
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

5 | P a g e

www.ijacsa.thesai.org

MobisenseCar: A Mobile Crowd-Based Architecture

for Data Acquisition and Processing in Vehicle-Based

Sensing

Lionel Nkenyereye

Department of Computer Engineering

Dong-Eui University

Busan, Republic of Korea

Jong Wook Jang

Department of Computer Engineering

Dong-Eui University

Busan, Republic of Korea

Abstract—The use of wireless technology via smartphone

allows designing smartphone applications based on OBD-II for

increasing environment sensing. However, uploading of vehicle’s

diagnostics data via car driver’s tethered smart phone attests a

long Internet latency when a large number of concurrent users

use the remote mobile crowdsensing server application

simultaneously, which increases the communication cost. The

large volume of data would also challenge the traditional data

processing framework. This paper studies design functionalities

of mobile crowdsensing architecture applied to vehicle-based

sensing for handling a huge amount of sensor data collected by

those vehicle-based sensors equipped with a smart device

connected to the OBD-II interface. The proposed MobiSenseCar

uses Node.js, a web server architecture based on single-thread

event loop approach and Apache Hive platform responsible for

analyzing vehicle’s engine data. The Node.js is 40% faster than

the traditional web server side features thread-based approach.

Experiment results show that MapReduce algorithm is highly

scalable and optimized for distributed computing. With this

mobile crowdsensing architecture it was possible to monitor

information of car’s diagnostic system condition in real time,

improving driving ability and protect the environment by

reducing vehicle emissions.

Keywords—Mobile crowdsensing; data processing; web

services; hadoop; hiveQL; OBD-II

I. INTRODUCTION

Mobile crowdsensing refers to a new paradigm that allows
a certain number of individuals to collectively share data and
extract information so as to measure and map phenomena of
common interests [1]. Improvements in terms of smart device
capabilities and communication technologies allow
crowdsensing solutions to emerge as significant strategies to
revolutionize environment sensing. If vehicular mobility is
adopted, the sensing capabilities can be further increased by
connecting smart devices to vehicles using the On Board
Diagnostic interface (OBD-II) or provided directly by smart
vehicles through vehicle-to-vehicle or vehicle-to-infrastructure
communications [2].

Remote On-line Vehicle Diagnostics (ROVD) is such a
telematics service that provides opportunities to constantly
monitor the vehicle diagnostics system remotely [3]. ROVD
integrates the capability of computing unit to identify a fault or
a possibility of a fault in an automobile and transmit vehicle

trouble codes to a remote central processing center or public
cloud computing [3]. Thus, ROVD replaces wireless
technology over short distances or cable between on-board
vehicle‟s connector and vehicle‟s monitoring system by mobile
network based data [4]. These vehicle monitoring systems
move into a remote data center owned by car manufacturers for
instance. ROVD also adds the event-driven intelligence in
which the vehicle determines when it is necessary to inform
changes in the vehicle‟s status [4].

The number of mobile crowdsensing vehicle‟s diagnostics
applications (MCVDAs) has increased in the automotive
market [3]. These MCVDAs ensure that the messages received
from the vehicle‟s engine reach the smartphone through the
Bluetooth wireless interface and the smartphone‟s wireless
communication modules transmit the received packets to the
remote data center. Thus, these applications may play an
important role in reducing the number of accidents and
allowing the automotive industry to use data generated from an
automotive electronic system to make new models of cars in
the future. Another advantage is that it allows Original
Equipment Manufacturer (OEM) or its service partner to
inform the driver whether he can continue his journey safely or
whether he requires assistance from a near repair shop. This
helps prevent vehicle breakdown by detecting the vehicle
problems at an early stage.

The transmission of vehicle‟s diagnostics data via car
driver‟s tethered smart phone increases the cost in
communication by looking at the amount of generated data in
order of a few gigabytes per hour per vehicle [5]. As a
consequence, the vehicle commercial company or car
manufacturers and automobile ecosystem would have to
support the lifetime cost of diagnostics data. It is not
reasonable for the car manufactures or OEM to support
communication cost when they cannot control the usage of the
mobile application delivered to the car owner. The data
transmission may not only increase cost communication but
also internet latency when the architecture of the remote web
server may not process concurrent requests from a large
number of drivers uploading their vehicle‟s diagnostics data
simultaneously. For example, the driver would interrupt the
uploading of a vehicle‟s engine diagnostics data when he (she)
uses other applications installed on his (her) smart phone due to
the unexpected communication latency. In this case, the OEM

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

6 | P a g e

www.ijacsa.thesai.org

or its service partner would not be able to start a diagnosis
session remotely, and therefore, leave the driver with
possibility of not receiving any assistance. Furthermore, the
enormous quantities of vehicle‟s diagnosis data generated by
the MCVDA may challenge its analysis making it difficult for
the car manufacturers‟ technicians to figure out the cause of
vehicle breakdown quickly, for instance.

The connectivity inside the vehicle may be established.
However, due to the mobility of vehicles and the lack of a
reliable connection, a real-time uploading would be
unsuccessful. For this, the pushing technique from a temporary
storage should be used on the mobile application to the remote
server for realizing data replication after a certain distance of
driving.

This study proposed a mobile crowdsensing architecture for
designing MCVDA that relies on the tethered connectivity
model, component-based mobile applications, Client-Server
Architecture and data processing framework for processing
volume of both structured and unstructured data. Therefore, the
tethered connectivity model carries the smart phone inside the
vehicle. The smart phone is used as a modem via wired,
Bluetooth or Wi-Fi as communications technologies. The
component-based mobile application and Client-Server
Architecture feature have the ability to process a large number
of requests from multiple drivers simultaneously. The proposed
Client-Server Architecture prevents blocking and long
execution requests that may increase communication cost. To
solve the limitation of blocking running requests, the Client-
Server architecture handles them using a single-thread event
loop web server-side called Node.js [6], [7]. The data
processing model is implemented using Big data technology
which provides infrastructure that can manage and process
vehicle-based sensing data, thus enabling to enhance safety and
driving experience. The implantation of Big data includes
Hadoop, an open source distributed platform for storing and
processing data. This Hadoop includes the Hadoop Distributes
File System (HDFS) which provides Application Program
Interfaces (APIs) for MapReduce applications to read and write
data in a parallel manner [8].

The main contribution of this work is as follows:

 Design components based mobile client server
computing architecture is introduced for implementing
the MCVDA application called MobiSenseCar which is
based on Android. The design of the MobiSenseCar, a
mobile application allows the managing of the issue of
concurrent clients‟ requests and replication of vehicle‟s
diagnostic data on a temporary SQLite database on a
mobile application to solve the issue of unreliable
connectivity.

 A novel analytical model is based on big data
technology for monitoring vehicle‟s diagnostics data.
In-vehicle‟s diagnostic data is stored in HDFS;
analyzing jobs are executed by queries in HiveQL
language, and the queries will be transferred into
MapReduce progress.

 Investigate the performance of data acquisition platform
which consists of a Client-Server Architecture that

includes backend server, web programming framework
and database that can support a large and increasing
number of concurrent clients‟ requests. The
performance metrics are throughput, response time and
error rate to compare web applications developed using
JavaScript and JavaServelet.

The rest of this paper is organized as follows. First, the
related work is discussed in Section II, then focus on the
background of technology of event-driven approach, Node.js
and Big Data technology in Section III. This section elaborates
a general system design model for MobiSenseCar based on
web server with Node.js and Hadoop. Next, the paper takes an
isolated look at different stages of this model and gets to know
their relevant components approaches to adopt in Section IV.
In Section V, it discusses the results of the implementation of a
MobiSenseCar mobile application based on Android that
features different components of the proposed mobile client
server computing architecture. In Section VI, it briefs the
simulation, experimentation and analysis of results of the
proposed mobile crowdsensing architecture. The conclusion in
Section VII sums up the architecture for a diagnosis of the
status of a vehicle‟s engine and the advantages of deploying
applications based on tethered connectivity model for
leveraging heterogeneous crowdsourced data from MCVDA.

II. RELATED WORK

Currently there are few ad hoc solutions to smart phone
based sensing vehicle monitoring systems. Therefore,
prototype model includes on-board computer, wireless
communication link, vehicle monitor server, and vehicle status
browser. Below the paper proceeds by describing briefly the
different smart phone based mobile crowdsensing architecture
for monitoring the car as a sensing platform.

Prashanth et al. [9] made an architecture that leverages
sensors besides GPS-accelerometer and microphone, in
particular to glean rich information such as the quality of the
road or the noisiness or traffic. They proposed algorithms to
virtually reorient a disoriented accelerometer along a canonical
set of axes and then use simple threshold-based heuristics to
detect bumps and potholes and braking. Their study focus on
the use of sensing components in the smart phone applied to
proposed algorithms for detecting potholes. A similar
application is PotHole [10] which can identify holes in streets
using the crowdsourced vibration and position data collected
from smartphone.

Recently, both Derick et al. [11], Eren et al. [12] and
Mohamed et al. [13] propose a driving style recognition
application using smartphone as a sensor platform. The
evaluation in [11] proves that classical Dynamic Time Warping
algorithm can accurately detect events with a very limited
training set. In [12], safe or unsafe optimal path detection
algorithm and Bayesian classification applied to vehicle data
detect the driver behavior, and then increase safety while
driving.

Jules et al. [14] present a formal model for accident
detection that combines sensors and context data. They showed
how smartphone sensors, network connections, and web
services can be used to provide situational awareness to first

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

7 | P a g e

www.ijacsa.thesai.org

responders. The contribution of their work provides empirical
results demonstrating the efficacy of different approaches
employed by smartphone accident detection systems to prevent
false positives.

There is another interesting work which proposes driver
behavior profiling using smartphone [15]. This work analyzed
how smartphone sensors can be used for identifying maneuvers
and propose a platform that is able to detect risky driving
events independently from the mobile device and vehicle. In
this work, the fuzzy logic event detection mechanism is
implemented in an Android application. The authors state that
the approach intends to use the DoIP protocol to perform
vehicle diagnostics data exchange synchronously over a TCP
connection over wireless communication and information
infrastructures.

The design prototype proposed in the above studies has
some drawbacks. The first drawback is that the design
prototype proposed in [10], [11], [14], [15] does not take into
consideration the impact of a large amount of generated data.
How and where to preprocess and aggregate Controller Area
Network (CAN) data is also an important question which was
not addressed. Furthermore, there is no performance evaluation
of Client-Server Architecture designed to handle a large
number of requests submitted from participatory vehicle –
based sensing platform. The second drawback is about the
integration of the data processing framework for analyzing a
huge amount of vehicle‟s diagnostics data generated by
MCVDA that would enhance decision making.

At one of the range, there is rich commercial vehicle‟s
telematics application as mentioned in the white paper
published by Oracle. In that white paper, the Oracle for the
Connected Vehicle highlights how their Octo Telematics
solution architecture would turn data generated by vehicles into
business, therefore enhancing the value of vehicle‟s diagnostics
data [16]. Thus, the proposed Octo telematics solution relies on
the embedded “clear box” of sensors used to collect on-board
vehicle‟s data, and then uploads them to the central message
system where a mechanism of validation meshes unto the
insurance company‟s framework.

III. BACKGROUND OF TECHNOLOGY

The purpose of this section is to provide an introduction
and background to areas immediately tied to this work. It
describes the characteristics of some important fields that
should be taken into consideration when conducting this kind
of studies. First, it describes the characteristics of the
connectivity models inside vehicles that might provide a
feasible integration of solution based on them. Secondly, it
provides the reader with a short introduction to server-side
scripting to respond to network and concurrent requests.
Finally, it describes the big data technology and its related
framework to process large data sets of information.

A. Communication Solution Inside Vehicles

The wireless communication technologies built-in or
brought in the vehicle will enable the automotive world to

 afford new applications such as navigation, billing facilities,
and fleet management. The success of new in-car telematics
applications and services can be realizable through the V2I
(Vehicle-to Infrastructure) data exchange with network
operators [17]. The connectivity inside the vehicle may be
established by the network operator in three ways: embedded
solution, tethered solution and integrated solution [17].

 The embedded solution: it includes both connectivity
and intelligence that are built into the vehicle. For this
kind of connectivity, the in-car telematics services
proposed by the auto makers will force them to build
TCU (Telematics Control Units) into the vehicle within
a SIM (Subscriber Identity Module) card to connect to
the network in order to make calls, and receive texts for
instance.

 The tethered solution: The tethered connectivity model
stands on the obligation of carrying the smart phone
inside the vehicle. This smart phone is used as a modem
via wires, Bluetooth or Wi-Fi.

 The integrated solution: integrated solution is
considered as an integration of the smart phone
application into the vehicle to enable the driver to
access telematics or cloud-based applications and their
features safely while driving.

The research work done on the growth of connectivity
model inside the vehicle and published by the World Leading
Knowledge Partners to the Automotive industry [17] states that
tethered solutions will grow more and eventually peak in
developed USA and Europe market by the end of the decade
[17]. As embeddedness is considered to be the seamless and
reliable solution for the future in-car telematics service, USA
and Europe markets are interested in tethered solution for the
only reason that tethered solutions are considered as short-term
solutions to customers‟ unwillingness to pay a second
communication cost for vehicle-related connectivity in the car
on the top of their mobile phone communication bill [17].

B. Server-side Scripting Approach

The architecture of web server-side and its scripting
approach must inherit features that allow responding to an
increasing number of network requests from the end-users.
Thread-based scripting approach has been used to implement
web application to respond to the clients‟ requests. However,
web server based on the thread-based approach might perform
inefficiently as the number of incoming network requests
increases. Therefore, many industries such as eBay, LinkedIn,
etc. have started to adopt event-driven programming as an
option to respond to a large number of concurrent requests and
achieve scalability more operationally.

1
 In this sub section, it

first describes the thread-based scripting approach and its
limitations. As an option to overcome limitations of thread-
based scripting, it discusses the key features of the event-driven
scripting approach and the benefits of the recent server-side
platform based on event-driven scripting called Node.js.

1 https://www.codefactoryacademy.com/posts

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

8 | P a g e

www.ijacsa.thesai.org

Fig. 1. A Conceptual Model for an event-driven architecture. Each incoming

client request is handled by the single-thread event loop. Event handlers do

trigger I/O actions that result in a new event later asynchronously.

Fig. 2. Operation phases in Map/Reduce programming mode [22].

Thread based approach identities each incoming request or
tasks using a separate – thread. This thread-based architecture
relies on the per-connection process model where a dedicated
process for handling a connection is setup [18]. The thread
descriptor is shared among all processes and each process stops
up for a new connection, treats the connection and then delays
for the next connection [18]. As a consequence, at a given
time, the server finds itself in situation having the same number
of threads as the number of requests [19]. Therefore, the
application server would not scale efficiently when there are
many threads or network requests [19].

Event-driven scripting approach attests as an option to
synchronous blocking I/O (Input/Output). As shown in Fig. 1,
the event-driven approach queues both new requests and
blocking I/O requests. The single-thread executes an event loop
by setting up a simple mapping of all requests. The event loop
gradually dequeuing request from the queue, then processing
the request, finally taking the next request or waiting for new
requests submitted. The event-driven script is referred to
asynchronous programming. This means that the statements
inside the scripts are not necessarily executed in the order of
being written in the code. Usually, no single statement will
ever block the next line of code. In fact, even if the next line
statement takes a long time to complete, the rest of the program
will continue to run normally. At that time, the program will
wait for some resource to complete its long-running tasks and
when it is done, a callback function is called. For instance, in
the case of a server-side web application, this paradigm allows
for handling enormous load capabilities because it does not
need to wait for a long running request to finish. Instead, the
server can start beginning performing the next request and
return to finish the previous request when callback result
occurs. The server is never blocked, so it is suitable to handle a
high number of concurrent requests.

Fig. 3. Overview of the functional components-based Mobile Crowd

Sensing and computing architecture for MobiSenseCar application. The

components are divided in two type. The first type of components are

designed to be implement on the Smartphone The second type of components
is to manage the MobiSenseCar Data center-Wired SOA infrastructure.

One of the advantages of Node.js over thread-based
framework is that it has a built-in single-thread event loop and
non-blocking model [20]. The second advantage is that Node.js
allows event-driven paradigm which is the key on which
interactive Node.js applications are constructed. Node.js
features the event-handler that creates events and the main loop
executes the appropriate event. The event handlers in Node.js
are known as callback functions. Therefore, callback functions
are eventually executed on completion of the non-blocking
operation. So, when the event loop in Node.js receives the
completion feedback, it executes the callbacks.

C. Apache Hadoop for Big Data

Yahoo, Google, and Facebook have extended their services
to web-significance due to the amount of data collected on a
daily basis. The data collected on line have overpowered the
capabilities of the traditional IT architecture [21]. In order to
extract the valuable data for decision making, they published
open access papers and released code for core infrastructure
responsible for distributed storage and processing into open
source. Among these components, Apache Hadoop [22] has
rapidly emerged on the top of components capable of
aggregating, transforming, and analyzing server logs and a
large volume of unstructured data.

Apache Hadoop is an open source distributed software
platform for storing and processing data. It is written in Java,
and runs on a cluster of industry-standard servers configured
with direct-attached storage [21]. The structure and principal
components of Apache Hadoop framework are described in
details in the book “Hadoop The Definitive Guide by Tom
White(foreword by Doug Cutting)” [23]. The distributed
processing framework known as MapReduce (Fig. 2) is central
to the scalability of Apache Hive. MapReduce helps
programmers solve data-parallel problems. It splits the input
data-set into multiple chunks, each of which is assigned a map
task that can process the data in parallel. Map tasks functions
read the input as a set of (key, value) pairs and produces a set
of (key, value) pairs as result. The MapReduce framework

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

9 | P a g e

www.ijacsa.thesai.org

shuffles and sorts outputs of the map tasks, forwarding the
intermediate (key, value) pairs to the reduce tasks, which joins
together and produces final results. MapReduce uses
JobTracker and TaskTracker mechanisms to schedule tasks,
monitor them, and restart any task that fails [21].

The Apache Hadoop platform also includes the HDFS
(Hadoop Distributed File System). The HDFS is designed for
scalability and fault tolerance. HDFS stores large files by
splitting them into blocks (64MB). Beside MapReduce and
HDFS, Apache Hadoop also includes many other components,
some of them are very useful for analysis and modeling data:
1) Apache Flume

2
 is a distributed system for collecting,

aggregating, and moving large amounts of data from multiple
sources into HDFS or another central data store; 2) Apache
Sqoop [24], is a tool for transferring data between Hadoop and
relational databases. You can use Sqoop to import data from a
MySQL into HDFS, run MapReduce on the data, and export
them back into a Relational Database Management System
(RDBMS); 3) Apache Hive [24] and Apache Pig [24] hold
programming languages that make simpler development of
applications using the MapReduce framework. HiveQL is a
dialect of Structured Query Language (SQL) that supports a
subset of SQL as query syntax. Although slower in running,
HiveQL scripts are being actively enhanced for low-latency
queries on Apache HBase [24] and HDFS. In contrast, Pig
Latin is a procedural programming language that provides
high-level abstractions for MapReduce. Open Database
Connectivity/Java Database Connectivity (ODBC/JDBC)

3

Connectors for HBase and Hive are proprietary components
expected in distributions for Apache Hadoop software. They
provide connectivity with SQL applications by translating
traditional SQL queries into HiveQL commands that run on the
data set in HDFS or HBase.

Fig. 4. Application Architecture delineating the various processing modules
and interaction flow between them.

2 Apache Flume,https://flume.apache.org
3 Sqoop connector, https://sqoop.apache.org

IV. DESIGN OF MOBISENSECAR APPLICATION FOR VEHICLE

DATA ACQUISITION AND PROCESSING IN VEHICLE-BASED

SENSING

This section covers the key functional components of
designing functional components for vehicle data acquisition
and processing in vehicle-based sensing. It outlines the models
for building and deploying MobiSenseCar on a smart phone
within Android.

A. Tethered Solution for the Proposed MobiSenseCar

The design is based on the choice of database, web server
architecture, the manner in which vehicle‟s diagnosis data are
transmitted to the remote data center through a service based
on Representation State Transfer (REST) called RESTful
framework, and the mechanisms used for event-driven
approach to handle multiple Hypertext Transfer
Protocol(HTTP) requests from the MobiSenseCar application.

The tethering solution reinforce the implementation of
MobiSenseCar based Mobile Crowd Sensing and Computing
(MCSC) [25]. This means that the driver can access the
Internet anywhere, connect to the remote data center based
cloud computation and services via the internet over wireless
communication technology. In this study, the tethered solution
based on MCSC includes several approaches that provide the
essential platforms for allowing monitoring of car‟s diagnostic
system, thus enhancing driving convenience. The tether
application on the driver‟s smart phone will work through
normal communication cost subscription SIM to transmit
vehicle‟s diagnosis data to the remote diagnosis data center via
wireless communication technology. In order to prevent
continuous transmission of vehicle‟s data continuously to the
MobiSenseCar data center, the MobiSenseCar application
would have the functionality to store the engine‟s status data
into embedded application‟s SQLite database on Android [26].

The architecture of the MobiSenseCar‟s web service server
is event-driven and can improve scalability for efficient
handling of several requests simultaneously. The aim of
adopting event-driven server-side architecture is to prevent
blocking and long running requests that may increase cost.
Certainly, the adoption of event-driven web architecture to
build web-based mobile application would permit car drivers to
safely open and access existing mobile apps on their
smartphone while the MobiSenseCar tasks are running in
background such as uploading of vehicle‟s diagnosis system
data stored in the embedded application‟s SQLite database to
the MobiSenseCar data center.

B. Overview of Functional Components for MobiSenseCar

The functional components of the architecture proposed in
this study are developed around a set of high-level functional
areas common to most developers of mobile application based
MCSC. Fig. 3 shows the overview of the functional
components-based mobile client server computing architecture
for MobiSenseCar. The overview of Fig. 3 is explained as
follows. First, the MobiSenseCar interface enables registration
of car owner‟s profile and the unique identification of the OBD
scan tool

4
 and several services in order to enable the real

4 ScanToolnet,https://www.scantool.net/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

10 | P a g e

www.ijacsa.thesai.org

monitoring of the status of his (her) vehicle‟s engine. Second,
Android RESTful web service routes the collection of vehicle‟s
diagnosis data to the MobiSenseCar data center.

The Push Notification message handles warning
notifications about OBD-II (check Engine Light) Trouble
Codes. Third, the SQLite temporary stores the vehicle data
while the car is driving in order to prevent the real-time
transmission of this data. Many mobile applications rely on
distributed key-value stores like SQLite for low latency access
to data [27]. However, this SQLite database has the advantage
of storage, consultation of SQLite‟s tables of vehicle‟s
diagnostics data, GPS location, and notification message tables
as fast as possible. Thus, drivers cannot be adversely impacted
by the execution of other smart phone applications. In addition,
the MobiSenseCar mobile apps has service that allows the car
driver to use a non-persistent store for recording information
related to its vehicle‟s diagnosis data such as SD memory card.
This non-persistent store offers later monitoring against the
corresponding fault of the vehicle‟s engine.

The SQLite‟s warning notification table maintains a
mapping of unique identification-specific Id of mobile device
that is used to identify the car driver for whom the warning
message is concerned. The warning notification message is
directly delivered using identification-specific Id of the mobile
device. The GPS location table is essential when an urgent
intervention is required in order to help drivers who face
breakdown of their car. The collection of vehicle‟s diagnosis,
warning message and GPS locations can be useful when
evaluating the performance of vehicles sold, refining targeting,
and adjusting deployment decisions on making new cars.
Therefore, vehicle‟s diagnostics data are left entirely transient
in the key-value store or kept more permanently in a movable
hard disk. The decision is largely reflective to the car owner‟s
tolerance for data loss.

On the MobiSenseCar data center-wired SOA
infrastructure, Node.js web server based on the event-driven
architecture interacts directly with NoSQL database
(MongoDB)

5
 through the framework designed for inserting and

retrieving data. Hence, the effectiveness of fault detection
algorithms run using MapReduce framework make it possible
to analyze and process the huge volume of vehicle‟s
diagnostics data. The storage module consists of NoSQL
database such as MongoDB that avoids traditional table-based
relational database structure. The particular suitability of a
NoSQL database depends on the problem it is designed to
manage. For big data and real-time web applications, the data
structures used by NoSQL databases are also viewed as “more
flexible” than the relational database tables.

6

C. Processing Modules for MobiSenseCar

The system design focus on the implementation of a
MobiSenseCar Application using OBD-II scan tool, mobile
device wireless communication technology, and OEM wireless
SOA infrastructure. This OEM wireless SOA infrastructure
integrates web service management, and big data analytics
infrastructures. Fig. 4 shows the application architecture

5 https://github.com/mongodb/mongo-hadoop/releases
6 http://www.allthingsdistributed.com/2012/01/amozon-dynamodb.html

delineating the various processing modules. Functional
components of MobiSenseCar explained in the previous
section constitute the basis of the proposed system design of
MobiSenseCar. The user agent is responsible for controlling
the whole application state and integrating push notification
using XMPP server. The user agent authorizes the delivery of
notification. The user agent initializes the configured
smartphone‟s sensors. Each sensor is executed in a separate
thread. Resource allocated to each sensor communicates with
the corresponding sensors. The engine information and
diagnostics troubles codes (CAN bus data) are temporarily
stored in the MobiSenseCar application database (an android
SQLite database). The context-aware selection module
implemented the dynamic context-aware selection of which
sensor data to be discarded. Based on the parameters from the
context-aware selection module, a query is formed through it,
the matched data stored on the SQLite database are replicated
to the remote MobiSenseCar data center through
SymmetricDS.

7
 For example, when the car driver connects to

the internet or activates internet connection through the
smartphone‟s data plan, he (she) in turn transmits vehicle‟s
engine data to the MobiSensecar data center using
SymmetricDS. Therefore, in order to monitoring the car‟s
diagnostics system continuously and seamlessly, a web server-
side solution based on Node.js enables the availability of
vehicle‟s engine data for sharing purposes. The Node.js is
responsible for handling data transmitted to a NoSQL database
(MongoDB database).

Fig. 5. Flowchart of engine status information collection algorithm.

 7 https://www.itcentralstation.com/comparisons/ibm-infosphere-

database_vs_jumpmind-symmetricds

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

11 | P a g e

www.ijacsa.thesai.org

Fig. 6. Main Software Components of handling vehicle-based sensing data

on the MobiSenseCar data center.

D. Bluetooth OBD-II Protocol Structure for Engine Status

Information Collection

The system design of the MobiSenseCar service allows the
driver confirming the status of engine in real-time via his (her)
mobile device or web browser using a portal web site designed
to retrieve the current vehicle‟s status information. Drivers may
always check the status of the engine with a smart phone. For
business purpose with the car manufacturer and vehicle
commercial companies, the driver can transfer the current
vehicle‟s status information to the MobiSenseCar data center.
The engine status information collection algorithm is shown in
Fig. 5.

In this study, it used an On-Board Diagnostic simulator
called OBD-II simulator (ECUsim2000).

8
With this

ECUsim2000 simulator, the communication test is conducted
in the same way as an actual car was developed and tested. The
hardware architecture includes the ECUsim 2000 OBD-II ECU
simulator for reading the performance using OBD-PIDs code
make up in the android application such as speed, revolutions
per minute (RPM), intake temperature, coolant temperature. As
shown in Fig. 5, the proposed system architecture includes
Bluetooth communication between the ECU simulator
(ECUsim 2000) and the Bluetooth interface that supports all
OBD-II protocols and receiver (mobile) devices. The
ECUsim2000 is designed to ensure integrity of supporting all
OBD-II protocol in order to read OBD-II parameters clearly.
Hence, the flow of data acquisition is followed by receiving
byte for OBD-PID request when the message address matches.
Subsequently, the value of request OBD-II parameter is
transmitted via Bluetooth communication. At the receiver side,
a smart phone plots the received engine‟s diagnostics data. The
different value of OBD-II parameters are calculated in a human
readable form and displayed on the MobiSenseCar mobile

8 https://www.scantool.net/ecusim-2000.html

application console designed for displaying current OBD-II
parameters read out. The OBD-II message format consists of 1-
byte priority, target address, source address header, 7 byte data,
and checksum. It is basically used as a protocol for SAE-J1850
and ISO [28]. The CAN OBD message format consists of ID
bits (11or 29), DLC, 7 data bytes, and checksum

9
 (CRC-15

processing method).

E. Deployment of Web-Side Based Node.js and MongoDB

Database for Handling Vehicle-Based Sensing Data

The Node.js presents several advantages in terms of
processing multiple connections or tasks concurrently. In our
study, Node.js has influenced our choice of the web server
architecture. Therefore, the MobiSenseCar application consists
of collecting the vehicle sensing and transferring them to the
remote MobiSenseCar center for further processing. The car‟s
diagnosis system data need to be stored or hosted on a
computer which is connected to the internet known to us as a
Web Server. It serves to handle incoming requests from the
web browsers (clients), and then responds by sending the
required data through a web server program. As shown in
Fig. 6, the router is the component that organizes routing
between theMobiSenseCar‟s main pages. The router is
configured to listen to every event so that when such an event
is triggered, the router is notified which in effect tells to issue
the URL request to the server. The models implement both
business logic and data attributes.

Considering that the application has several collections of
models, for example a list of current CAN bus data on the
vehicle sensing data page, multiple rows of CAN bus data in
the vehicle sensing data page, etc. It makes sense to
encapsulate these models in separate modules (collections).
This way, a collection is a holder for multiple coherent models.
The motivation for this is that the collections can also work as
active records, in that they can be responsible for fetching and
maintaining a particular set of vehicle sensing data or CAN bus
data from the database, regarding the collection of models they
control. The view handles all the user-interactions that happen
inside the HTML, it represents. The view is responsible for
rendering its HTML templates.

Let now see how Node.js handles blocking I/O requests
since MobiSenseCar application involves an important number
of concurrent requests. These requests consist of transferring
car sensing data such as vehicle‟s diagnostic data to the
MobiSenseCar center. The Node.js event model uses event
handler. This event handler comes on with great results until
you run into the development of functions that involve
blocking I/O. The blocking I/O is defined as a request that
stops the execution of the current thread and delays for a
response before continuing. With Node.js, the event model
work is scheduled in advance as a function with a callback to
the event queue.

MongoDB is a technology that is revolutionizing database
usage. Together, the two tools (Node.js and MongoDB) are a
powerful combination to the fact that they both employ
JavaScript and JSON. We will need to install Mongoose, which
is the library that Node.js uses to communicate with

9 http://smartdata.usbid.com/datasheets/usbid/2000/2000-q4/j1850 wp.pdf.

http://smartdata.usbid.com/datasheets/usbid/2000/2000-q4/j1850%20wp.pdf

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

12 | P a g e

www.ijacsa.thesai.org

MongoDB. The web service functions on Node.js would
collect data from the vehicle when the OBD connector is
paired with the MobiSenseCar application based on Android
platform. Thus, through 3 or 4G LTE and HTTP protocols,
data are transferred over the internet in JSON exchange format
for easily processing on the web server with Node.

Fig. 7. Architecture and components of analysis model Based Big data

analytics.

Fig. 8. Design of processing model for Monitoring and Analysing Vehicle‟

data based sensing using Hadoop and MapReduce parallelization.

Fig. 9. Flow chart of the procedure followed during the implementation of

the processing model of vehicle-based sensing data.

F. Formal Representation of the Proposed Analysis Model

Big Data and its Architecture

The proposed analysis model using Hadoop framework is
based on a data-driven approach. This approach consists of
collecting data sets uploaded from vehicles. Those data are
then monitored based on different aspects of activity of the
vehicles that we quote as “Events”. The first event relates the
vehicle‟s movement and journey trip. The second event is the
collection of vehicle‟s diagnostic data while the driver is
driving.

The processing of the data acquired from the
MobiSenseCar is divided into four phases as shown in Fig. 7:

1) Import data from MySQL to Hadoop clusters.

2) Loading data from HDFS to Apache Hive.

3) Analysis through Hadoop MapReduce framework.

4) Upload outcome files in JSON format from HDFS to

the web server.
Firstly, the import data from MySQL to HDFS consists of

importing data from MySQL into Sqoop. Sqoop is an open-
source tool that allows users to extract data from a relational
database into Hadoop for further processing [24]. The
MongoDB Connector for Hadoop provides the ability to use
MongoDB as input and/or an output destination [29].
Secondly, the loading data from HDFS to Hive is performed by
Apache Sqoop. It keeps parallelizing import across multiple
mappers. The import data into Apache Hive relies on the sake
of efficiency that has a post processing step where Hive table is
created and loaded. When the data is loaded into HIVE from
HDFS directory, Hive moves the Sqoop replication table which
is viewed as a directory into its warehouse rather than just
copying data. Thirdly, Hive queries feature join patterns
algorithms are implemented in the MapReduce jobs to execute
SQL applications and queries [29] and finally, the Apache
Sqoop writes back the output results to MySQL Database or
MongoDB.

The description model of the proposed analytics framework
associates for both events includes the vehicle‟s movement,
journey trip, location based service, over speed, mileage and
diagnostics of vehicle‟s engine events which is an appropriate
subset of information. The subset of information are journey
data, Global Positioning System (GPS) data, driver behavior
data based on the smartphone‟s in-built accelerometer, engine
data and car diagnostics data. As shown in Fig. 8 for instance,
the analysis process takes the vehicle‟s movement and journey
trip event, and then associates the RPM value of the vehicle to
detect if the engine is running, current data, and accelerometer
data to detect vehicle‟s movement. For this event, the analysis
process extracts the value of the RPM every three (3) minutes
to detect the state of the vehicle, which is either in idle state or
not. These data are then uploaded to HDFS. The data set on the
HDFS serve as the basis for collecting useful information to
submit to MapReduce functions for processing.

The Hadoop framework splits the input data-set into
multiple chunks, each of which is assigned a map task that can
process the data in parallel. Each map task reads the input as a
set of key-value pairs and produces a transformed set of key-
value pairs as the output. The framework shuffles and sorts

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

13 | P a g e

www.ijacsa.thesai.org

outputs of the map tasks, and send the intermediate key-value
pairs to the reduce tasks, which group them into final results.
For the vehicle‟s movement and journey trip the results are for
example vehicle movement time, idling time, traveled time,
and journey trip time. These results are then stored on the
hosting database with an additional field to indicate on which
vehicle‟s telematics applications the output are intended to be
applied .

Fig. 10. Data model that includes OBD-PID II description, car user

information, and the current vehicle data collected from vehicle.

Fig. 11. HIveQL script for analyzing the current value of OBD-II parameters.

Fig. 9 presents a flow chart of the procedure followed
during the implementation of the processing model for vehicle-
based sensing data. The in-vehicle‟s diagnostic data is stored in
HDFS; analyzing jobs are executed by queries in HiveQL
language, and the queries will be transferred into Mapreduce
progress. The results of queries are stored in HDFS as well.
Thus, the result in Hive shall be transported from Hadoop to
the web server. The aggregation analysis is based on the join of
two tables, the “obdtrace” and the “obdpiddef”. The data model
of the MobiSenseCar application is shown on Fig. 10. The
aggregation work is realized by integrating these two tables
into Hive script is shown in Fig. 11.

V. IMPLEMENTATION AND ITS RESULTS

In this section, it presents a performance measurement of
the proposed design for implementing the MobiSenseCar
mobile application. First, it presents the performance of Client-
Server Architecture that features event-driven approach against
thread-based approach at the sever-side layer. The goal of this
measurement is to investigate which of the Client-Server
Architecture configurations is able to support concurrent
clients‟ requests. Secondly, it evaluates the efficiency of
Hadoop MapReduce computing using join reduce side
algorithm against HiveQL and Statistical Analysis System
(SAS) framework [30].

To ensure integrity and reliability of the proposed mobile
crowdsensing architecture for MobiSenseCar, different
experiments are carried out to collect results. A physical real-
time monitoring experiment is performed to ensure data
transmission from the ECUsim 2000 equipped with Bluetooth
to the mobile device. A MobiSenseCar application is built to
assist the car owner in his daily monitoring of engine.

The engine‟s data synchronization and MobiSenseCar
computing system are tested during the experiment to collect
all the OBD-II data and seamlessly track the engine status. An
event-driven web server Node.js platform is used to run
JavaScript outside the browser. A MobiSenseCar Web page is
developed for easy monitoring purposes. Finally, the
simulation results for evaluating the performance of client-
server architecture to handle concurrent requests as well as the
performance of the MapReduce against traditional data
processing framework are discussed in the second part of this
section. Hadoop platform is used to analysis this engine‟s data
and handling the result.

In order to evaluate the collection of car engine data of
MobiSenseCar application based on Android‟s mobile device,
the experimentation environment consists of three main
components. First, Android mobile device version 4.4.2 is used
in the implementation. Second, web server with Node.js, a core
i3-3220 CPU within 3.3GH, 16 GB of RAM running Windows
seven 64 bit and finally Hadoop multi-node cluster in a
distributed environment using three systems (one master and
two slaves , each of them is a core i5-6600Processor within
3.90GHz, 16 GB of RAM). Such an environment facilitates to
run the collected data from vehicle-based sensing on a real
cluster of servers.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

14 | P a g e

www.ijacsa.thesai.org

A. Performance Measurement of Event-Driven Approach

With Node.Js Against Thread-Based Approach with

Apache

To measure the performance of event driven approach, the
program Tsung was used.

10
 The component under test was the

main back end server. Tsung works by simulating multiple
users making multiple requests to the server. Every user is run
in a separate thread. To simulate normal conditions, Tsung
allows user think-time and the arrival rate to be specified using
a probability distribution. Several tests of each scenario were
carried out under different cluster of client-server
configurations and varying amount of loads generated by
Tsung.

The test plan uses TSUNG to capture throughput, response
time results of Node.Js‟s single-thread event-loop against the
traditional application based Java on the Apache Tomcat. The
capacity and performance testing are required to show that a
Client-Server Architecture consists of backend and database
layers can run with acceptable responsiveness when a large
number of concurrent users access the backend server-side and
database simultaneously.

This study has considered three kinds of Client-Server
Architectures that provides the backend for server-side
implementation and database layers. The first Client-Server
Architecture is that the server-side code resides on the Node.js
web server and the database is MongoDB for use case. Thus,
MongoDB fits perfectly for Node.js applications. Therefore
Node.js and MongoDB allows writing JavaScript for the
backend and database layer [31]. Furthermore, MongoDB is
known for its schemaless nature that gives a better way to
match the constantly evolving data structures in the
MobiSenseCar application. The second Client-Server
Architecture is that the server-side code resides on the Apache
tomcat server. The application server that implements the http
request is written using JavaServer Pages (JSP) technology
[32]. JSP uses the Java programming language. With this
model, a relational database MySQL is used as the database.
The third Client-Server Architecture consists of Apache
Tomcat on the server-side and MongoDB database. Here, it
uses the Java API for MongoDB/BSON in Apache Tomcat
[27]. For each of the Client-Server Architecture, the goal is not
to test the web application but to listen to the http request sent
from the mobile device in the same way an http request is
submitted from a web browser. The application under test is
based on the mobile client server computing that has a module
of uploading the vehicle diagnostic data stored in a temporary
data store like SQLite to the remote application server.

The test environment for client-server Architecture consists
of web framework for Node.js, Node.js server-side for backend
and MongoDB for database. This test model environment is
configured with the architecture outlined below:

1) A user http request arrives over a SSL to the

application server.

2) The application server forward calls to the server in the

web tier.

10 http://tsung.erlang-projects.org

3) The web tier runs in a computer 3.30 Ghz Intel core i3,

8GHz on Windows server.

4) The web tier runs Node.js server, Express for Node.Js

and code of MongoDB object modeling for Node.js.

5) The data tier runs on a separate single virtual server,

which hosts the MongoDB database. The rest of the Client-

Server architecture have the same environment as the first

except both the web tier and data tier configuration.

After defining the test environment for the three Client-
Server Architectures for the MobiSenseCar server, it assumes
that the goal of the tests is to establish the capacity of a server
for handling vehicle diagnostics data from the mobile device
by a large number of concurrent users starting simultaneously.
Each Client-Server Architecture supports the excepted peak
load of concurrent users.

Tsung runs these tests locally from a different computer
running 2.2GHz Intel core i3, 4GB DDR on OS windows
seven. Scripts are created to determine the supported number
of concurrent requests of uploading of vehicle diagnostics data
and to simulate the concurrent users sessions.

The first tests against Node.Js server side and the Apache
Tomcat server were conducted simultaneously from 200 users
up to 2000 users, 50 times. For each test, the “ramp-up” period
is zero (0) which means that all the users start sending the http
request simultaneously. We do however need to understand the
capacity of the client-server architecture such that we can
determine at what point uploading of vehicle diagnostics is
completed successfully by a large number of concurrent users.
The peak load testing scenarios state are shown in Table 1.The
experiments requirements are defined in Table 2.

TABLE I. SCENARIOS CASES FOR THE EXPERIMENTATION

#Scenarios
Concurren

t users

Ramp-up

period(seco

nd)

Loop (times to run

the similar sample)

Scenario 1 200 0 50

Scenario 2 1000 0 50

Scenario 3 2000 0 50

Scenario 4 800 200 50

TABLE II. REQUIREMENTS FOR SCENARIOS CASES FOR THE

EXPERIMENTATION

Requirements for scenario 1,

2 and 3
Value

Additional

information

Volume of load : upload from

200 users up 2000 users at the
same time

Peak load : 1
scenario iteration

every 0 second , 50

times

Equates to 100000

samples

How long should load be run Less than 5 minutes

Acceptance criteria

95% stored in the

corresponding
database

successfully

Metrics to be reported on
Response time,
throughput, error

rate

DB activity

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

15 | P a g e

www.ijacsa.thesai.org

Fig. 12. The performance of three model-view-controller based on the

throughput and response time metrics.

Fig. 12 shows the results of the three Client-Server
Architecture configurations. To this performance, the results
help for analyzing the throughput and response time metrics.
The Node.js-JavaScript-MongoDB configuration outperforms.
For this architecture, from 200 up to 2000 concurrent users
(from 10000 to 100000 requests), the response time is high
within 173ms but the throughput in comparison to the response
time is less low with 164 requests per second. This signifies
that this Client-Server Architecture is capable enough to
sustain a large number of concurrent clients „requests. The
Apache Tomcat-JSP-MySQL has a higher response time but
the throughput is much lower within 117 requests per second.
This signifies that this Client-Server Architecture is not capable
enough to execute concurrent requests. The third model that
includes Apache at server-side and MongoDB as database
outperforms less better in comparison to Node.js-JavaScript-
MongoDB but better than Apache Tomcat-MySQL.

Fig. 13. Throughput of the three model-view controller for n concurrent

users.

Fig. 14. The measurement of the response time on average for the three-view-

controller architecture as the number of concurrent users increase.

Fig. 13 shows that the throughput deteriorates for the three
models as the number of concurrent users increases. The
results show that for Node.js associated to MongoDB, the
throughput was 380 requests at 200 concurrent users, and 164
requests per second at 2000 concurrent users. The throughput
of Node.js based event-driven approach has performed better
than Apache-Tomcat based thread approach. The results were
better using Apache-Tomcat-MongoDB than Apache Tomcat-
MySQL and less good than Node.js-Mongo. With Apache-
Tomcat-MongoDB configuration, the throughput increases up
to 1000 concurrent users, then deteriorates as the number of
concurrent users increases. There may be some tremendous
opportunities for optimization that could enforce Node.js-
MongoDB performance beyond Apache-Tomcat-MongoDB
easily.

As shown in Fig. 14, the response time degrades as the
number of concurrent requests increases. For example,
Node.js-MongoDB was within a response time of 54ms on an
average at 200 concurrent users, and 173ms on an average at
2000 concurrent requests. We can see that for Apache-Tomcat
at the server side, the average response time has an almost
linear correlation to the number of concurrent requests. This
means that a thousand-fold increase in concurrent users‟ results
in a hundredfold increase in response time. This that the
number of concurrent users carried out by an Apache-Tomcat
at server-side is not relatively constant. Therefore, Node.js is
roughly 40% faster, for example, 173ms against 302ms for
2000 users that corresponds to one hundred thousand (100000)
concurrent requests.

B. Performance Measurement of Big data Analytics

Framework for Processing Vehicle’s Diagnostics Data

The performance evaluation of Big data analytics uses
representative benchmarks that perform on the datasets from
the MySQL tables and MongoDB. The set up experiment
environment constitutes of a Hadoop multi-node cluster on a
distributed environment using three systems (one master and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

16 | P a g e

www.ijacsa.thesai.org

two slaves, each of them is a core i5-6600Processor within
3.90GHz, 16 GB of RAM). Such an environment facilitates to
run the remote vehicle diagnosis event processing on a real
cluster of servers. Diagnostic Trouble code (DTC) is collected
into a relational database, and unstructured data are stored in
NoSQL database (MongoDB), and then dumped directly into
Hadoop cluster. When on-board diagnostics data are uploaded
onto the database, Apache Sqoop performs a replication import
of data required to run Map Reduce jobs.

When on-board diagnostics data are uploaded to the
database, Apache Sqoop performs a replication import of data
required to run Map Reduce functions. HIVE has an important
role especially for data stored in a relational database. Sqoop
generates a Hive table based on the table originally relational
data source and also stores data on HDFS.

One of the most key Hadoop jobs in this study is to take the
incoming on-board diagnostics and summarizes according to
the useful information (see Fig. 8). It stores the processing
outcome to the MySQL database or copies it into a format that
can be used for further analysis or purposes on the web
services. This is achieved by using HIVEQL and Map Reduce
functions.

In order to compare the efficiency of Hadoop MapReduce
computing using join algorithm particularly reduce side join
[33], HiveQL, a higher-lever framework in which join are
integrated in their implementation and the traditional statistical
analysis system (SAS) is used. This SAS ® 9.4 SPD Engine is
used for storing data in the HDFS. It also has procedures that
can replicate MapReduce‟s approach for data processing. Since
data are in place, map reduce functions converted from
HIVEQL can start analyzing them and turn processing
outcome into valuable information.

The evaluation computes as well the same statistical values
(mean) on Diagnostic Trouble codes stored in MySQL. Fig. 15
shows the processing time of three methods.

Fig. 15. Processing time of MapReduce framework features multi-way join

based reduce-side cascade join.

Fig. 15 comes out with the following observations:

 Comparing to traditional statistical analysis system,
Hadoop distributed parallel computing enhances
processing speed when the size of dataset to be
processed increases and is not significantly different
over a lower volume of dataset.

 The Comparison of join algorithms using MapReduce
framework to HiveQL, showed that join patters based
MapReduce increases computing speed over HiveQL
but it takes time to implement. HiveQL is arguably one
of the tools for developers and analysts with strong
SQL skills but SQL is not suitable for every big data
problem.

C. Performance Measurement of Big data Analytics

Framework for Processing Vehicle’s Diagnostics Data

The Client-Server Architecture constitute of Node.js server
side and MongoDB is 40% faster that the Java EE solution
using Apache Tomcat at the server side with MySQL or
MongoDB database for implementing mobile client server
computing applications. In this study there were different
concurrency models implemented using single-threaded event
loop Node.js and multi-thread approach. To test whether
Node.js is a higher concurrency level-where it is supposed to
surpass multi-threading, other problems like increasing the
number of requests. The reason is that Tsung is a 100% pure
Erlang to evaluate the functional behavior and measure
performance of the three Client-Server Architecture
configuration. The experimentations were not able to run these
tests beyond 4000 concurrent users, over 200,000 requests.

These study findings have shown what mobile application
can do with RESTful responses and requests over a web server.
Node.js is considered to perform greatly. In the future it should
be taken in consideration for remotely monitoring applications
based on mobile device where devices spread in different
locations collect a large volume of information. While Node.js
outperformed the competition in the scenario of transferring
vehicle‟s diagnosis data, further work can point Node‟s
strengths and weaknesses. Node accomplishes its goals of
supporting highly-scalable and reliable web servers. It runs
very quick on JavaScript engine. Therefore, Node.js is not
designed to stand simply as a replacement of Apache.

Besides using Node.js for handling asynchronous I/O
requests, Hadoop stands as a new form for processing a huge
amount of data from all car owners subscribed to the
MobiSenseCar application. Therefore, compare to traditional
statistical analysis system, Hadoop distributed parallel
computing enhances processing speed when the size of dataset
to be processed increases and is not significantly different over
a lower volume of dataset. Thus, comparing data join
MapReduce algorithm to HiveQL, relational data join patterns
in MapReduce increases computing speed over HiveQL but it
takes time to implement. HiveQL is arguably one of the tools
for developers and analysts with strong SQL skills but SQL is
not suitable for every big data problem [24].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

17 | P a g e

www.ijacsa.thesai.org

VI. CONCLUSIONS AND FUTURE WORK

This paper argues the concerns about uprightness of data
from vehicle-based sensed data are a major step for vehicle
owners, authorities and businesses looking to take up mobile
crowdsensing computing that enables value–added and others
services. This paper presented a mobile crowd-based
architecture which enables car‟s diagnostic system that features
data remote monitoring event processing of vehicle‟s engine
data.

The system design in this paper consists of MobiSenseCar
application, an event-driven web server known as Node.js, and
Hadoop platform. The MobiSenseCar allows the collection of
vehicle‟s engine data and storage into an embedded application
database known as SQLite. At the MobiSenseCar data center
infrastructure, the web server Node.js enables MobiSenseCar
mobile application requests to be processed asynchronously.
Therefore, the request of transmitting vehicle‟s engine data is
not interrupted when a large number of car driver start using
the same application simultaneously. The use of Node.js helps
to save communication cost and enables car drivers to use
other mobile apps on their smartphone when transmitting
vehicle‟s engine data. The Node.js has API (Application
Programming Interface) which interact for instance with a
NoSQL database (MongoDB).

Taking advantage of reducing communication cost, driver
would still use their smartphone for other purpose while the
Node.js handles and stores the generated car‟s status
information to a MongoDB without waiting for the
MobiSenseCar application to finish the uploading process
submitted to Node.js. Thus, processing data from vehicles
using Hadoop and making final results available, allows
accessing of useful information via web services to the third
party such as car manufacturer, transportation and road
operators, car dealers, police, emergency services has been
conducted on a single node cluster.

The outcome obtained from various Map Reduce functions
managed after executing HIVEQL query indicate favorable
results in term of time taken. It is unnecessary to receive and
deal with all the data including even needless one, so the car
owner may handle information satisfying car manufacturers or
car repair shop needs only. Therefore, with this system, it was
made possible that information of car‟s diagnostic system
condition may be identified in real time

The proposed solution leverages the existing mobile
crowdsensing architecture for data collection and processing on
vehicle-based sensing. There are still several challenges that
must be addressed for this kind of deployment model can be
adopted. As future work will focus on the deployment and
empirical validation for MobiSenseCar architecture with
specific focus on the collection of vehicle-based sensed data
stored in real time on the cloud computing based infrastructure
as a Service.

ACKNOWLEDGMENT

This research was supported by the Brain Busan 21 Project
in 2017 and The Human Resource Training program for
Regional Innovation and Creativity through the Ministry of

Educational and National Research Foundation of Korea
(NRF-2015H1C1A1035898).

REFERENCES

[1] K. G. Raghu., Y. Fan, and, L. Hui, “Mobile Crowdsensing: Current State
and Future Challenges”, IEEE Communications Magazine , pp.32-39,
2011

[2] T .Carlos, C. Celimuge, W. N.Enrico, and J. Francisco, “Crowdsensing
and Vehicle-Based Sensing”, Mobile Information Systems,2016, pp. 1-2.

[3] W.Jinn, C. Jinsong, and M.Tinghuai, “Real time services cloud
computing enabled vehicle networks”. International Conference on
Wireless Communications and Signal Processing (WCSP), 2011,pp: 1-5.

[4] I.E.Apetri, , R.Ali, “Remote Connection of Diagnostic Tool”, Master of
Science Thesis in Communication Engineering”, 2011, pp:1-104

[5] M.Emanuele , A.Chaewon, and R.Carlo, “The Car as an Ambient
Sensing Platform”, Proceedings of the IEEE, Vol.105,No.01,2017,pp: 3-7

[6] S.Tilkov., S.Vinoski, “Node.js : Using Javascript to Build High-
Performance Network Programs”. Internet Computing, IEEE, 2010
STRIEGEL, GRAD OS F‟11, PROJECT DRAFT 6.

[7] S.Stephan, G.Eszter, R. Wolfgang, “Performance investigation of
selected SQL and NoSQL databases”, AGILE 2015-Lisbon, 2015,pp:1-5,

[8] V.Madhavi, , “Survey of Parallel Data processing in Context with
MapReduce”, AIAA 2011, Computer Science & Information Technology
03(CS & IT), 2011,pp:69-80

[9] M.Prashanth,, N.P.Venkata and R.Ramachandran, “Nericell: using
mobile smartphone for rich monitoring of road and traffic
conditions”,Proceedings of the 6th ACM Conference on Embedded
network sensor system,2088,pp:357-371

[10] J.Eriksson, L.Girod, and B.Hull, “The Pothole Patrol: Using a Mobile
Sensor network for Road surface Monitoring”, Proceedings of the 6th
ACM Conference on Embedded network sensor system, 2008 , pp:29-39.

[11] A.J.Derick and M.T.Mohan, “Driving Style Recognition Using a
Smartphone as a Sensor platform”,14th International IEEE Conference on
Intelligent Transportation Systems, 2011,pp:1609-1615

[12] H.Eren, S.Makinist,,F.Akin., and A.Yilmaz, “Estimating Driving
Behavior by a smartphone”, 2012 Intelligent Vehicles
Symposium,2012,pp:234-239

[13] J.Eriksson, L.Girod, and B.Hull, “The Pothole Patrol: Using a Mobile
Sensor network for Road surface Monitoring”, Proceedings of the 6th
ACM Conference on Embedded network sensor system,2008,pp:29-39.

[14] W.Jules, , T.Chris., T.Hamilton, D. Brian, and C.S.Douglas, “Mobile
Networks and Applications, Vol.16,No.3,2011,pp:285-303

[15] C.German, D.Thierry, F.Raphael, and E.Thomas, “Driver Behavior
Profiling Using Smartphones : A Low-Cost Platform for Driving
Monitoring”, IEEE Intelligent Transportation Systems
Magazine,2015,pp:91-102

[16] An Oracle White paper, “Oracle for the Connected Vehicle:Turning Data
into Business”,2013,pp:1-21.

[17] GsmamAutomotive, “Connecting Cars:Bring your Own Device-
Tethering Challenges”. Report on Intelligent Trasporatation system
Report, 2013,pp: 1-20.

[18] B.Erb , “Concurrent Programming for scalable Web
Architecture”,Diploma Thesis, Institute of Distributed Systems,2012

[19] Z.Yuhao,R.Daniel,,H.Matthew,J.R.Vijay, “Microarchitectural
implications of event-driven server-side web applications”, Proceedings
of the 48th International Symposium on Microarchitecture, 2015, pp:
762-774

[20] S.S.Benjamin, L.Maude, “An Inside Look at the Architectural of
NodeJS”,available on line at http://mcgill-
csus.github.io/student_projects/Submission2.pdf, last access, January,
2016

[21] C.Bin., M.Hong, C.Beng, “Big data: the driver for innovation in
databases”, National Science Review,Vol.1,No1,2014,pp:27-30

[22] D.B.Arantxa., O.Aisling. “A big data methodology for categorising
technical support requests using Hadoop and Mahoot”. Journal of Big
Data, Vol.1,No1,2014,pp:1-8

[23] T. White, “Hadoop: The definitive Guide, Third Edition”, pp:17-44

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 7, 2017

18 | P a g e

www.ijacsa.thesai.org

[24] S.P.Poonam, N.P.Rajesh., “Survey Paper on Big Data Processing and
Hadoop components”.International Journal of Science and
Research(IJSR),Vol.3,No10,2014,pp:585-590

[25] G.Bin, W.Zhu, Y.Zhiwen, G.Yu, Y.Neil,,H.Runhe, and Z.Xingshe,
“Mobile Crowd Sensing and Computing : The Review of an Emerging
Human-Powered Sensing Paradigm”, ACM Computing Surveys, 2015,
pp: 1-33

[26] B. Oresti., V.Claudia, D.Miguel, G.Peter, P.Hector, R.Ignacio,
“PhysioDroid: Combining Wearable Health Sensors and Mobile devices
for a Ubiquitous, Continuous, and Personal Monitoring”, The Scientific
World Journal Soc, Article Id 490824, 2014, pp-1-14.

[27] H.Florian ,P.Rene, “Performance optimization for querying social
network data”, Workshop Proceedings of the EDBT/ICDT,pp:232-
239,2014

[28] K.Minyoung, andJ. Jang-Wook,” Design of Korea smart car driving
information checking system”. International Journal of Advanced Smart
Convergence.1(1),2012,pp:38-42.

[29] B.Mani, J. Balaraj, M.D.Oinam, “Comparison of Join Algorithms in
MapReduce Framework”,International Journal of Innovative Research in
Computer and Communication Engineering,Vol.2,Special Issue 5, 2014

[30] M.David, SASReduce-An implementation of MapReduce in BASE/SAS.
Whitehound Limited, UK. Online
athttp://support.sas.com/resources/papers/proceedings14/1507-2014.pdf,
(2014), 1-16.

[31] K.Brian,, “CS764 Project Report: Adventures in Moodle Performance
Analysis”, available on line at
http://pages.cs.wisc.edu/~bpkroth/cs764/bpkroth_cs764_project_report.p
df, pp:1-28,last access, March 2016

[32] L.N.Glenn, “Tomcat Performance Tuning and
Troubleshooting”,ApacheConference, pp:1-10,2003

[33] N.A.Foto, and D.U.Jeffrey, “Optimizing Joins in a Map-Reduce
Environment”,IEEE Trans.Knowl.Data Eng.23(9):2011,pp1282-1298

