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Abstract—Analyzing and evaluating the sensitivity of 

embedded systems to soft-errors have always been a challenge 

for aerospace or safety equipment designer. Different automated 

fault-injection methods have been developed for evaluating the 

sensitivity of integrated circuit. Also many techniques have been 

developed to get a fault tolerant architecture in order to mask 

and mitigate fault injection in a circuit. Fault injection mitigation 

and repair techniques are applied together on LEON3 processor 

in goal to study the reliability of a soft-core. The so-called 

NETlist Fault Injection (NETFI+) tool is a fault injection 

techniques used in this paper. The prediction of Single Event 

Upset (SEU) error-rates between radiation ground testing and 

FPGA implementation have been done with good and accurate 

result. But no functional simulations have been performed. A 

Triple Modular Redundancy (TMR) is used in this paper as a 

repair technique versus fault injection. This paper analyses the 

effectiveness of fault tolerant method on LEON3 soft-core 

running a benchmark. It starts by evaluating the behavior of 

LEON3’s program counter against Single Event Upset error-rate 

accuracy between the functional simulation and the FPGA 

emulation and an analysis of the LEON3 reliability in presence of 

fault tolerant technique. The objective is to offer, through the 

new version of NETFI+ with introducing a fault tolerant 

technique, the possibility to designers to evaluate the benefits of 

SEUs mitigation for the LEON3 processor on the program 

counter. 

Keywords—NETFI+ ; fault injection; SEUs; LEON3; 

simulation; emulation; reliability; TMR 

I. INTRODUCTION  

Embedded system undergoes several changes across the 
years, starting from simple mono CPU running applications to 
a complex system including co-processor, memory, input and 
output models. Using embedded systems in special 
applications, safety-critical or mission-critical, allows 
evaluating their dependability in presence of faults on the 
circuit or in the implemented application. 

Fault injection can be used to evaluate embedded system 
running its own application [1]. 

Transient faults and soft errors lead to faults in a system 
without damaging the system under evaluation. Transient faults 

are represented by a single or multiple nodes upset directly 
attributable to excess charge carriers created by an external 
source of radiation. Soft errors are defined by the impact of a 
transient fault that can be propagated beyond one clock cycle 
[2]. It flips one or more bits, modifying the data store of a 
memory cell, register, flip-flop and latch. SEU and Single 
Event Transient (SET) are soft errors that affect only one bit, 
other type of faults are used to modify more than one bit, and 
it‟s a Multiple Bit Upset (MBU) [3].  

Areoflex Gaisler LEON3 processor has become more used 
in a critical and safety application, such as in automotive, 
multimedia system, wireless and more applications which 
require reliability. Fault injection in LEON3 soft-core is done 
in many works classified according to the type of faults, the 
methods used, the block under test, etc. LEON3 is 
characterized by its complexity and size. It‟s a reason to be a 
good design for evaluating the benefits of fault tolerant 
techniques [4]. 

In [5], injection of SEU, SET and MBU faults have been 
done in many components of LEON3, showing that integer 
unit and multiplier unit are more susceptible against SEU and 
MBU fault injection.  

Emulation-based fault injection in LEON3 is done in [6], 
allowing a reduction in the experimental time.  

In [7], SEU fault injection by FPGA emulation is made by 
applying an exhaustive fault injection in internal memory of 
LEON3. The results obtained show that the memory cell 
containing the data is the most sensitive to SEU. 

In [8], a new methodology is proposed to evaluate the real 
cache sensitivity for a given application, and to calculate a 
more accurate SER. The methodology, based on monitoring 
the memory accesses, is applied to the LEON3 with several 
benchmarks showing that their proposed tool predicted all real 
errors with little over-estimation. Fault injection is done by 
radiation and emulation. The result shows that all the cache 
addresses are sensitive to SEU injection.     

 In [9], evaluating the effects of single bit errors at the 
memory and register locations is done using a high level error 
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injection technique. The results obtained show that this method 
is inaccurate in comparison with the techniques using a flip-
flop error injection. 

SEU fault injection, called bit-flip, upset or soft-error 
propagates in the design depending on the application [10] and 
it can cause a data corruption or a circuit malfunction. SEUs 
are random in space and time, they can modify any element on 
memory location also at any instant time. In [11], the 
application of a new methodology to attack a Program Counter 
(PC) of ARM is done by modifying the load-instruction of the 
PC. 

In previous works, the PC of LEON3 was not evaluated in 
point of sensitivity because to its important function in system 
security, in addition, based on the work in [5] avowed that the 
integer unit is the most critical block of LEON3 to SEU and 
MBU fault injection. The principal goal in this paper is to give 
the benefits of SEU mitigation for the LEON3 processor on the 
PC by adding a repair technique of fault tolerant like a TMR in 
this work.  

A new methodology is improved for fault attacks, NETFI+, 
in order to evaluate the behavior of LEON3 soft-core, the SEU 
error-rate reliability between the functional simulation and 
FPGA emulation is done by injecting an SEU fault on the flip-
flop of LEON3‟s IU block precisely on the program counter 
register according to its importance in the instruction execution 
process.  The principal goal in this paper is to present fault 
injection approach and analyze countermeasure effectiveness 
in circuit security. 

 The paper is organized as follows. In Section II a 
description of the NETFI+ principle will be done, overview of 
LEON3‟s integer unit is presented in Section III. Next section 
presents the NETFI+ flow, the analysis of the reliability of the 
LEON3‟s program counter by evaluating the SEU error-rate 
reliability between simulation and FPGA emulation is 
presented in Section V. Section VI provides a presentation of a 
repair technique used in order to evaluate the SEU mitigation 
for the LEON3 soft processor on the program counter. A 
conclusions and perspectives will be presented in the last 
section. 

II. NETLIST FAULT INJECTION PRINCIPLE 

 Fault injection approaches are based on injecting 
faults that can induce errors. Many researches separate between 
the methods of fault injection, it can be classified depending on 
two techniques based on hardware and software fault injection.  

A software fault injection is presented by using a software 
program to inject faults in a physical model. Simulated fault 
injection can be observed and controlled while the system is 
simulated using HDL simulator. 

A hardware fault injection allows evaluating a behavior of a 
system based on Commercial off-the-shelf (COTS) processor 
[12]. It‟s widely used and it can be classified on three 
categories [13]: 

 Logical fault injection using debugging facilities: This 
type of injection allows to the processor logic resources 
to access their internal blocks and to add bit-flips. 

 Physical fault injection: this method is accomplished 
using laser beams, electromagnetic interferences or a 
radiation in goal to induce faults in integrated circuits. 
This method offers actual hardware faults on real 
systems. It requires expensive material and the number 
of faults injected is limited, also a deep knowledge of 
the actual layout of the circuit [14]. 

 Logical fault injection: it can be made by circuit 
simulation using hardware description languages (HDL 
models) simulator or by circuit emulation using 
hardware emulation platforms. In simulation-based fault 
injection, the system under test is simulated in another 
system, while the emulation-based fault injection 
facilitates the injection on complex models by reducing 
time spent by a simulation-based fault injection.    

The fault injection type used in this paper is the last one: 
Logical fault injection. Simulation-based fault injection allows 
the fault injection in high level models. In general, fault 
injection is presented by a bit-flip fault model when the content 
of a memory cell is inverted. It permits to evaluate the behavior 
of fault tolerance mechanisms [14].  

The principle idea of the logical fault injection is the 
injection at the bit-flip model by inverting the content of a 
memory cell at the instant injection. Studying the reliability of 
an embedded system is a principal goal to define the capability 
of the system to run its function in abnormal condition for a 
given period of time [15]. Soft errors disturbing memory cells 
and registers in embedded system are called SEU was analyzed 
to evaluate the soft error-rate [13]. 

Sensitivity of the LEON3‟s integer unit against soft errors 
was estimated through two fault-injection campaigns. A first 
one was performed in a simulation in order to analyse a 
random SEU injection. A second one was performed in FPGA 
emulation to accelerate the fault injection campaign and mainly 
to evaluate the SEU error-rate reliability in the simulation 
campaign also the validation of a NETFI+ tool.  

The NETFI+ tool used in this paper is based on netlist fault 
injection. It allows to inject SEU, MBU and SET faults in 
circuits at Register Transfer Level implemented on FPGA. This 
method enables to inject faults in all memory cell and at any 
clock cycle, exhaustive or randomly in time and location. In 
this paper, the principle idea is to study the reliability of 
LEON3‟s PC against SEU fault injection. 

The HDL source code of the circuit is synthesized to get the 
correspondent netlist [16]. In next step, a MODNET (MODify 
NETlist) tool, described in [17], will be used to choose the type 
of faults which can be injected and give a modified netlist.  

A NETFI+ tool in this work is improved to inject faults in 
all the memory cell of LEON3 also to inject all type of faults 
SEU, MBU and SET. 
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Fig. 1. The micro-architecture of the LEON3‟s Integer Unit [18]. 

III. OVERVIEW OF LEON3‟S INTEGER UNIT 

The LEON3 Integer Unit (IU) is fully compliant with the 
SPARC V8 standards. SPARC is a CPU instruction set 
architecture derived from RISC. It comprises an integer unit 
(IU), an optional Floating-point unit (FPU) and a coprocessor 
(CP).  

The IU executes the arithmetic instructions, computes 
memory addresses (load/store), maintains the Program Counter 
(PC) and controls the instruction execution for the FPU and the 
CP. “Fig. 1” shows the pipeline of the IU which consists of 
seven-stages with Harvard architecture.  

IU integrates seven stage of pipeline, the FE stage (FEtch) 
fetches the instruction from the instruction cache through its 
address given by a PC. DE stage (DEcode) decodes the 
instruction. In the RA stage (Register Access), all operands are 
read from the register file or from the internal data bypasses 
and stored in EX stage (EXecute). ME stage (MEmory) stores 
the results and communication between IU and the other 
peripherals components which can be done. In XC stage 
(eXCeption) all traps and interrupts are resolved. In WR stage 
(WRite), a data not sent to the register file will be stored [19], 
[9]. 

Integer Unit controls, in general, all the operation of the 
processor and it includes two types of register: general-purpose 
registers and control/status registers. Whose General-purpose 
registers is a 32-bit registers, called r register.  

An instruction can access the 8 global registers and a 24 
registers window into r register. The register window contains 
8 in and 8 local registers of a particular register set. The 8 in 
registers are addressable from the current window, the out 
registers. 

The IU control/status registers include Processor State 
Register (PSR), Window Invalid Mask (WIM), Trap Base 
Register (TBR), Multiply/divide Register (Y), Program 
Counters (PC), Implementation-dependent Ancillary State 
Registers (ASRs) and Implementation-dependent IU Deferred-
Trap Queue. 

IV. FAULT INJECTION FLOW 

The emulation of SEU faults is done in the PC which is the 
overall security of any embedded system, in this case the 
LEON3 processor. PC gives the address of the instruction 
currently being executed by the IU.  

Only 30-bit of PC will be used in the six stages of pipeline 
(FE, DE, RA, EX, ME, XC) because the LSB two bits of the 
PC are not used in the configuration, its implementation will 
cause a debug of the HDL model and an area waste in 
synthesis. A NETFI+ method allows injecting SEUs faults in a 
Flip-Flop of PC in all the stage of pipeline, in total 180 FF will 
be used to control the PC. “Fig. 2” illustrates the workflow 
adopted in the NETFI+.  
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Fig. 2. Fault injection flowchart. 

Initially, a Hardware Description Language (HDL) of the 
LEON3 is synthesized by Synplify tools to get the Verilog 
netlist in Step 1. This first step does not require any 
modification to the original design.  

In Step 2, the first netlist resulting will be used as input for 
the MODNET tools, which adds a new signal “INJ” to all the 
Flip-Flop (FD and FDE) components used in the block of IU. 
After that, the new netlist obtained is then synthesized, by 
Synplify tools, in Electronic Design Interchange Format 
(EDIF) using a modified version of the sensitive components, 
which includes “INJ” signals to access them to fault injection. 
“Fig. 3” exhibits the addition of the „INJ‟ signal in the design. 

In Step 2, two possibilities of test injection can be applied, 
the first one is by FPGA emulation, steps 3 and 4, and the 
second one is by a simulation campaign, steps 5 and 6. 

The FPGA emulation campaign is performed in Steps 3 and 
4. In Step 3, the EDIF file obtained in Step 2 is then attached to 
the soft-core processor and the last synthesis is performed to 
generate a bitstream based on the target FPGA. Finally, in 
Step 4 the experiment is executed in hardware-based FPGA 
platform.  

 
Fig. 3. Architecture of LEON3 blog diagram which includes “INJ” signal.

 

Fig. 4. The Nexys4 board. 

In this work, a Nexys4 board, equipped with Xilinx Artix-7 
XC7A100T-CS324, is used which is a complete circuit board. 
As shown in “Fig. 4”, the board is occupied by a diverse I/O, 
development connectors that allows a connection with the 
LEON3 implemented. 

The setup and control of the fault injection experiments are 
performed by a Soft-Core Fault Injection Processor (SCFIP), 
embedded in the FPGA, and by a Tool Command Language 
(TCL) script in a personal computer, as can be seen in “Fig. 5”. 

The SCFIP is used as the controller in charge of randomly 
selecting the time and in which registers will inject the faults. 
The results of LEON3 execution are sent to a personal 
computer connected through the UART interface. 
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Fig. 5. FPGA fault injection strategy. 

The simulation fault injection campaign following Step 5 
and 6 of “Fig. 2”. In Step 5, the files obtained in step 2 are then 
attached to the Xilinx modified library in the ModelSim 
Mentor Tool [20]. Finally, in Step 6 the simulation, setup and 
the control of the fault injection campaign are performed by a 
TestBench in a dedicated server equipped with two Intel Xeon 
CPU E5-2620 and 64GB of RAM memory. 

V. PROGRAM COUNTER RELIABILITY 

The NETFI+ tool described on Section 2 will create a 
variety of SEU influence on LEON3. The first campaign of 
injection is done by a simulation fault injection. A benchmark, 
MulMatrix (Matrix product), is used to execute a simulation 
and to compare the results obtained with the standard results 
(Golden Results). 

The benchmark used in this test is selected because it does 
not take enough time in RTL simulation also the number of 
repetitive instructions involved by its execution enables to 
guarantee a wrong behavior in presence of fault injection. 

A random SEU fault injection in the PC register at the 
stages of pipeline is done. In total, 1080000 faults are injected 
in sensible FF of LEON3‟s PC during one period, 100% of the 
flip-flop of FE and DE stage are sensitive to SEU, the FF of the 
other stages are non-sensitive.  

The results obtained can be classified in four categories 
shows in “Table 1”: overwritten Faults, Failure results, 
Timeout and Stopped Execution. 

The faults can be overwritten in some cases, it explains that 
the error is masked and cannot modify the result, this explains 
that at the moment of the injection, the PC does not point to the 
instruction used at the instant of simulation (about 100% faults 
undetected in RA, EX, ME and XC stage). 

Failure results is procured when the simulation is done but 
giving a false result, this explains that at the moment of SEU 
injection, the PC does not point in the correct address of the 
currently instruction used in simulation (6.66% in FE stage and 
3.33% in DE stage).  

TABLE I. SEU FAULT INJECTION ANALYSIS 

Type of Result 
Stages of pipeline 

FE DE RA EX ME XC 

%Overwritten - - 100 100 100 100 

%Failure result 6.66 3.33 - - - - 

%Timeout 3.33 - - - - - 

%Stopped execution 90 96.66 - - - - 

The simulation can exceed the approximate time of 
simulation (4365 us in this case) like a 3.33% in FE stage, this 
type of faults is named Timeout, the PC in this case stop 
incrementing and this explains a cause an infinite loop in 
simulation. Also the execution can be stopped (90% in FE 
stage and 96.66% in DE stage). In another way, the simulation 
cannot be finished normally, and the execution stops just after 
the moment of injection. In other words, the PC does not 
contain any address to be pointed. 

The benefits of the simulation-based fault injection that it 
allows a fine-grained analysis through the assembly code of 
fault injection campaign. The assembly code contains all the 
instructions of simulation. SEU injection in PC occur some 
traps. 

The results obtained are resumed in “Table 2”. The traps 
can be more detailed [21]: 

 Illegal instruction: 

When the simulation ends before a normal time of 
execution, an attempt is made to execute the instruction with an 
unimplemented opcode or an UNIMP instruction (Assembly 
code: unimp (trapped)). Other reason can be responsible for the 
stopped execution that the instruction would result an illegal 
processor state at the decode stage (Assembly code: save %sp, 
-0x0060, %sp (trapped)). 

 Privileged instruction:  

At the fetch stage, the PC stops to increment and remains 
constant and in another case, the PC does not contain any 
address to be pointed. The assembly code shows that an 
attempt was made to execute a privileged instruction 
(Assembly code: ldub [%o4], %o5 [0x0000XXXX]). 

 Window overflows: 

A SAVE instruction is responsible for this trap because at 
this instant the Current Window Pointer (CWP) will point to a 
window marked not valid in the WIM. 

 Window underflows:  

It‟s caused by a RETT or a RESTORE instruction 
attempted in this case when the CWP would point to a window 
marked invalid in the WIM. In fact, RESTORE instruction has 
the same role of ADD instruction, it allows to increment by „1‟ 
the CWP and to compare it with WIM, if the WIM bit 
corresponding to the new CMP is „1‟, a window underflow trap 
is then generated. 
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TABLE II. TRAPS ANALYSIS 

Type of Trap 
Stages of pipeline 

FE DE 

Illegal_instruction 49.5% 51.33% 

privileged_instruction 14.4% 6.33% 

Window_overflow 12.5% - 

Window_underflow 23.5% 42.33% 

The NETFI+ tool applied in fault injection by simulation 
takes a lot of time, an FPGA implementation based fault 
injection is done to validate a NETFI+ tool and to evaluate the 
results obtained by simulation. 

The simulation based fault injection offers the analysis of 
the reliability of any circuit, such as a microprocessor pipeline 
or cache memory using all the types of faults. The term 
exhaustiveness can be done only by this technique, but it 
consumes a long time. Emulation based fault injection allows 
to inject a high number of faults by winning the time of the 
fault injection process.   

 

Fig. 6. NETFI+ analysis simulation versus FPGA emulation.  

A NETFI+ tool is validated by simulation and FPGA 
implementation when a FF of FE and DE stage are 100% 
sensitive to SEU (“Fig. 6”). For the flip-flop non-sensitive of 
the other stages, the result remains the same except for the flip-
flop of the XC stage when 0.02% is sensible to SEU. 

The NETFI+ tool is limited in number of faults injected in 
FPGA emulation but it is faster than the fault injection by 
simulation. The analysis of the results obtained in simulation 
shows the benefits of the NETFI+ tool in simulation in its 
accuracy and the large number of faults which can be injected. 

VI. LEON3 SEU MITIGATION EVALUATION 

A. Principle of TMR 

TMR is the most commonly used as a mitigation technique 
against SEUs for FPGA designs, used in radiation 
environments. The principle of TMR technique is done by 
triplicating a design and voting on the outputs of the three 
modules triplicated. TMR can be implemented on the latest 
commercial FPGA technologies, but it is costly in terms of area 
and power. It makes the circuit fault tolerant by masking and 
reducing the faults. It protects the design from errors 
propagated in LUT, internal state and control signals. “Fig. 7” 
shows the principle idea of the integer unit redundant with 
single voter. 

The single voter with the triplicated logic will mask logic 
and errors created by SEUs. While two or three redundant 
copies of the design work correctly, errors will be masked and 
the output of the block will be correct [4].  

 

Fig. 7. TMR flow. 

In [22], many approaches are used to detect a laser SEU 
faults for LEON3 on SRAM-based FPGA with the integration 
of several fault countermeasure techniques, the results obtained 
show that the modular triplication with single voter is the best 
one to mask errors. In [23], authors announced that a TMR 
presents a portable and robust solution.  

TMR is generally used as a mitigation technique against a 
radiation fault injection. In [4], diverse repair techniques have 
been used to improve the SEUs mitigation for the LEON3 
processor using two different approaches: Fault injection and 
Neutron radiation test. The results evince that using TMR with 
both CRAM (configuration memory) scrubbing and BRAM 
(internal block memory) scrubbing demonstrates that the 
reliability improvement is about 51.30x which used fault 
injection, and about 48.85x using Neutron radiation test.  
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Fig. 8. Logic bloc of the voter. 

The principal idea of TMR used in this work is by 
triplicating the integer unit of LEON3 and comparing the 
outputs with the golden operation (without countermeasure 
techniques) by voting the results of three redundant copies of 
the design to mask SEUs. 

The voter is the important element in TMR technique. The 
importance of reliability in a majority voter is attributed to its 
application in both conventional fault-tolerant design and new 
Nano-electronic systems.  

 “Fig. 8” shows the logic bloc of the voter that masks faults 
in a single block of IU, such as A1, A2 and A3 which represent 
the output of the first, the second and the third copy of IU, 
respectively. 

B. Analysis of SEU mitigation on LEON3’s Program Counter  

In order to evaluate the behavior of LEON3 facing SEUs, 
fault injection is performed in the Program Counter register of 
the IU over its stage of pipeline. The proposed strategy of fault 
injection campaign NETFI+ is used and validated using two 
different campaign methods: simulation and FPGA emulation. 
The result obtained shows that 100% of FF in Fetch and 
Decode stage are sensitive to random SEUs fault injection by 
simulation and FPGA emulation. In goal to mitigate SEUs 
faults in the PC of LEON3, hardware integration of TMR fault 
tolerant technique in LEON3, by redundant the integer unit, is 
done. Only the bits of the PC register of Fetch and Decode 
stage will be used to mitigate de SEUs faults. 

This section summarizes the TMR fault tolerant testing on 
LEON3 for SEUs fault injection. The SEU mitigation for the 
LEON3 processor on the program counter is shown in 
“Table 3”, two LEON3 design variations is shown in a table, 
the first design without TMR fault tolerant technique 
(unmitigated) and the second design with TMR. 

The simulation of the design with TMR is made with 
success. Improvement is represented by a terms of sensitivity 
mitigation for fault injection. 

The improvement in design sensitivity, according to the 
baseline design is enhanced when integrated a TMR module 
and injecting SEUs faults in one copy of IU, whose the TMR 
mitigates all the SEU injected to given about 100% of faults 
undetected. 

TABLE III. SEUS FAULT INJECTION RESULTS WHICH INCLUDES TMR 

Description 
 

Unmitigated 

One 

copy of 

IU 

affected 

Two 

copies of 

IU 

affected 

Three 

copies of 

IU 

affected 

#faults injected #18000 #18000 #36000 #108000 

%sensitivity 100% 0% 0.1% 0.06% 

#sensitive bits  #9000 #0 #2700 #3450 

Improvement 1.00x - 3.33x 2.60x 

While the injection in three copies of IU demonstrates 
about 2.60x improvement over the injection within two copies 
of IU, the SEU mitigation technique used in this work, TMR, 
provides an important improvement in design sensitivity over 
the unmitigated baseline design. The percentage of sensitive 
bits within three copies of IU is about 3.19%, this is significant 
that the SEUs mitigation attained reaches about 96.81%. 

The results reveal that using TMR in SRAM-based FPGA 
without scrubbing [5], the percentage of the sensitive bits is 
about 4.65% while in this paper using a TMR in IU, the 
sensitive bits represent 3.19% of the total bits. 

VII. CONCLUSIONS AND PERSPECTIVES 

In this paper, an extensive fault injection campaigns are 
done to evaluate the robustness of soft-core LEON3 processor 
against Single Event Upset. A new fault injection approach 
was improved in order to evaluate the susceptibility to soft 
errors, SEU, in LEON3‟s program counter. 

Two approaches to evaluate the sensitivity of integrated 
circuits to Single Event Upsets provoked by energetic particles 
present in the environment (space, Earth‟s atmosphere) were 
explored. The first one is based on RTL simulations allowing 
evaluating IC sensitivity against SEU at early design phases, 
while the second one focuses on FPGA emulation which 
enables to obtain results closer to the ones of the hardware IC.  

The accuracy/limitations of both approaches are studied by 
the analysis of experimental results. Fault injection based RTL 
simulation can be applied at early design phase, allowing fine-
grained analysis also efficient local solution but it requires very 
important simulation time. For the fault injection based FPGA 
emulation is faster than fault injection based RTL simulation 
but it does not give detail information on reporting.    

The results in this work put in evidence the importance of 
increasing the robustness of LEON3‟s Program Counter 
register against soft-errors for critical applications. A hardware 
integration of a countermeasure unit is done in this work to 
give back the design fault tolerant. Analyzing the results shows 
that SEUs mitigation on the PC at the sensitive stage of 
pipeline, Fetch and Decode stages is improved about 99.979% 
using a repair technique, TMR. 

Future work must be addressed to other types of faults like 
SET in the principal unit of LEON3, the integer unit, which 
including a SETs mitigation technique, TMR module. 
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