
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

140 | P a g e

www.ijacsa.thesai.org

The Optimization of Query Processing in Seabase

Cloud Databases based on CCEVP Model

Abdulkadir ÖZDEMİR

Faculty of Social Sciences, Ataturk University

Erzurum, Turkey

Hasan Asil

Faculty of Computer, Azarshahr Branch,

Islamic Azad University, Azarshahr, Iran

Abstract—A cloud database is a database usually installed on

cloud computing software platforms. There are several methods

for query processing in cloud databases. This study tried to

optimize query processing in the SeaBase cloud database and

reduce query processing time. This method used adaptability for

optimization. This method was designed for cloud-based

databases. The algorithm is composed of three components:

1) multi cloud query separator; 2) query similarity detector

based on the execution plan; and 3) replacement policy. This

method is implemented as a system for a fully object-oriented

simulation. The system is added to the SeaBase as an agent. The

evaluation result show that this method reduced response time by

1.9 percent.

Keywords—SeaBase; optimization; query processing; database;

adaption

I. INTRODUCTION

Database management systems are software packages that
can be used to create and maintain one or more databases.
However, with the rise of cloud computing, database
management systems have become a new kind of service with
unique advantages. In these services, DBMS is a part of a
larger service which is likely to be more effective in terms of
results and assigned tasks [1].

A cloud database is a database usually installed on cloud
computing software platforms. Using a virtual machine, users
can independently launch databases on cloud, or they can
purchase an account to access database services maintained by
cloud database providers [2].

SeaBase is an implementation based on cloud computing.
Based on CCEVP model, it can convert different data types
into one. In fact, SeaBase is a relational cloud database which
can merge a pair of databases together [3]. Like SQL server,
DB2, Sybase, MySQL, and other similar databases, SeaBase
was designed in order to integrate data taken from several
heterogeneous databases and provide users with them in a
unified way [4]. Fig. 1 indicates the structure of SeaBase based
on CCEVP model.

The CCEVP model uses three layers: 1) physical; 2)
virtual; and 3) effective. The physical layer is a set of
multisource physical tables from similar or dissimilar
databases. The virtual layer is a set of relationship schemas
determined by the SeaBase users. The effective layer allows
users to create a unified vision to the SeaBase.

Fig. 1. CCEVP Model (Cloud Computing-based Effective-Virtual-

Physical) [1].

II. OPTIMIZING QUERY PROCESSING IN CLOUD DATABASE

EASE OF USE

There are several methods for query processing in cloud
databases. Many of these methods have offered new
technologies to optimize query processing in the database [3].
Some of these methods use replication for query processing
and accelerate the process by data sampling. Some methods
use traditional methods for query processing in the database.
Some methods attempted to optimize the execution plans,
which are known as Silinger methods [4], [5].

Most of these methods use a special procedure (Selinger-
Style) for optimization, and generally after query processing
and query execution, the plan optimized for query processing is
eliminated. But today, in addition to these methods, other
methods are also being offered to optimize query processing in
the database [6], [7]. But the question is that whether the
produced optimized plan (or the frequent queries sent to the
SeaBase) can be used for executing subsequent queries. As we
know, in the application-related databases, usually the queries
sent to the database have high adaptability power because in
these systems, the queries sent to the database have the same
structure and are adapted as soon as possible. This method can
be used to optimize the SeaBase.

III. THE PROPOSED METHOD

The aim of this study was to optimize query processing in
the database model. Matching techniques were used to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

141 | P a g e

www.ijacsa.thesai.org

optimize processing. This method was proposed in order to use
the optimal schemas generated for the execution of next
queries or the ones frequently sent to the database. An agent
was added to this model for implementation [8].

Combining the technologies of optimizing queries and
agents in this algorithm, a multi-agent system was proposed.
Using information collection technology based on processing
users’ queries, this system tries to provide users with an
adaptable environment based on the query types and how they
are made [9].

Given the fact that requests are sent to the system by
applications or users, the majority of queries have the same
structure. They are repeated over time. Therefore, this paper
was intended to propose a method by which the database could
identify the queries of the same type over time. Using a
specific schema of execution, it was also intended to identify
the highly frequent queries sent to the database and answer
them. Put another way, the database was to be matched so that
the queries would be processed with the prepared execution
schemas at a lower cost. In fact, it was meant to decrease the
number of steps required for processing highly frequent queries
sent to the database.

In this algorithm, an agent was added to SeaBase so that a
matched cloud database would be generated. Decreasing the
number of steps required for processing the highly frequently
queries sent to the cloud database, this algorithm tried to
increase the optimization of query processing in cloud
databases.

This research uses the previous heterogeneous distributed
database query processing method and develops it for SeaBase
[4], [8].

The algorithm uses a method for optimizing query
processing in the heterogeneous distributed databases. This
method was designed for cloud-based databases. The algorithm
is composed of three components:

 Multi Cloud query Separator

 Query similarity detector based on the execution plan

 Replacement policy

The main objective of this approach is to identify the most
frequent instructions sent to the cloud database and store their
execution plans in the system so that in case of a request to the
database, the same execution plan is used for query execution.
The separator part separates instructions and the instructions
whose execution plan has not high cost. The query similarity
detector is used to identify similar instructions. The
replacement policy detects the most frequent instructions sent
to the SeaBase and stores their execution plans. The following
algorithm shows the structure of this method (Fig. 2).

A. Separator of distributed instructions

Distributed instructions are instructions which include
several sub-queries and receive information from several
DBMSs.

Fig. 2. Suggested algorithm.

The purpose of this function is to identify functions that
based on assessment, need more time for execution or receive
information from several databases. Different queries are sent
to the SeaBase, and the database needs cost to respond to
queries depending on their type and structure. As mentioned,
three layers are used to execute the instructions sent to the
database: physical, virtual and effective. Based on the layer, the
separator detects instructions that require the use of several
databases. The separator aims to identify the instructions that
use multiple databases and need a link.

B. The query similarity detector based on execution plan

Any query for execution in the cloud database requires the
same steps used in a non-cloud database. Any query for
execution must have a specific plan. In applications, requests
are usually sent to the database with a specific format and
different parameters. The purpose of this section is to identify
queries with similar plans.

To make adaptive the query processing in the database, we
need a part in the proposed system that can compare the sent
queries and identify similar queries. For example, consider the
following two queries.

SELECT *

FROM tblKala INNER JOIN

tblHavaleKala ON tblKala.KalaiD = tblHavaleKala.KalaID
INNER JOIN

 tblHavale ON tblHavaleKala.HavaleID =
tblHavale.HavaleIDwhere kalaid=20

SELECT *

FROM tblKala INNER JOIN tblHavaleKala ON
tblKala.KalaiD = tblHavaleKala.KalaID INNER JOIN

tblHavale ON tblHavaleKala.HavaleID =
tblHavale.HavaleIDwhere kalaid=31

Query processing optimization in SeaBase

1. Begin

2. Examine query by separator(can Separate
distributed query)

3. Produce query execution plan if query is one of
exceptions

4. If it's not an exception check it's execution plan
availability in system by similarity recognizer

4.1 If execution plan exists select it

4.2 otherwise,

4.3 send it in order to producing execution plan

5. executing plan for replying to query

6. Check whether it's the time for substituting or not?

6.1 If so, do substitution

7. END

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

142 | P a g e

www.ijacsa.thesai.org

As can be seen, these two instructions request information
on products 20 and 31 from the database. But the two
instructions are the same and can be executed with the same
plan. This part of the system should be able to detect such
instructions.

C. Replacement policy

In the algorithm, a set of frequent execution plans must be
kept in the agent and in case of request, the same query request
should be used. The replacement policy is used to create and
update the set. An important part of this research is to
determine the replacement action is done how, when and with
what policy.

As know adding an agent to SeaBase, which always adapts
queries, constrains cost to system. For adapting system the
method examines sent queries to database for a while and the
execution plan of similar frequent queries is substituted in
database. (It's considered that only queries receipted by
separator will be sent to this part). The time between two
adaptation said that this time is calculated by value of adapted
queries and dynamically. It means that whatever score goes up,
adaptable queries will stay in the system for longer time and if
adapting enjoys low score they will stay in the system for
shorter time. It was found that on the long run, the increasing
score of adapted queries have increase this time. The method
does adapting on queries sent to database in busy hours. The
method saves queries in busy hours and in quiet hours it will
does adapting on these queries when it's time to adapt.

Now about the ways of adapting, at first create a bank of
sent queries then if sent query was similar to one of available
queries in database we increase the weight of query and also if
sent query was not available in the bank the method adds it to
databank and continues adapting. After adapting the method
saves queries with high scores. Ways of saving queries in
database follows a distinct format and standard in order to
constrain less cost when the queries are examined.

IV. ASSESSMENT AND PRACTICAL RESULTS

Several methods are currently used to measure the
performance of the database system. One of the most common
methods among the above methods is runtime in the system.
Runtime is the time from the sending moment to the system
response. This study tries to identify the most frequent queries
sent to the database and keep their execution plans for
executing subsequent queries. In fact, this method tries to make
the query processing in the database adaptive.

For assessment, this method is implemented as a system for
a fully object-oriented simulation. The system is added to the
SeaBase as an agent. Then the results of execution using this
method are compared with the SeaBase without this agent.
Furthermore, we need the desired data based on relationship
dependence. For this purpose, the SQL Toolbelt database and
simulator is used to create data and determine the table
dependence.The.NET and the SQL API functions are used to
implement the algorithm and make comparisons. The
following Fig. 3 shows some of the code in this system:

Fig. 3. Part of the simulation.

After simulation of the system, the following results will be
provided.

 The query runtime cost in a normal manner.

 This cost is equal to the time required for the SeaBase
query processing and respond to the user. This cost is
assessed without adding the agent to the system.

 The cost of the proposed algorithm execution.

 After adding the agent to the SeaBase, the adaptability
cost and the query execution cost must be added up and
evaluated. The algorithm execution cost is the
adaptability cost.

 The execution cost of the adapted query as an execution
plan.

 This cost is the execution cost of query with the help of
agent. It is worth mentioning that with regard to the
adaptability of some queries, the cost of some queries is
normal and some less.

After obtaining the above results, the second and third costs
are added up and compared with the first cost.

In the algorithm, the times required for executing the
queries sent to the database are compared in adaptive and non-
adaptive databases. Fig. 4 shows the time required to respond
to the adaptive and non-adaptive queries per day. A cloud
database with adaptive queries is called adaptive cloud base.

This diagram shows the total time required for executing
adaptive queries in the database as well as the total time for
executing adaptive queries in the non-adaptive mode. It should
be noted that in this figure, the adaptability cost is not currently
added to the above calculations because the system is not
adaptive at any time and will do this action only at certain
times of low traffic.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

143 | P a g e

www.ijacsa.thesai.org

Fig. 4. Report of response time per day for adaptive queries.

However, these costs will be taken into account in the next
assessments.

Fig. 5 shows the reduced time of executing adaptive
queries. These queries in the SeaBase are queries which have
become adaptive. Obviously, due to making high-traffic
queries adaptive, this method reduces the server workload at
times of high traffic.

The first row of Table 1 represents the total time for
responding to adaptive queries and reduced time of response
time for all adaptive queries sent to the database. It also shows
the cost of making queries adaptive.

Fig. 5. Report of reduced cost of adapted query.

TABLE I. TOTAL SYSTEM EVOLUTION

Row
Type of

queries

Decrease

response time

Total

Execution time

1
Distributed

queries(Join)

51% 100%

2 All queries 5.1% 100%

In this system, when sending queries to the database, the
query separator separates some queries and blocks their way to
the database. The second row represents time and cost for all
queries sent to the database plus adaptability cost.

As shown in Table 1, the system reduced response time by
1.9 percent.

V. CONCLUSION

The increase in data volume in many applications and the
need for their calculations are the database challenges. Cloud
computing and the use of SeaBase databases are a solution to
integrate a variety of DBMSs and integrated access to tables in
databases. This study tried to optimize query processing in the
SeaBase cloud database and reduce query processing time.
This method used adaptability for optimization. The purpose of
this method is to make adaptive the execution plans of high-
traffic queries sent to the SeaBase. For adaptability, this
method uses three parts: separator, similarity detector and
replacement policy. This method is added to the database as an
agent. The results show that the system optimizes query
processing in the database and reduces response time by one
percent. Based on the replacement policy, this method also
reduces workload. In the future, response time can further
decrease by changing the replacement policy.

REFERENCE

[1] Shusheng Guo ; State Key Lab. of Comput. Syst. & Archit., China
; Zimu Yuan ; Li Zha ; Zhiwei Xu, “SeaBase: An Implementation of
Cloud Database”, 10th International Conference on Semantics,
Knowledge and Grids (SKG), Beijing, 2014

[2] Waleed Al Shehri, CLOUD DATABASE DATABASE AS A
SERVICE, International Journal of Database Management Systems (
IJDMS) Vol.5, No.2, April 2013

[3] Clayton Maciel Costa, Adaptive Query Processing in Cloud Database
Systems,IEEE International Conference on Cloud and Green
Computing,2013

[4] Ennaz zafarani , Mohammad_Reza Feizi_Derakhshi , Hasan Asil , Amir
asil “Presenting a New Method for Optimizing Join Queries Processing
in Heterogeneous Distributed Databases” , WKDD2010, Phuket ,
Thailand , 9-10 January, 2010.

[5] Mohammad_Reza Feizi_Derakhshi , Hasan Asil , Amir Asil,ennaz
zafarani “Optimizing Query Processing in Practical Software Database
by Adapting” WKDD2010, Phuket , Thailand , 9-10 January, 2010.

[6] Mohammad_Reza Feizi_Derakhshi, Hasan Asil, Amir Asil “Proposing a
New Method for Query Processing Adaption in Data Base " WCSET
2009: World Congress on Science, Engineering and Technology Dubai,
United Arab Emirates VOLUME 37, January 28-30, 2009 ISSN 2070-
3740

[7] Amol Deshpande, Zachary Ives, and Vijayshankar Raman. Adaptive
query processing. Foundations and Trends in Databases, 1(1), 2007.

[8] Mohammad_Reza Feizi_Derakhshi , Hasan Asil , Amir Asil,elnaz
zafarani “Practical Software Query Optimizing by Adapting Why and
How?” Australian Journal of Basic and Applied Sciences, jourdan ,
January,2010

[9] Agent Working Group, “Agent Technology Green Paper”. OMG
Documentagent/00-09-01 Version 1.0, 2000.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Shusheng%20Guo.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Zimu%20Yuan.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Li%20Zha.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Zhiwei%20Xu.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6963208

