
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

278 | P a g e

www.ijacsa.thesai.org

SEUs Mitigation on Program Counter of the LEON3

Soft Processor

Afef KCHAOU

University of Tunis El Manar, Faculty of Sciences of Tunis

Laboratory of Electronics and Microelectronics of Monastir

Monastir, Tunisia

Wajih EL HADJ YOUSSEF

University of Monastir

Laboratory of Electronics and Microelectronics of Monastir

Monastir, Tunisia

Rached TOURKI

University of Monastir

Laboratory of Electronics and Microelectronics of Monastir Monastir, Tunisia

Abstract—Analyzing and evaluating the sensitivity of

embedded systems to soft-errors have always been a challenge

for aerospace or safety equipment designer. Different automated

fault-injection methods have been developed for evaluating the

sensitivity of integrated circuit. Also many techniques have been

developed to get a fault tolerant architecture in order to mask

and mitigate fault injection in a circuit. Fault injection mitigation

and repair techniques are applied together on LEON3 processor

in goal to study the reliability of a soft-core. The so-called

NETlist Fault Injection (NETFI+) tool is a fault injection

techniques used in this paper. The prediction of Single Event

Upset (SEU) error-rates between radiation ground testing and

FPGA implementation have been done with good and accurate

result. But no functional simulations have been performed. A

Triple Modular Redundancy (TMR) is used in this paper as a

repair technique versus fault injection. This paper analyses the

effectiveness of fault tolerant method on LEON3 soft-core

running a benchmark. It starts by evaluating the behavior of

LEON3’s program counter against Single Event Upset error-rate

accuracy between the functional simulation and the FPGA

emulation and an analysis of the LEON3 reliability in presence of

fault tolerant technique. The objective is to offer, through the

new version of NETFI+ with introducing a fault tolerant

technique, the possibility to designers to evaluate the benefits of

SEUs mitigation for the LEON3 processor on the program

counter.

Keywords—NETFI+ ; fault injection; SEUs; LEON3;

simulation; emulation; reliability; TMR

I. INTRODUCTION

Embedded system undergoes several changes across the
years, starting from simple mono CPU running applications to
a complex system including co-processor, memory, input and
output models. Using embedded systems in special
applications, safety-critical or mission-critical, allows
evaluating their dependability in presence of faults on the
circuit or in the implemented application.

Fault injection can be used to evaluate embedded system
running its own application [1].

Transient faults and soft errors lead to faults in a system
without damaging the system under evaluation. Transient faults

are represented by a single or multiple nodes upset directly
attributable to excess charge carriers created by an external
source of radiation. Soft errors are defined by the impact of a
transient fault that can be propagated beyond one clock cycle
[2]. It flips one or more bits, modifying the data store of a
memory cell, register, flip-flop and latch. SEU and Single
Event Transient (SET) are soft errors that affect only one bit,
other type of faults are used to modify more than one bit, and
it‟s a Multiple Bit Upset (MBU) [3].

Areoflex Gaisler LEON3 processor has become more used
in a critical and safety application, such as in automotive,
multimedia system, wireless and more applications which
require reliability. Fault injection in LEON3 soft-core is done
in many works classified according to the type of faults, the
methods used, the block under test, etc. LEON3 is
characterized by its complexity and size. It‟s a reason to be a
good design for evaluating the benefits of fault tolerant
techniques [4].

In [5], injection of SEU, SET and MBU faults have been
done in many components of LEON3, showing that integer
unit and multiplier unit are more susceptible against SEU and
MBU fault injection.

Emulation-based fault injection in LEON3 is done in [6],
allowing a reduction in the experimental time.

In [7], SEU fault injection by FPGA emulation is made by
applying an exhaustive fault injection in internal memory of
LEON3. The results obtained show that the memory cell
containing the data is the most sensitive to SEU.

In [8], a new methodology is proposed to evaluate the real
cache sensitivity for a given application, and to calculate a
more accurate SER. The methodology, based on monitoring
the memory accesses, is applied to the LEON3 with several
benchmarks showing that their proposed tool predicted all real
errors with little over-estimation. Fault injection is done by
radiation and emulation. The result shows that all the cache
addresses are sensitive to SEU injection.

 In [9], evaluating the effects of single bit errors at the
memory and register locations is done using a high level error

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

279 | P a g e

www.ijacsa.thesai.org

injection technique. The results obtained show that this method
is inaccurate in comparison with the techniques using a flip-
flop error injection.

SEU fault injection, called bit-flip, upset or soft-error
propagates in the design depending on the application [10] and
it can cause a data corruption or a circuit malfunction. SEUs
are random in space and time, they can modify any element on
memory location also at any instant time. In [11], the
application of a new methodology to attack a Program Counter
(PC) of ARM is done by modifying the load-instruction of the
PC.

In previous works, the PC of LEON3 was not evaluated in
point of sensitivity because to its important function in system
security, in addition, based on the work in [5] avowed that the
integer unit is the most critical block of LEON3 to SEU and
MBU fault injection. The principal goal in this paper is to give
the benefits of SEU mitigation for the LEON3 processor on the
PC by adding a repair technique of fault tolerant like a TMR in
this work.

A new methodology is improved for fault attacks, NETFI+,
in order to evaluate the behavior of LEON3 soft-core, the SEU
error-rate reliability between the functional simulation and
FPGA emulation is done by injecting an SEU fault on the flip-
flop of LEON3‟s IU block precisely on the program counter
register according to its importance in the instruction execution
process. The principal goal in this paper is to present fault
injection approach and analyze countermeasure effectiveness
in circuit security.

 The paper is organized as follows. In Section II a
description of the NETFI+ principle will be done, overview of
LEON3‟s integer unit is presented in Section III. Next section
presents the NETFI+ flow, the analysis of the reliability of the
LEON3‟s program counter by evaluating the SEU error-rate
reliability between simulation and FPGA emulation is
presented in Section V. Section VI provides a presentation of a
repair technique used in order to evaluate the SEU mitigation
for the LEON3 soft processor on the program counter. A
conclusions and perspectives will be presented in the last
section.

II. NETLIST FAULT INJECTION PRINCIPLE

 Fault injection approaches are based on injecting
faults that can induce errors. Many researches separate between
the methods of fault injection, it can be classified depending on
two techniques based on hardware and software fault injection.

A software fault injection is presented by using a software
program to inject faults in a physical model. Simulated fault
injection can be observed and controlled while the system is
simulated using HDL simulator.

A hardware fault injection allows evaluating a behavior of a
system based on Commercial off-the-shelf (COTS) processor
[12]. It‟s widely used and it can be classified on three
categories [13]:

 Logical fault injection using debugging facilities: This
type of injection allows to the processor logic resources
to access their internal blocks and to add bit-flips.

 Physical fault injection: this method is accomplished
using laser beams, electromagnetic interferences or a
radiation in goal to induce faults in integrated circuits.
This method offers actual hardware faults on real
systems. It requires expensive material and the number
of faults injected is limited, also a deep knowledge of
the actual layout of the circuit [14].

 Logical fault injection: it can be made by circuit
simulation using hardware description languages (HDL
models) simulator or by circuit emulation using
hardware emulation platforms. In simulation-based fault
injection, the system under test is simulated in another
system, while the emulation-based fault injection
facilitates the injection on complex models by reducing
time spent by a simulation-based fault injection.

The fault injection type used in this paper is the last one:
Logical fault injection. Simulation-based fault injection allows
the fault injection in high level models. In general, fault
injection is presented by a bit-flip fault model when the content
of a memory cell is inverted. It permits to evaluate the behavior
of fault tolerance mechanisms [14].

The principle idea of the logical fault injection is the
injection at the bit-flip model by inverting the content of a
memory cell at the instant injection. Studying the reliability of
an embedded system is a principal goal to define the capability
of the system to run its function in abnormal condition for a
given period of time [15]. Soft errors disturbing memory cells
and registers in embedded system are called SEU was analyzed
to evaluate the soft error-rate [13].

Sensitivity of the LEON3‟s integer unit against soft errors
was estimated through two fault-injection campaigns. A first
one was performed in a simulation in order to analyse a
random SEU injection. A second one was performed in FPGA
emulation to accelerate the fault injection campaign and mainly
to evaluate the SEU error-rate reliability in the simulation
campaign also the validation of a NETFI+ tool.

The NETFI+ tool used in this paper is based on netlist fault
injection. It allows to inject SEU, MBU and SET faults in
circuits at Register Transfer Level implemented on FPGA. This
method enables to inject faults in all memory cell and at any
clock cycle, exhaustive or randomly in time and location. In
this paper, the principle idea is to study the reliability of
LEON3‟s PC against SEU fault injection.

The HDL source code of the circuit is synthesized to get the
correspondent netlist [16]. In next step, a MODNET (MODify
NETlist) tool, described in [17], will be used to choose the type
of faults which can be injected and give a modified netlist.

A NETFI+ tool in this work is improved to inject faults in
all the memory cell of LEON3 also to inject all type of faults
SEU, MBU and SET.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

280 | P a g e

www.ijacsa.thesai.org

Fig. 1. The micro-architecture of the LEON3‟s Integer Unit [18].

III. OVERVIEW OF LEON3‟S INTEGER UNIT

The LEON3 Integer Unit (IU) is fully compliant with the
SPARC V8 standards. SPARC is a CPU instruction set
architecture derived from RISC. It comprises an integer unit
(IU), an optional Floating-point unit (FPU) and a coprocessor
(CP).

The IU executes the arithmetic instructions, computes
memory addresses (load/store), maintains the Program Counter
(PC) and controls the instruction execution for the FPU and the
CP. “Fig. 1” shows the pipeline of the IU which consists of
seven-stages with Harvard architecture.

IU integrates seven stage of pipeline, the FE stage (FEtch)
fetches the instruction from the instruction cache through its
address given by a PC. DE stage (DEcode) decodes the
instruction. In the RA stage (Register Access), all operands are
read from the register file or from the internal data bypasses
and stored in EX stage (EXecute). ME stage (MEmory) stores
the results and communication between IU and the other
peripherals components which can be done. In XC stage
(eXCeption) all traps and interrupts are resolved. In WR stage
(WRite), a data not sent to the register file will be stored [19],
[9].

Integer Unit controls, in general, all the operation of the
processor and it includes two types of register: general-purpose
registers and control/status registers. Whose General-purpose
registers is a 32-bit registers, called r register.

An instruction can access the 8 global registers and a 24
registers window into r register. The register window contains
8 in and 8 local registers of a particular register set. The 8 in
registers are addressable from the current window, the out
registers.

The IU control/status registers include Processor State
Register (PSR), Window Invalid Mask (WIM), Trap Base
Register (TBR), Multiply/divide Register (Y), Program
Counters (PC), Implementation-dependent Ancillary State
Registers (ASRs) and Implementation-dependent IU Deferred-
Trap Queue.

IV. FAULT INJECTION FLOW

The emulation of SEU faults is done in the PC which is the
overall security of any embedded system, in this case the
LEON3 processor. PC gives the address of the instruction
currently being executed by the IU.

Only 30-bit of PC will be used in the six stages of pipeline
(FE, DE, RA, EX, ME, XC) because the LSB two bits of the
PC are not used in the configuration, its implementation will
cause a debug of the HDL model and an area waste in
synthesis. A NETFI+ method allows injecting SEUs faults in a
Flip-Flop of PC in all the stage of pipeline, in total 180 FF will
be used to control the PC. “Fig. 2” illustrates the workflow
adopted in the NETFI+.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

281 | P a g e

www.ijacsa.thesai.org

Fig. 2. Fault injection flowchart.

Initially, a Hardware Description Language (HDL) of the
LEON3 is synthesized by Synplify tools to get the Verilog
netlist in Step 1. This first step does not require any
modification to the original design.

In Step 2, the first netlist resulting will be used as input for
the MODNET tools, which adds a new signal “INJ” to all the
Flip-Flop (FD and FDE) components used in the block of IU.
After that, the new netlist obtained is then synthesized, by
Synplify tools, in Electronic Design Interchange Format
(EDIF) using a modified version of the sensitive components,
which includes “INJ” signals to access them to fault injection.
“Fig. 3” exhibits the addition of the „INJ‟ signal in the design.

In Step 2, two possibilities of test injection can be applied,
the first one is by FPGA emulation, steps 3 and 4, and the
second one is by a simulation campaign, steps 5 and 6.

The FPGA emulation campaign is performed in Steps 3 and
4. In Step 3, the EDIF file obtained in Step 2 is then attached to
the soft-core processor and the last synthesis is performed to
generate a bitstream based on the target FPGA. Finally, in
Step 4 the experiment is executed in hardware-based FPGA
platform.

Fig. 3. Architecture of LEON3 blog diagram which includes “INJ” signal.

Fig. 4. The Nexys4 board.

In this work, a Nexys4 board, equipped with Xilinx Artix-7
XC7A100T-CS324, is used which is a complete circuit board.
As shown in “Fig. 4”, the board is occupied by a diverse I/O,
development connectors that allows a connection with the
LEON3 implemented.

The setup and control of the fault injection experiments are
performed by a Soft-Core Fault Injection Processor (SCFIP),
embedded in the FPGA, and by a Tool Command Language
(TCL) script in a personal computer, as can be seen in “Fig. 5”.

The SCFIP is used as the controller in charge of randomly
selecting the time and in which registers will inject the faults.
The results of LEON3 execution are sent to a personal
computer connected through the UART interface.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

282 | P a g e

www.ijacsa.thesai.org

Fig. 5. FPGA fault injection strategy.

The simulation fault injection campaign following Step 5
and 6 of “Fig. 2”. In Step 5, the files obtained in step 2 are then
attached to the Xilinx modified library in the ModelSim
Mentor Tool [20]. Finally, in Step 6 the simulation, setup and
the control of the fault injection campaign are performed by a
TestBench in a dedicated server equipped with two Intel Xeon
CPU E5-2620 and 64GB of RAM memory.

V. PROGRAM COUNTER RELIABILITY

The NETFI+ tool described on Section 2 will create a
variety of SEU influence on LEON3. The first campaign of
injection is done by a simulation fault injection. A benchmark,
MulMatrix (Matrix product), is used to execute a simulation
and to compare the results obtained with the standard results
(Golden Results).

The benchmark used in this test is selected because it does
not take enough time in RTL simulation also the number of
repetitive instructions involved by its execution enables to
guarantee a wrong behavior in presence of fault injection.

A random SEU fault injection in the PC register at the
stages of pipeline is done. In total, 1080000 faults are injected
in sensible FF of LEON3‟s PC during one period, 100% of the
flip-flop of FE and DE stage are sensitive to SEU, the FF of the
other stages are non-sensitive.

The results obtained can be classified in four categories
shows in “Table 1”: overwritten Faults, Failure results,
Timeout and Stopped Execution.

The faults can be overwritten in some cases, it explains that
the error is masked and cannot modify the result, this explains
that at the moment of the injection, the PC does not point to the
instruction used at the instant of simulation (about 100% faults
undetected in RA, EX, ME and XC stage).

Failure results is procured when the simulation is done but
giving a false result, this explains that at the moment of SEU
injection, the PC does not point in the correct address of the
currently instruction used in simulation (6.66% in FE stage and
3.33% in DE stage).

TABLE I. SEU FAULT INJECTION ANALYSIS

Type of Result
Stages of pipeline

FE DE RA EX ME XC

%Overwritten - - 100 100 100 100

%Failure result 6.66 3.33 - - - -

%Timeout 3.33 - - - - -

%Stopped execution 90 96.66 - - - -

The simulation can exceed the approximate time of
simulation (4365 us in this case) like a 3.33% in FE stage, this
type of faults is named Timeout, the PC in this case stop
incrementing and this explains a cause an infinite loop in
simulation. Also the execution can be stopped (90% in FE
stage and 96.66% in DE stage). In another way, the simulation
cannot be finished normally, and the execution stops just after
the moment of injection. In other words, the PC does not
contain any address to be pointed.

The benefits of the simulation-based fault injection that it
allows a fine-grained analysis through the assembly code of
fault injection campaign. The assembly code contains all the
instructions of simulation. SEU injection in PC occur some
traps.

The results obtained are resumed in “Table 2”. The traps
can be more detailed [21]:

 Illegal instruction:

When the simulation ends before a normal time of
execution, an attempt is made to execute the instruction with an
unimplemented opcode or an UNIMP instruction (Assembly
code: unimp (trapped)). Other reason can be responsible for the
stopped execution that the instruction would result an illegal
processor state at the decode stage (Assembly code: save %sp,
-0x0060, %sp (trapped)).

 Privileged instruction:

At the fetch stage, the PC stops to increment and remains
constant and in another case, the PC does not contain any
address to be pointed. The assembly code shows that an
attempt was made to execute a privileged instruction
(Assembly code: ldub [%o4], %o5 [0x0000XXXX]).

 Window overflows:

A SAVE instruction is responsible for this trap because at
this instant the Current Window Pointer (CWP) will point to a
window marked not valid in the WIM.

 Window underflows:

It‟s caused by a RETT or a RESTORE instruction
attempted in this case when the CWP would point to a window
marked invalid in the WIM. In fact, RESTORE instruction has
the same role of ADD instruction, it allows to increment by „1‟
the CWP and to compare it with WIM, if the WIM bit
corresponding to the new CMP is „1‟, a window underflow trap
is then generated.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

283 | P a g e

www.ijacsa.thesai.org

TABLE II. TRAPS ANALYSIS

Type of Trap
Stages of pipeline

FE DE

Illegal_instruction 49.5% 51.33%

privileged_instruction 14.4% 6.33%

Window_overflow 12.5% -

Window_underflow 23.5% 42.33%

The NETFI+ tool applied in fault injection by simulation
takes a lot of time, an FPGA implementation based fault
injection is done to validate a NETFI+ tool and to evaluate the
results obtained by simulation.

The simulation based fault injection offers the analysis of
the reliability of any circuit, such as a microprocessor pipeline
or cache memory using all the types of faults. The term
exhaustiveness can be done only by this technique, but it
consumes a long time. Emulation based fault injection allows
to inject a high number of faults by winning the time of the
fault injection process.

Fig. 6. NETFI+ analysis simulation versus FPGA emulation.

A NETFI+ tool is validated by simulation and FPGA
implementation when a FF of FE and DE stage are 100%
sensitive to SEU (“Fig. 6”). For the flip-flop non-sensitive of
the other stages, the result remains the same except for the flip-
flop of the XC stage when 0.02% is sensible to SEU.

The NETFI+ tool is limited in number of faults injected in
FPGA emulation but it is faster than the fault injection by
simulation. The analysis of the results obtained in simulation
shows the benefits of the NETFI+ tool in simulation in its
accuracy and the large number of faults which can be injected.

VI. LEON3 SEU MITIGATION EVALUATION

A. Principle of TMR

TMR is the most commonly used as a mitigation technique
against SEUs for FPGA designs, used in radiation
environments. The principle of TMR technique is done by
triplicating a design and voting on the outputs of the three
modules triplicated. TMR can be implemented on the latest
commercial FPGA technologies, but it is costly in terms of area
and power. It makes the circuit fault tolerant by masking and
reducing the faults. It protects the design from errors
propagated in LUT, internal state and control signals. “Fig. 7”
shows the principle idea of the integer unit redundant with
single voter.

The single voter with the triplicated logic will mask logic
and errors created by SEUs. While two or three redundant
copies of the design work correctly, errors will be masked and
the output of the block will be correct [4].

Fig. 7. TMR flow.

In [22], many approaches are used to detect a laser SEU
faults for LEON3 on SRAM-based FPGA with the integration
of several fault countermeasure techniques, the results obtained
show that the modular triplication with single voter is the best
one to mask errors. In [23], authors announced that a TMR
presents a portable and robust solution.

TMR is generally used as a mitigation technique against a
radiation fault injection. In [4], diverse repair techniques have
been used to improve the SEUs mitigation for the LEON3
processor using two different approaches: Fault injection and
Neutron radiation test. The results evince that using TMR with
both CRAM (configuration memory) scrubbing and BRAM
(internal block memory) scrubbing demonstrates that the
reliability improvement is about 51.30x which used fault
injection, and about 48.85x using Neutron radiation test.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

284 | P a g e

www.ijacsa.thesai.org

Fig. 8. Logic bloc of the voter.

The principal idea of TMR used in this work is by
triplicating the integer unit of LEON3 and comparing the
outputs with the golden operation (without countermeasure
techniques) by voting the results of three redundant copies of
the design to mask SEUs.

The voter is the important element in TMR technique. The
importance of reliability in a majority voter is attributed to its
application in both conventional fault-tolerant design and new
Nano-electronic systems.

 “Fig. 8” shows the logic bloc of the voter that masks faults
in a single block of IU, such as A1, A2 and A3 which represent
the output of the first, the second and the third copy of IU,
respectively.

B. Analysis of SEU mitigation on LEON3’s Program Counter

In order to evaluate the behavior of LEON3 facing SEUs,
fault injection is performed in the Program Counter register of
the IU over its stage of pipeline. The proposed strategy of fault
injection campaign NETFI+ is used and validated using two
different campaign methods: simulation and FPGA emulation.
The result obtained shows that 100% of FF in Fetch and
Decode stage are sensitive to random SEUs fault injection by
simulation and FPGA emulation. In goal to mitigate SEUs
faults in the PC of LEON3, hardware integration of TMR fault
tolerant technique in LEON3, by redundant the integer unit, is
done. Only the bits of the PC register of Fetch and Decode
stage will be used to mitigate de SEUs faults.

This section summarizes the TMR fault tolerant testing on
LEON3 for SEUs fault injection. The SEU mitigation for the
LEON3 processor on the program counter is shown in
“Table 3”, two LEON3 design variations is shown in a table,
the first design without TMR fault tolerant technique
(unmitigated) and the second design with TMR.

The simulation of the design with TMR is made with
success. Improvement is represented by a terms of sensitivity
mitigation for fault injection.

The improvement in design sensitivity, according to the
baseline design is enhanced when integrated a TMR module
and injecting SEUs faults in one copy of IU, whose the TMR
mitigates all the SEU injected to given about 100% of faults
undetected.

TABLE III. SEUS FAULT INJECTION RESULTS WHICH INCLUDES TMR

Description

Unmitigated

One

copy of

IU

affected

Two

copies of

IU

affected

Three

copies of

IU

affected

#faults injected #18000 #18000 #36000 #108000

%sensitivity 100% 0% 0.1% 0.06%

#sensitive bits #9000 #0 #2700 #3450

Improvement 1.00x - 3.33x 2.60x

While the injection in three copies of IU demonstrates
about 2.60x improvement over the injection within two copies
of IU, the SEU mitigation technique used in this work, TMR,
provides an important improvement in design sensitivity over
the unmitigated baseline design. The percentage of sensitive
bits within three copies of IU is about 3.19%, this is significant
that the SEUs mitigation attained reaches about 96.81%.

The results reveal that using TMR in SRAM-based FPGA
without scrubbing [5], the percentage of the sensitive bits is
about 4.65% while in this paper using a TMR in IU, the
sensitive bits represent 3.19% of the total bits.

VII. CONCLUSIONS AND PERSPECTIVES

In this paper, an extensive fault injection campaigns are
done to evaluate the robustness of soft-core LEON3 processor
against Single Event Upset. A new fault injection approach
was improved in order to evaluate the susceptibility to soft
errors, SEU, in LEON3‟s program counter.

Two approaches to evaluate the sensitivity of integrated
circuits to Single Event Upsets provoked by energetic particles
present in the environment (space, Earth‟s atmosphere) were
explored. The first one is based on RTL simulations allowing
evaluating IC sensitivity against SEU at early design phases,
while the second one focuses on FPGA emulation which
enables to obtain results closer to the ones of the hardware IC.

The accuracy/limitations of both approaches are studied by
the analysis of experimental results. Fault injection based RTL
simulation can be applied at early design phase, allowing fine-
grained analysis also efficient local solution but it requires very
important simulation time. For the fault injection based FPGA
emulation is faster than fault injection based RTL simulation
but it does not give detail information on reporting.

The results in this work put in evidence the importance of
increasing the robustness of LEON3‟s Program Counter
register against soft-errors for critical applications. A hardware
integration of a countermeasure unit is done in this work to
give back the design fault tolerant. Analyzing the results shows
that SEUs mitigation on the PC at the sensitive stage of
pipeline, Fetch and Decode stages is improved about 99.979%
using a repair technique, TMR.

Future work must be addressed to other types of faults like
SET in the principal unit of LEON3, the integer unit, which
including a SETs mitigation technique, TMR module.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

285 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] M. Murciano, M. Violante, “Validating the Dependability of Embedded
Systems through Fault Injection by means of Loadable Kernel
Modules,” IEEE International High Level Design Validation and Test
Workshop, 2007, pp 179-186.

[2] A. Spilla, I. Polian, J. M¨uller, M. Lewis, V. Tomashevich, B. Becker,
W. Burgard, “run-time Soft Error Injection and Testing of a
Microprocessor using FPGAs,” University of Frelburg, Jun 2013.

[3] G.S. Rodrigues, F. Rosa, Á. Barros de Oliveira, F. Lima Kastensmidt, L.
Ost, R. Reis, “Analyzing the Impact of Fault Tolerance Methods in
ARM Processors under Soft Errors running Linux and Parallelization
APIs, ” IEEE Transactions on Nuclear Science, 2017, pp. 1-7.

[4] A M. Keller, M J. Wirthlin, “Benefits of Complementary SEU
Mitigation for the LEON3 Soft Processor on SRAM-based FPGAs,”
IEEE Transactions on Nuclear Science, 2016, pp.519-528.

[5] H. Abbasitabar, H. Zarandi, R. Salamat, “Susceptibility Analysis of
LEON3 Embedded Processor Against Multiple Event Transients and
Upsets,” IEEE 15th International Conference on Computational Science
and Engineering, 2012, pp. 548-553.

[6] K. Chibani, M. Portolan, R. Leveugle. “Fast Register Criticality
Evaluation in a SPARC Microprocessor,” 10th Conference on Ph.D.
Research in Microelectronics and Electronics (PRIME), 2014, pp 1-4.

[7] A. Kchaou, W. El Hadj Youssef, R. Tourki, F. Bouesse, P. Ramos, R.
Velazco, “A deep Analysis of SEU Consequences in the Internal
Memory of LEON3 processor,” 17th IEEE Latin-American Test
Symposium, 2016, pp 178.

[8] S. Houssany, N. Guibbaud, A. Bougerol, R. Leveugle, F. Miller, N.
Buard, “Microprocessor Soft Error Rate Prediction Based on Cache
Memory Analysis,” IEEE TRANSACTIONS ON NUCLEAR
SCIENCE, VOL. 59, NO. 4, 2012, pp 980-987.

[9] H. Cho, S. Mirkhani, C-Y. Cher, J-A. Abraham, S. Mitra, “Quantitative
Evaluation of Soft Error Injection Techniques for Robust System
Design,” 50th Annual Design Automation Conference, May 29 - June
07, 2013, ACM, Austin, TX, USA, pp: 1-10.

[10] P. Peronnard, R. Ecoffet, M. Pignol, D. Bellin, R. Velazco, “Predicting
the SEU Error Rate through Fault Injection for a Complex
Microprocessor,” IEEE International Symposium on Industrial
Electronics, 2008, pp 2288-2292.

[11] N. Alimi, Y. Lahbib, M. Machhout, R. Tourki, “An RTOS-based Fault
Injection Simulator for Embedded Processors,” International Journal of

Advanced Computer Science and Applications, Vol. 8, No. 5, 2017, pp
300-306.

[12] A. Clough, “Commertial Off-The-Shelf (COTS) Hardware and Software
of Train Control Applications: System Safety Considerations,” The
national onformation service, Springfield, Virginia 22161. April 2003.

[13] M. Portela-Garcia, C. Lopez-Ongil, M. Garcia Valderas, L. Entrena,
“Fault Injection in Modern Microprocessors Using On-Chip Debugging
Infrastructures,” IEEE Transactions on dependable and secure
computing, Vol.8, No.2; March-April 2011, pp 308-314.

[14] J I. Gonzalez, A S. Cases, A M. Alvarez, S C. Asensi, H G. Miranda, M
A. Aguirre, “ Contrast of a HDL model and COTS version of a
microprocessor for SOFT-ERROR Testing,” 18th IEEE Latin American
Test Symposium, 2017, pp. 1-6.

[15] S. Ahmad, S. Sardar, B. Noor, A. Asar, “Analyzing Distributed
Generation Impact on the Relaibility of Electric Distribution Network,”
International Journal of Advanced Computer Science ans Applications,
Vol.7, No.10, 2016, pp 217-221.

[16] W. Mansour, R. Velazco, “SEU fault-injection in VHDL-based
processors: a case study,” 13th Latin American Test Workshop
(LATW), 2012, pp 1-5.

[17] W. Mansour, R. Velazco, “ An automated SEU fault-injection method
and tool for HDL-Based Designs,” IEEE Transactions on Nuclear
Science, 60(4):2728-2733, Aug 2013.

[18] M. Danek, L. Kafka, L. Kahout, J. Sykora, R. Bartosinski, “UTLEON3:
Exploring Fine-Grain MultiThreading in FPGAs,” Springer-Verlag New
York, 2013, pp. 1-222.

[19] J. Gaisler, M. Isomäki, “LEON3 GR-XC3S-1500 Template Design,”
Gaisler Research Based on GRLIB, October 2006.

[20] “ModelSim Advanced Verification and Debugging,” SE Tutorial,
Version 6.0b, 15 November 2004.

[21] Gaisler groups,”The SPARC Architecture Manual Version 8,” SPARC
International, 1991-1992.

[22] F. Benevenuti, F L. Kastensmidt, “ Evaluation of Fault Attack Detection
on SRAM-based FPGAs,” 18th IEEE Latin American Test Symposium,
2017, pp. 1-6.

[23] P. Rech, C. Aguiar, C. Frost, and L. Carro, “An efficient and
experimentally tuned software-based hardening strategy for matrix
multiplication on gpus,” IEEE Transactions on Nuclear Science, vol. 60,
no. 4, Aug 2013, pp. 2797–2804.

