
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

117 | P a g e

www.ijacsa.thesai.org

An Efficient Distributed Traffic Events Generator for

Smart Highways

Abdelaziz Daaif

SSDIA ENSET Mohammedia, Hassan II University of

Casablanca, Morocco

Omar Bouattane

SSDIA ENSET Mohammedia, Hassan II University of

Casablanca, Morocco

Mohamed Youssfi

SSDIA ENSET Mohammedia, Hassan II University of

Casablanca, Morocco

Oum El Kheir Abra

Computer Science Department

CRMEF Rabat-Salé Kénitra

Abstract—This paper deals with a spatiotemporal traffic

events generator for real highway networks. The goal is to use

the event generator to test real-time and batch traffic analysis

applications. In this context, we represent a highway network as

an oriented graph based on the geographic data of the different

sensors locations. The traffic is generated based on a socio-

cultural calendar using a virtual clock to speed up the simulation

process. In order to enable our generator to support the global

worldwide highway networks, we propose a dynamic sized

distributed architecture based on multi-agent systems. In this

platform, we distinguish the physical model based on sensors

from the logical model based on an oriented graph. The

architecture of the simulator and the results of some of its

implementations applied to the Moroccan highway network are

presented.

Keywords—Event generator; smart highway; simulation; multi-

agent systems; distributed computing

I. INTRODUCTION

Intelligent highways must be instrumented by a set of
sensors that detect the passage of vehicles at various strategic
points of the infrastructure. Sensors generate immutable
events that are collected for real-time or delayed processing
depending on the needs of the applications. The availability of
reliable real-time measurements or estimations of traffic
conditions is a prerequisite for successful traffic control on
these highways. The availability and generation of these large
masses of data becomes increasingly easy and reliable through
the introduction of a number of new automation and
communication systems in new vehicles. The main aim of
these systems is to improve the safety and convenience of
driving, but they are also of great help in alleviating traffic
congestion [1].

To achieve improvements in the efficiency of traffic flows
on highways, it is essential to develop new methodologies for
modeling, estimating and controlling traffic. The literature is
very rich in terms of approaches related to modeling and
traffic flow control [2]-[5].

To develop and test such Big-data applications before the
installation of the sensor infrastructure and the integration of
any useful information source, it is important to carry out a

simulation step, which generates the Traffic, and all related
events. Such a Big-data platform must merge and harmonize
heterogeneous and dynamic data flows. It must also take into
account the qualitative and quantitative aspects most relevant
to defining the main data, namely:

 Volume, from the always increased data collected.

 Speed, growth of data acquisition.

 Variety, based on the heterogeneity of the data formats
and the protocols used.

 Take into account the quality of the data.

 Ability to cope with existing data standards to ensure
harmonization of data.

 Provide a robust and scalable storage system.

Not to mention the interoperability of the data considered,
as well as the production of missing data in the absence of
sensors or information sources, remains an important
challenge. For example, in the case of conventional traffic,
sensors installed in specific road locations must provide the
necessary measures. When the density of the sensors is
sufficiently high (e.g. every 500 m), the measurements
collected are generally sufficient for monitoring and traffic
control; Whereas for a low sensor density, appropriate
estimators should be used to reproduce the traffic condition at
the required spatial resolution (usually 500 m). The works in
[6]-[9] represent some examples dealing with estimation of
motorway traffic by the use of conventional detector data.

In a real context, the implementation and maintenance of
all instruments dedicated to a road or highway require high
costs. To overcome this weakness, various research projects
[10]-[14] address the use of other less costly data sources,
such as the mobile phone or GPS (Global Positioning System)
to estimate road traffic variables.

Over the past decades, technology has changed the way
people live, interact and work. The revolution produced by
smartphones, the Internet and sensors, results in the daily
collection of large volumes of data. For example, Intelligent
Transport Systems (ITS) have become flooded with data from

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

118 | P a g e

www.ijacsa.thesai.org

road sensors, mobile device detectors, cameras, radio
frequency identification readers, microphones, social media
streams and other sources [15].

All ITS actors behave as suppliers and consumers of data,
and must react to these large masses of data in their decision-
making processes. Their big challenge is not how to collect,
but how to process and model large volumes of unstructured
data for later analyzes that cannot be effectively addressed
through traditional approaches. Thus, it is necessary to
develop innovative services and applications capable of
processing and inferring information in real time to better
support decision-making, but also to anticipate complex
situations related to traffic before they occur and to take
proactive measures.

In order to meet the challenges outlined above, data must
be collected, cleaned, processed and stored efficiently. The
ETL process, which means Extract -Transform - Load, is a
concept in which data is loaded from a source to a unified data
repository. The developers of the ETL platform have extended
their solutions to the “Big ETL” platform [16] to provide large
data extraction, transformation and loading between large data
platforms and traditional data management platforms.

This work proposes a simulator that generates multitudes
of events and data to be processed by other modules that draw
on the functionalities of ETL and other dedicated platforms
such as ITS services, capable of predicting flows Real-time
traffic, or to detect traffic-related events [17]-[20].

We validate the performance of estimation schemes
developed using simulations using a traffic flow model well
known as the ground truth for the state of traffic.

This article is organized as follows: We will begin by
giving an overview on highway network, its constituent
elements and a smart highway. We then model a highway
network by an oriented graph and show the transformations to
be carried out until obtaining all the possible paths. We then
describe the models used and the architecture of the simulator.
Before concluding, we show some results obtained using the
first implementation of the simulator applied to the Moroccan
motorway network.

II. SMART HIGHWAYS MODEL

A. Highway Network Components

A highway network (Fig. 1) consists of several highways
that can be interconnected by exchangers. Each highway is
viewed as bidirectional graph. It is described in a single
direction by a list of elements representing nodes. For the sake
of simplicity Table 1 gives a description of an example of
highway part from a given city 1 to city 2, giving the
properties of ach node.

Any highway consists of a symmetric set of elements
describing it in one direction; it always starts from an entry
followed by several intermediate elements and ends in an exit.
The second direction is drawn by inverting the input and the
output.

Fig. 1. Highway network.

Fig. 2. Segments and sensors.

TABLE I. LIST OF HIGHWAY ELEMENTS

From city 1 to city 2

 Type Km Location

 Entrance 0 Location 1

 Entrance/Exit 16 Location2

 Exchanger 24 Location3

 Service Area 44 Location4

 Entrance/ Exit 64 Location5

 Toll 92 Location6

 Exit 108 Location7

B. Smart Highways

In an intelligent highway, all the elements must be
instrumented by vehicle traffic sensors (Fig. 2). The sensors
delimit segments for which the number of vehicles can be
timely determined. Other sensors can be interposed between
the elements at strategic points to increase the number of
monitored segments.

When a vehicle passes through a sensor, the latter
generates a time-stamped immutable event containing
information about the vehicle. By processing the events, it is
possible to know at any time the number of vehicles in the
corresponding segment.

The data collected will be used in real time: firstly by the
network management applications, secondly by the network
users’ applications such as drivers, smart vehicles, etc.

C. Highway Network Graph

From the description lists of the highways, an initial
oriented graph IOG is constructed. The elements of the lists
are represented by IOGV vertices or nodes. The edges IOGE
of the graph represent the succession of these elements. The
representation of the IOG graph is given in XML file.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

119 | P a g e

www.ijacsa.thesai.org

In order to determine all the possible paths from all the
entrances of the network to all the possible exits, the IOG
must be transformed into a new oriented graph TOG
describing the entire network in both directions. The TOG
nodes will be represented by TOGV and the edges by TOGE.

From TOG, the Dijkstra Shortest Path Algorithm (DSPA)
is performed to determine the list of all possible paths.

As mentioned above, the IOG description is given in an
XML file consisting of a collection of vertices and a collection
of edges. A vertex is represented by an XML Element
“vertex” having the following Attributes:

 name: Sensor identifier (ID)

 type: Element type (Enumeration)

 label: Name of the highway (string)

 locality: The locality name of the sensor position
(string)

 long: Longitude (double)

 lat: Latitude (double)

 factor: Attendance factor

The edges are represented by the XML Element “edge”
having the following Attributes:

 source: Source node (IDREF)

 target: Destination node (IDREF)

 speed: Segment limit speed (double)

 distance: Distance between the two nodes (double)

 lanes : Number of lanes (int)

The “type” attribute of the “vertex” Element can take one
of the following values: {I (Entrance), IO (Entrance/Exit), X
(Exchange), R (Service Area), T), S (Sensor), O (Exit)}.

The TOG is obtained by performing an elementary
transformation at each vertex of the IOG.

To avoid boundary effects and make all these
transformations independent, we have inserted white vertices
by splitting each of the edges of the IOG (Fig. 3).

Depending on the type of vertex, an elementary
transformation will be provided. Table 2 presents a summary
of these transformations.

Fig. 3. Isolation of nodes before transformation.

TABLE II. ELEMENTARY TRANSFORMATIONS

Type IOG Element WTOG Element

Fig. 4. Transforming an exchanger.

Except for the exchangers, all the elementary
transformations generate two independent sub-graphs for the
two directions. These sub-graphs are inserted into a temporary
intermediate graph WTOG:

WTOGV = {v1, v2, v3, …, vn}

WTOGE = {e1, e2, e3, …, em} where ei = (si, ti)

The transformation of an exchanger shown in Fig. 4 is
performed in two stages:

1) Initialization:
 BV = Basis Vertex // Elementary Vertex to be transformed

 NWV = { wv1, wv2, … wvn } // White Vertices neighbor of BV

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

120 | P a g e

www.ijacsa.thesai.org

 EV = {} // External Vertices

 ME = {} // Mixed Edges

 IV = {} // Internal Vertices

 IE = {} // Internal Edges

Stage 1:

 For each white vertex wvi from NWV

 Create ev1i (Clone of wvi) and insert it into EV,

 Create its peer vertex ev2i and insert it into EV

 // ev2i represents the sensor for the opposite direction,

 Create iv1i (Clone of BV) and insert it into IV,

 Create its peer vertex iv2i and insert it into IV,

 // iv2i represents the sensor for the opposite direction

 IF wvi is successor of BV

 Create the edge (iv1i,wv1i) and insert it into ME

 Create the edge (wv2i, iv2i) and insert it into ME

 Else

 Create the edge (wv1i, iv1i) and insert it into ME

 Create the edge (iv2i,wv2i) and insert it into ME

 End IF

 End For

Stage 2:

 For each edge mei = (si, ti) in ME

 IF ti ϵ IV

 For each edge mei = (si, ti) in ME

 IF i ≠j and ti not a peer of sj and sj ϵ IV

 Create edge (ti, sj) and insert it into IE

 End IF

 End For

 End IF

 End For

2) Sub-graph result:
 WTOGV = UNION(EV, IV)

 WTOGE = UNION (ME, IE)

Obtaining the final graph TOG is done by linking the
WTOG. This operation consists of removing all the white
vertices and restoring the links between the transformed
vertices (see Fig. 5).

Finally, we used DSPA to determine all possible paths in
the highway network.

Algorithm:

Inputs :

 Entries = Vertices of type « I » from TOGV

 Exits = Vertices of type « O » from TOGV

 Paths = {}

Begin

 For each vi from Entries

 For each vj from Exits

 path := Dijkstra(vi, vj)

 IF path is not null

 Insert path into Paths

 End IF

 End For

End

Fig. 5. TOG linking.

Fig. 6. Logical sensors.

D. Physical and Logical Sensors

The paths determined in the previous section of the TOG
are normalized so that the nodes forming them belong to the
IOG graph (only vertices appearing in the highways
description lists). To express the opposite direction of the
network, we have added for each edge e (si, ti) of the graph
IOG, an opposite edge e (ti, si).

The logical graph corresponds to the graph IOG (Fig. 6).
The simulation will use IOG and the list of possible paths to
generate traffic.

When passing a vehicle, a logical sensor generates an
event that must distinguish the origin and destination of the
vehicle. The sensor ca8 of Fig. 6 has possible origins ca7 and
ca9 and for possible destinations ca9 and ca7. Therefore, it
must be decomposed into two physical sensors ca-1-8 for one
direction and ca-2-8 for the opposite direction. The
entrance/exit and exchangers have structures that are more
complex. Fig. 7 describes the composition of an entrance/exit.

In Fig. 7 the logical sensor ca7 is broken down into six
physical sensors. Each physical sensor is viewed as a triplet
consisting of, the predecessor logical sensor, the current
logical sensor and the following logical sensor.

For the logical sensor ca7, the physical sensors will have
the triplets of Table 3:

Fig. 7. Physical sensors of an entrance/exit node.

TABLE III. PHYSICAL SENSORS IDENTIFICATION

Logical
Sensor

Direction
Physical
Sensor

Physical sensor identification

Ca7

1
Ca-1-7-1 (null, ca7, ca8)
Ca-1-7-2 (ca6, ca7, ca8)
Ca-1-7-3 (ca6, ca7, null)

2
Ca-2-7-1 (ca8, ca7, null)
Ca-2-7-2 (ca8, ca7, ca6)
Ca-2-7-3 (null, ca7, ca6)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

121 | P a g e

www.ijacsa.thesai.org

E. Event Model

Depending on the type of sensor, various information can
be detected when passing a vehicle. The most common are the
speed, the length and the weight of the vehicle. Each time a
vehicle passes, an event is generated and a message is sent
either directly or via a gateway to an ingestion server. The
message must contain at least three basic information; the
sensor identifier (previous, current, next), date (Timestamp)
and vehicle speed. Here is the general format of the message:

 Identifier of predecessor sensor

 Identifier of the current sensor

 Successor sensor identifier

 Timestamp

 Speed

 Further information about the vehicle depending on the
type of sensor.

In the simulation, each vehicle is granted a unique
identifier. This makes it possible to track its movement
through the highway network.

The simulator is equipped with a virtual clock which
allows us to speed up the simulation process. The following
section describes the architecture of the proposed simulator.

III. SIMULATOR ARCHITECTURE

A. Overview

The simulator consists of four modules (Fig. 8):

1) Supervisor: This module communicates with the

coordinator using web sockets to configure and monitor the

simulation.

2) Controller: This module centralizes the configuration

of the highway network infrastructure through the

“highway.xml” file.

3) Worker: This module runs on several nodes, it starts on

each node as many schedulers as processors. Each scheduler

uses a random generator to choose a path from the possible

paths list, starts a vehicle and assigns it to that path. The

vehicle takes the selected path and travels it autonomously by

regulating its speed according to the densities of the segments

traveled. Each time a vehicle crosses the boundary of a

segment an event is generated and sent to the gateway.

4) Gateway: This module receives all traffic events

generated by all sensors on the network and ingest them to a

destination according to the gateway implementation.

B. Simulator Operation

The simulation cluster consists of a node executing the
“Controller”, several nodes running “Workers” and one or
more nodes performing the “Gateway” module. The controller
module must be started first, followed by workers and
gateways. The Supervisor module runs on an external node
from the cluster.

Fig. 9 shows a “Worker” running on a node with two
processors in a simulation cluster of four “Workers”.

Fig. 8. Simulator architecture.

Fig. 9. Worker module architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

122 | P a g e

www.ijacsa.thesai.org

Fig. 10. Passing a vehicle from one segment to another.

The controller distributes the agents responsible for the
segments into as many partitions as workers. This distribution
is done in such a way that the number of messages exchanged
between the workers to update the segment densities is fairly
balanced.

At regular intervals, each scheduler generates a defined
number of vehicles, assigns random paths to them, and starts
them. Vehicles move from segment to segment until the end
of their path. At the beginning of each segment (Fig. 10), the
vehicle registers itself to be informed about the state of the
next segment. When a vehicle arrives at the end of a segment,
it generates a time-stamped event and sends it to the
coordinator. The vehicle then calculates the average speed of
the current segment, unregisters itself from this current
segment, where it is engaged. Then it registers itself to listen
to the next segment.

The coordinator receives the generated events messages
and puts them on one side in a buffer before sending them to
the gateways. On the other hand, these messages are used to
update the segment agent counters (see Fig. 9).

Each segment agent monitor the density of its corresponding
segment, when it reaches the critical density, it informs the
coordinator who in turn alerts the concerned vehicles.

C. Spatial Traffic Variation

To generate near realistic highway traffic, we added the
“factor” attribute in the XML file denoted f with 0 <f ≤ 1. This
attribute is used only in the entrance and exit vertices. The
closer this factor gets to 1, the higher the peak is used by
vehicles.

The value of the vertex attribute is related to its
neighboring population density.

 fi = Pi / P

Where, P is the total of population in the vicinity of the
highway network and Pi is the neighboring population of
vertex i.

For a given path Pathi = {v1, v2, v3, ..., vn}, the path factor fpi

is given by the relation:

 (2)

Where,

 fpi: Path factor,

 fi1: Path entrance vertex factor,

 fin: Path exit vertex factor,

 fiL:

 . The length factor, 0<fi<1

 Li : Path length,

 Lmax : Length of the longest path in the paths list,

 α, β and γ : the associated weights for factors fi1, fin,

 and fiL respectively.

In the simulator, we will use a uniform random distribution

(3) based on the path factor fp to determine the path to be
assigned to a given vehicle.

Paths = {path1, path2, path3, ..., pathm} // Paths

FP = {fp1, fp2, fp3, ..., fpm} // Path factors

P = {p1, p2, p3, ..., pm} // Probabilities

So we have:

∑

 (3)

Path selection algorithm:

Inputs:

 Paths = {path1, path2, path3, …, pathm}

 P = {p1, p2, p3, …, pm}

Begin

 s = 0

 r = getRandomDouble() // 0 ≤ r < 1

 For each pi from P

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

123 | P a g e

www.ijacsa.thesai.org

 IF r ≥ s AND r < s + pi

 Return pathi

 End IF

 s = s + pi

 End For

End

D. Temporal Traffic Variation

Highway traffic is conditioned by the life and occupations
of drivers over time. Most people travel a day rather than a
night. During the working days of the week, people travel to
work in the morning and return at the end of the day. There is
also a significant increase in travel at the beginning and end of
holidays. These variations are defined in the XML file “peak-
hours.xml”. This file represents the variations related to a
nominal state having the value unit. We considered only the
variations per day of the week as in the curve of Fig. 11 and
12.

At regular time interval T, the scheduler starts q(iT)
vehicles. Where, i is a positive integer. If the duration of the
simulation is D and assuming that D is multiple of T, then the
total number of vehicles Nv that are started during D is:

 ∑ ()

 (4)

Where, qa is the average of q(t).

If we consider that the duration of the simulation is
sufficiently long, we will have:

 ∑

 (5)

Where, M is the number of possible paths in the graph, Nj
is the number of times that Pathj has been taken, and pj is the
probability associated with the choice of this route.

The total distance KVD (6) traveled by all the vehicles that
will be engaged during the duration D is the sum of the
products of the distances dj and the number of times Nj that
the path j has been chosen and traveled by a vehicle:

Fig. 11. Peak-hours.xml file.

Fig. 12. Traffic variation over one day.

 ∑

 ∑

 (6)

 ∑

 (7)

Where, dA is the average of all chosen paths in the
duration D.

The nominal period T is obtained from relations (4) and
(7):

 (8)

The KVD indicator is often given for a period of one year
and is marked KVY (Vehicles-Kilometers per Year):

 (9)

E. Simulation Speed

When the objective of the simulation is to generate the
data of a long duration to do batch processing, it is important
to be able to increase the speed of the simulation process (see
Fig. 13).

The time factor (TF) is the ratio between the target
duration of the highway traffic and the actual duration of the
simulation (10). It expresses the speed of the simulation.

(

)

()

(
)

()

 ()

(10)

Where, t0 and t1 are the starting and ending dates
respectively of the simulation.

To increase the speed of the simulation the generator of a
scheduler will use the generation period Tg0 :

 (11)

Where, TF ≥ 1

With TF = 365, the events of one year are generated in 24
hours of simulation.

The events produced by the simulation are time-stamped
with the value of t'.

To be able to simulate large highway networks, a single
generator will not suffice. The load should therefore be
distributed over several processing nodes.

Fig. 13. Event time and processing time.

<peak-hours>

…

<peak day="3" from="07:00" to="21:00" factor="1" />

<peak day="3" from="06:00" to="09:00" factor="2" />

<peak day="3" from="12:00" to="13:30" factor="1" />

<peak day="3" from="16:00" to="19:00" factor="2" />

…

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

124 | P a g e

www.ijacsa.thesai.org

F. Distribution and Load Balancing of Traffic Generators

1) Schedulers distribution
In a cluster of N workers nodes each having M processors,

NxM traffic generators can be executed. The load is
automatically distributed proportionally using the vehicle
commitment period Tg :

 (12)

Whenever a vehicle leaves one segment to enter another, it
must inform the agents responsible for these two segments.
The number of these agents is equivalent to the number of
segments of the highway network.

These agents must also be deployed equitably on the N
workers nodes.

2) Partitioning and Distributing Segment Agents
The agent is responsible for the segments (Fig. 9), must be

partitioned equitably and distributed on all workers in the
cluster. A path i is a sequence of one or more segments. A
segment belongs to one or more paths. The number of
messages arriving at a given segment is related to its
frequentation. Knowing the paths probabilities, we can
determine the level of attendance at each segment. To do this,
we give for each segment (Edge) a weight (ws) which will
have the sum of all the probabilities of the paths to which this
segment belongs.

The partitioning is done by quasi-balancing the sums of
the weights of the segments of each partition.

Initialization:

Amounts = ArrayOfDouble(k)

Partitions = ArrayOfSegments(k)

Segments = {s1, s2, …, sn}

WS = {ws1, ws2, …, wsn}

Begin :

 For each Segment sj in Segments

 // get the index of the minimum Amounts

 index = getMinIndexOf(Amounts)

 Insert sj in Partitions[index]

 End for
End

G. Events Density over Time

When the time factor TF increases, the number of events
generated also increases in a given time. It is then important to
know in advance this events density (DE) with respect to time
(Events/s) in order to size the simulator modules.

 ∑

 (13)

Where, Ncj is the number of sensors in the path j.

H. Vehicle Itinerary

Before entering the highway, the vehicle registers to be
informed about the state of the density of the first segment.
After a certain delay, the vehicle calculates its speed,
determines the duration of the crossing of the segment and
starts a timer to warn it at the end of the segment.

Fig. 14. Relationship between velocity factor and segment density.

The nominal speed Vn (14) is calculated using the speed
limit Vl in that segment and a random component representing
the temperament of the driver. Vl is indicated in the
highway.xml file:

 (

) (14)

Where, r is the temperament factor of the driver, it is a
random number with 0 ≤ r <1, α is the speed excess factor
with α ≥ 1 and Vl is the speed limit of the next segment.

The speed of the vehicle (15) is obtained by weighting the
nominal speed by the velocity factor Fv (16) which depends
on the density of the segment according to Fig. 14.

When a vehicle arrives on a segment, it registers itself to
be informed about the density of the next segment. Messages
are sent only to concerned vehicles and only when the density
of a given segment reaches or exceeds the critical value
(Fig. 14).

{

 (15)

IV. APPLICATION: MOROCCAN HIGHWAY NETWORK

A. Simulator Implementation Approach

In order to scale and simulate large highway networks, the
simulator’s architecture must be distributed and based on
loosely coupled components. The reactive-programming (RP)
proposed in the “manifesto of reactive programming”,
provides a general framework for this kind of applications.
The RP systems are responsive, resilient, elastic and message
driven. In this article, we proposed an architecture using
multi-agent systems in which agents are autonomous and
collaborate with each other by exchanging messages. The
scheduler, vehicle, agents responsible for highway segments
are the examples of agents used in this application. When a
vehicle is created by a scheduler, it becomes autonomous and
is the only one to have access to its state. To make decisions,
it needs to be informed about the state of its environment. To
do so it proceeds by exchanging messages with the agents to
get information. Whenever a vehicle arrives at the end of a
segment, a message is sent to a gateway which itself is an
agent. In the case of a large network, multiple balanced
gateways can be used. Each worker hosts a partition of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

125 | P a g e

www.ijacsa.thesai.org

representative agents of the segments. These agents receive
regular messages when vehicles enter or leave their segment.
When the density reaches a critical threshold, the agents must
inform all vehicles that are about to arrive in that segment.

From a functional point of view, the application must
manage a large number of autonomous agents and must be
intensive messaging oriented. Since the application is
distributed, the data network exchange is also intensive.

Our first implementation of the simulator uses the toolkit
Eclipse Vert.x which facilitates the implementation of the RP.

B. Platform Materials

The proposed simulator is tested using a real example of
Moroccan highway network. The seven highways of the
Moroccan network (Fig. 15) are entered in the highway.xml
file (Fig. 16). The function q(t) expresses the temporal traffic
variations in highway (Fig. 17). Table 4 shows some highway
network features. We performed a test with the topology
shown in Table 5 using the parameters in given in Table 6.

Fig. 15. Map of the Moroccan highway network.

Fig. 16. Highway.xml.

Fig. 17. Values of q(t) extracted from peack-hours.xml.

TABLE IV. MOROCCAN HIGHWAY NETWORK FEATURES

Number of highways 7

Network total length 1 736 Km

Number of vertices (Nodes) 146

Number of edges (Segments) 286

Service areas 29

Number of entrances 184

Number of exits 184

Number of exchangers 5

Number of paths 2646

The shortest path length 2 Km

The longest path length 709 Km

The average path length 199.7475 Km

TABLE V. TEST PLATFORM TOPOLOGY

Module Nodes Features

Worker 2 Nodes
OS Linux 64bit 8 cores 3GHZ RAM 16GB
NIC10GB

Controller +
supervisor

1 Node
OS Linux 64bit 4 cores RAM 16GB NIC
10GB

Gateway 1 Node
OS Linux 64bit 4 cores RAM 16GB NIC
10GB

TABLE VI. TEST PARAMETERS

Parameter Value

Simulation duration 24 hours

Coefficients α, β et γ 0.3, 0.3, 0.4

KVD: Kilometer Vehicle per Day 24 000 000 Km

TF : Time factor (1 year) 365

dc : Critical density 20 Vehicles/Km

jd : Jam density 200 Vehicles/Km

C. Simulation Results

Table 7 shows the predictable results of the simulation
calculated only with the parameters of the simulation. The
processing of the data generated by the simulation confirms
the expected results. Traffic analysis shows that the spatial
variations of traffic expressed by the path factor (2) have been
respected as shown in Fig. 18. Fig. 19 shows that the set point
of 24 million vehicles kilometers per day has been reached.
The variation profile of the daily traffic corresponds to the set
point given by the peak-hours.xml file (Fig. 20). Fig. 21 shows
the number of traveled vehicles in the highway network each
month of 2017 year.

TABLE VII. PREDICTABLE RESULTS

Paramètre Valeur

dA : The average route distance ∑

 160.784549

Qa : The average of q(iT) determined from peack-hours.xml
file.

1.907

Total number of engaged vehicles :

 54 482 847

T, Nominal period of starting of vehicles

 1.103818 s

Tg, Effective period of starting of vehicles

0.048386 s

DE : Events density (Events/s)

 ∑

9485.2
Events/s

<?xml version="1.0" encoding="UTF-8" ?>

<?xml-stylesheet type="text/xsl" href="highway.xsl" ?>

<graph>

 <vertex name="A1-1-01" km="9" label="A1" type="O" lat="33.846320"

long="-6.898465" locality="Tamesna" factor="0.7" direction="1" />

<!-- Other 145 vertices -->

<edge source="A1-1-01" target="A1-1-02" speed="120" distance="5" lanes="2"

/>
<!-- Other 142 edges -->

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

126 | P a g e

www.ijacsa.thesai.org

Fig. 18. Spatial variation of vehicle entries.

Fig. 19. Kilometer Vehicle per Day (Average = 24 014 791).

Fig. 20. Variation over a week from Wed 1 Feb to Tue 7 Feb 2017.

Fig. 21. Number of engaged vehicles per month over 2017.

V. CONCLUSION

In this paper, we proposed a distributed simulator model of
intelligent highways based on multi-agent systems and a
virtual calendar. The simulator allows near realistic traffic to
be generated based on the distribution of the population
juxtaposing the network and the lengths of the journeys to be
traveled. The simulator takes into account the variations of
highway traffic over time which are described in an XML file.
At regular time intervals and according to the current date, a
traffic generator generates a flow of vehicles and affects them
random paths. Each vehicle is an autonomous agent; it
regulates its speed according to the state of the traffic. To
validate this model, we implemented it using reactive
programming and we tested it for the case of the Moroccan
highway network. We carried out a simulation of the traffic of
a year in 24 hours with a constraint of 25 million of Vehicles
Kilometer per Day, producing an events density of 9485.2
Events/s. The amount of data produced by this simulation is of
the order of 102 GB.

As a perspective, real-time and batch processing models of
data generated by traffic will be developed and tested. The
simulator can then be extended by allowing vehicle interaction
with Big-data applications to improve the use and safety of
highway networks. On the other hand, the spatial and temporal
components of our generator are independent. The generator
should link these two components as is the case in reality; a
socio-cultural event is associated with both geography and
time.

REFERENCES

[1] C. Diakaki, M. Papageorgiou, I. Papamichail, and I. K. Nikolos,
“Overview and analysis of vehicle automation and communication
systems from a motorway traffic management perspective,” Transp. Res.
A, Policy Pract., vol. 75, pp. 147–165, May 2015.

[2] C. de Fabritiis, R. Ragona, and G. Valenti, “Traffic estimation and
prediction based on real time floating car data,” in Proc. IEEE Conf.
Intell. Transp. Syst., Beijing, China, 2008, pp. 197–203.

[3] J. I. Ge and G. Orosz, “Dynamics of connected vehicle systems with
delayed acceleration feedback,” Transp. Res. C, Emerging Technol., vol.
46, pp. 46–64, Sep. 2014.

[4] A. Kesting, M. Treiber, M. Schonhof, and D. Helbing, “Adaptive cruise
control design for active congestion avoidance,” Transp. Res. C,
Emerging Technol., vol. 16, no. 6, pp. 668–683, Dec. 2008.

[5] S.-C. Lo and C.-H. Hsu, “Cellular automata simulation for mixed
manual and automated control traffic,” Math. Comput. Modell., vol. 51,
no. 7/8, pp. 1000–1007, Apr. 2010.

[6] L. Alvarez-lcaza, L. Munoz, X. Sun, and R. Horowitz, “Adaptive
observer for traffic density estimation,” in Proc. IEEE ACC, Boston,
MA, USA, 2004, pp. 2705–2710.

[7] I.-C. Morarescu and C. Canudas de Wit, “Highway traffic model-based
density estimation,” in Proc. IEEE ACC, San Francisco, CA, USA,
2011, pp. 2012–2017.

[8] F. Morbidi, L.-L. Ojeda, C. Canudas deWit, and I. Bellicot, “A new
robust approach for highway traffic density estimation,” in Proc. IEEE
ECC, 2014, pp. 2575–2580.

[9] L. Munoz, X. Sun, R. Horowitz, and L. Alvarez, “Traffic density
estimation with the cell transmission model,” in Proc. IEEE ACC, 2003,
pp. 3750–3755.

[10] A. Anand, G. Ramadurai, and L. Vanajakshi, “Data fusion-based traffic
density estimation and prediction,” J. Intell. Transp. Syst., vol. 18, no. 4,
pp. 367–378, 2014.

[11] V. Astarita, R. L. Bertini, S. d’Elia, and G. Guido, “Motorway traffic
parameter estimation from mobile phone counts,” Eur. J. Oper. Res.,
vol. 175, pp. 1435–1446, 2006.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

127 | P a g e

www.ijacsa.thesai.org

[12] J. C. Herrera et al., “Evaluation of traffic data obtained via GPS-enabled
mobile phones: The Mobile Century field experiment,” Transp. Res. C,
Emerging Technol., vol. 18, no. 4, pp. 568–583, Aug. 2010.

[13] W. Deng, H. Lei, and X. Zhou, “Traffic state estimation and uncertainty
quantification based on heterogeneous data sources: A three detector
approach,” Transp. Res. B, Methodol., vol. 57, pp. 132–157, Nov. 2013.

[14] T. Seo, T. Kusakabe, and Y. Asakura, “Estimation of flow and density
using probe vehicles with spacing measurement equipment,” Transp.
Res. C, vol. 53, pp. 134–150, Apr. 2015.

[15] J. Fiosina, M. Fiosins and J. Müller, "Big Data Processing and Mining
for Next Generation Intelligent Transportation Systems," Jurnal
Teknologi, vol. 63, no. 3, pp. 21-38, 2013.

[16] J. Caserta and E. Cordo, "Big ETL: The Next 'Big' Thing," 9 February
2015. http://data-informed.com/big-etl-next-bigthing/.

[17] Q. Ou, R. L. Bertini, J. W. C. van Lint, and S. P. Hoogendoorn, “A
theoretical framework for traffic speed estimation by fusing low-
resolution probe vehicle data,” IEEE Trans. Intell. Transp. Syst., vol. 12,
no. 3, pp. 747–756, Sep. 2011.

[18] M. Papageorgiou and A. Messmer, “METANET: A macroscopic
simulation program for motorway networks,” Traffic Eng. Control, vol.
31, no. 9, pp. 466–470, 1990.

[19] V. Punzo, M. T. Borzacchiello, and B. Ciuffo, “On the assessment of
vehicle trajectory data accuracy and application to the Next Generation
SIMulation (NGSIM) program data,” Transp. Res. C, Emerging
Technol., vol. 19, no. 6, pp. 1243–1262, Dec. 2011.

[20] “Next Generation SIMulation (NGSIM),” U.S. Dept. Transp.,
Washington, DC, USA, 2005. Available: www.ngsimcommunity.

