 1 736 Km 

Number of vertices (Nodes) 146 

Number of edges (Segments) 286 

Service areas 29 

Number of entrances 184 

Number of exits 184 

Number of exchangers 5 

Number of paths 2646 

The shortest path length 2 Km 

The longest path length 709 Km 

The average path length 199.7475 Km 

TABLE V.  TEST PLATFORM TOPOLOGY 

Module Nodes Features 

Worker 2 Nodes 
OS Linux 64bit 8 cores 3GHZ RAM 16GB 
NIC10GB 

Controller + 
supervisor 

1 Node 
OS Linux 64bit 4 cores RAM 16GB NIC 
10GB 

Gateway 1 Node 
OS Linux 64bit 4 cores RAM 16GB NIC 
10GB 

TABLE VI.  TEST PARAMETERS 

Parameter Value 

Simulation duration 24 hours 

Coefficients α, β et γ  0.3, 0.3, 0.4 

KVD: Kilometer Vehicle per Day 24 000 000 Km 

TF : Time factor (1 year) 365 

dc : Critical density 20 Vehicles/Km 

jd : Jam density 200 Vehicles/Km 

C. Simulation Results 

Table 7 shows the predictable results of the simulation 
calculated only with the parameters of the simulation. The 
processing of the data generated by the simulation confirms 
the expected results. Traffic analysis shows that the spatial 
variations of traffic expressed by the path factor (2) have been 
respected as shown in Fig. 18. Fig. 19 shows that the set point 
of 24 million vehicles kilometers per day has been reached. 
The variation profile of the daily traffic corresponds to the set 
point given by the peak-hours.xml file (Fig. 20). Fig. 21 shows 
the number of traveled vehicles in the highway network each 
month of 2017 year. 

TABLE VII.  PREDICTABLE RESULTS 

Paramètre Valeur 

dA : The average route distance      ∑   
 
       160.784549 

Qa : The average of q(iT) determined from peack-hours.xml 
file. 

1.907 

Total number of engaged vehicles :       
   

  
 54 482 847  

T,  Nominal period of starting of vehicles    
             

   
 1.103818 s 

Tg,  Effective period of starting of vehicles 

         
 

   
 

0.048386 s 

DE : Events density (Events/s) 

         
   

       
    ∑        

 
    

9485.2 
Events/s 

<?xml version="1.0" encoding="UTF-8" ?> 

<?xml-stylesheet type="text/xsl" href="highway.xsl" ?> 

<graph> 
 

    <vertex name="A1-1-01" km="9" label="A1" type="O" lat="33.846320" 

long="-6.898465" locality="Tamesna"  factor="0.7"  direction="1" /> 
 

<!-- Other 145 vertices --> 

<edge source="A1-1-01" target="A1-1-02" speed="120" distance="5" lanes="2" 

/> 
<!-- Other 142 edges --> 
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Fig. 18. Spatial variation of vehicle entries. 

 

Fig. 19. Kilometer Vehicle per Day (Average = 24 014 791). 

 
Fig. 20. Variation over a week from Wed 1 Feb to Tue 7 Feb 2017. 

 
Fig. 21. Number of engaged vehicles per month over 2017. 

V. CONCLUSION 

In this paper, we proposed a distributed simulator model of 
intelligent highways based on multi-agent systems and a 
virtual calendar. The simulator allows near realistic traffic to 
be generated based on the distribution of the population 
juxtaposing the network and the lengths of the journeys to be 
traveled. The simulator takes into account the variations of 
highway traffic over time which are described in an XML file. 
At regular time intervals and according to the current date, a 
traffic generator generates a flow of vehicles and affects them 
random paths. Each vehicle is an autonomous agent; it 
regulates its speed according to the state of the traffic. To 
validate this model, we implemented it using reactive 
programming and we tested it for the case of the Moroccan 
highway network. We carried out a simulation of the traffic of 
a year in 24 hours with a constraint of 25 million of Vehicles 
Kilometer per Day, producing an events density of 9485.2 
Events/s. The amount of data produced by this simulation is of 
the order of 102 GB.  

As a perspective, real-time and batch processing models of 
data generated by traffic will be developed and tested. The 
simulator can then be extended by allowing vehicle interaction 
with Big-data applications to improve the use and safety of 
highway networks. On the other hand, the spatial and temporal 
components of our generator are independent. The generator 
should link these two components as is the case in reality; a 
socio-cultural event is associated with both geography and 
time. 
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