
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

291 | P a g e

www.ijacsa.thesai.org

ODSA: A Novel Ordering Divisional Scheduling

Algorithm for Modern Operating Systems

Junaid Haseeb

Department of Computer Science

University of Management and

Technology, Sialkot, Pakistan

Khizar Hameed

Department of Computer Science

University of Management and

Technology, Sialkot, Pakistan

Muhammad Junaid

Department of Computer Science

University of Management and

Technology, Sialkot, Pakistan

Muhammad Tayyab

Department of Computer Science

University of Management and

Technology, Sialkot, Pakistan

Samia Rehman

Department of Computer Science

COMSATS Institute of Information

Technology, Islamabad, Pakistan

Agha Muhammad Musa Khan

Department of Computer Science

University of Management and

Technology, Sialkot, Pakistan

Abstract—CPU scheduling is defined as scheduling multiple

processes that are required to be executed in a specific time

period. A large number of scheduling algorithms have been

proposed to achieve maximum CPU utilization/throughput and

minimizing turn around, waiting and response time. Existing

studies claim that Round Robin (RR) is providing best results in

terms of above-mentioned factors. In RR, a process is assigned to

CPU for a fixed time quantum then the process starts its

execution, in case that assigned time quantum greater than

CPU’s capacity then remaining section of that process waits for

its next turn. Although RR schedules processes in an efficient

manner, however, it has certain limitations such as if time

quantum is too small or large, it causes frequent context

switching and response time can increase. To address these

identified problems, various improved versions of RR also exist.

The purpose of this paper is twofold: 1) a comparison between

different improved versions of RR; and 2) a new algorithm

named Ordering Divisional Scheduling Algorithm (ODSA) is also

proposed that combines various features of different algorithms

and is actually an improvement to RR. Our results show that

ODSA can schedule processes with less turn around and average

waiting time as compared to existing solutions.

Keywords—CPU scheduling; round robin scheduling

algorithm; turnaround time; waiting time; context switching

I. INTRODUCTION

Operating System (OS) is an essential part of a computer
system that acts as an intermediary between input commands
and hardware. Among various functions performed by OS, one
is processed scheduling, as Central Processing Unit (CPU) has
to manage concurrently executing processes. Some processes
are concerned with OS and others are originated by users. For
the execution, each process requires specific time duration of
CPU. Required execution time is totally dependent on the type
of process to be executed; it may fall into the category of
engaging CPU’s resources for a long time or either short. In the

context where multiple processes are available in the ready
state against only one CPU than OS has to decide which
process needs to be executed first. For this purpose, many
scheduling algorithms have been proposed and this
management of ordering processes is known as process
scheduling [1]. These proposed algorithms have been designed
with various goals such as better utilization of CPU’s
resources, less turnaround time, waiting and response time of
processes.

CPU plays a vital role in the execution of processes as it
has to assign required resources by OS to a specific process. In
the case of multiple processes to be executed, scheduling of
processes requires a careful and must ensure fairness so that
process starvation is minimized [2]. Scheduling process can be
performed using software like scheduler or dispatcher [3].
Round Robin (RR) is most commonly known algorithm that
helps in scheduling processes for OS [1], [4], [5]. In RR, CPU
splits OS’s time into multiple slices that are known as time
quantum. Then these time intervals are assigned to processes
so that their execution over OS can be performed. RR
scheduler is mainly concerned with following dimensions.

 CPU Utilization – By keeping the CPU as busy as
possible.

 Throughput – Number of tasks completed in unit time.

 Turnaround – Time required completing a job after the
submission.

 Waiting Time – Time required waiting in a ready
queue.

 Response Time – Time required to response a
particular job after the submission.

 Fairness – Time is given by CPU to each thread.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

292 | P a g e

www.ijacsa.thesai.org

Fig. 1. Process creation and allocation in OS.

Another scheduling algorithm is First-come, first served
(FCFS) [4]. In FCFS scheduling algorithm, the process request
the CPU and CPU in return execute the process in same order.
A single queue is maintained for ready processes in this
algorithm. It’s a non-preemptive scheduling algorithm i.e. once
the CPU has been allocated to a process, that process keeps the
CPU until it releases the CPU, either by terminating or by
requesting I/O. The next algorithm is SJF [5]. In Shortest Job
First (SJF), advanced knowledge of time taken by the processes
is required. The process having less time is executed by CPU
prior to that having a large amount of time. Another is priority
based algorithm [6] . In priority based algorithm, every process
is assigned a fixed priority by OS and the scheduler arranges
the processes in the ready queue in order of their priority. Fig. 1
briefly explains the process creation and allocation procedure
for all the above-mentioned algorithms.

Although these scheduling algorithms consider
performance parameters very well but still have definite
problems. In FCFS, when one process is completed than CPU
switches to another process, therefore, scheduling overhead is
minimal and no reorganization of the process queue is required
[6], [7]. The FCFS algorithm has low throughput as the process
executes in the same order as they come and there is a
possibility that long processes hold the CPU for a long
duration. Resultantly turnaround time, waiting time and
response time can be high [7], [8]. In SJF there is an additional
context switching if a shorter process arrives during another
process execution. This halts the currently running process,
execute the shortest job and then resume the previous one. This
creates additional overhead. The algorithm is giving maximum
throughput [4], [9]. The major flaw is starvation which occurs
when there are a large number of processes are being run by
CPU. In priority based algorithm, overhead is not minimal.
Waiting and response time is interlinked with priority. Higher
priority processes have smaller waiting and response times. In
[5] the starvation problem also exists. In RR scheduling
algorithm, if time quantum is too small it gives extensive
overhead. In addition, average response time, waiting time is
dependent on a number of processes, its length and value of

time quantum. Starvation has been reduced almost to zero [2],
[10].

As mentioned earlier that RR is considered as one the most
commonly used algorithm. In order to overcome its concerned
problems, various improvements have been made in RR
algorithm [7]. However, which algorithm is giving maximum
result is still questionable. In this paper, we provide an
overview of improvements made up till now in RR using
simulations. We also propose new algorithm Ordering
Divisional Scheduling Algorithm (ODSA) to achieve
maximum performance in terms of scheduling criteria.

Rest of the paper is structured as follows. Section II
provides a detailed discussion about existing similar works
done in this field like PBDRR [11], Time quantum using fuzzy
logic [10], an improved RR algorithm [12] and dynamic
quantum [5], [13]. Section III presents the analysis &
experiment discussion along with results. Section IV contains
the detail of proposed algorithm. In section V, comparison
results are discussed with rest of the algorithms. Section VI
provides conclusion and future implications.

II. RELATED WORK

Round Robin has become one of the most important and
widely used scheduling algorithms, despite its problems such
as fixed quantum size [2], [14]. As Round Robin (RR) is used
almost in all like in Windows, UNIX, BSD etc., So, to
overcome its shortcomings, many types of research have been
carried out [2], [12], [13], [15].

Mohanty et al. [3] proposed priority based Dynamic Round
Robin algorithm to combine the dynamic time quantum and
priority based selection of processes. In this way, time slice for
each process is calculated and it changes after every round of
execution. In [7], an algorithm was designed which take input
sequence and assign priority, and then it sets the value of
original time slice (OTS). The components of priority are
calculated using short components [8]. In first round for
processes having SC as 1, assign time quantum same as
intelligent time slice whereas the processes having SC as 0

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

293 | P a g e

www.ijacsa.thesai.org

given the time quantum equal to the ceiling of the half of the
intelligent time slice. In next round, the processes having SC as
1 assign double the time slice of its previous round whereas the
processes with SC equal to 0 given the time quantum equal to
the sum of the previous time quantum and ceiling of the half of
the previous time quantum. After various examples, it reflected
that as time quantum is dynamic therefore reducing no of
context switching, average waiting and response time [3].

Alam et al., [1] used the concept of fuzzy logic to determine
time quantum. Fuzzy logic is basically an extension of Boolean
logic dealing with the concept of partial truth that denotes the
degree of truth. In real everything, it can be expressed in
binary terms. He used fuzzy interface system for finding the
time quantum [16]. The fuzzy inference system accepts two
numbers as input and produce only single number as output.
The input numbers specify as the total number of processes
resides in the ready queue and average burst time of processes
[17]. Time quantum is the fixed output value generated by that
system. The advantage of fuzzy logic is that each process in
the system assigned a fixed time quantum according to average
burst time. In addition, the performance of the system is not
declined due to gratuitously context switches[1].

Mohanty et al., [18] proposed new algorithm as a
combination of the shortest job first (SJF) and RR. In the first
process, it is assigned to CPU using Round Robin scheduling
algorithm. In a second step, it selects the shortest job from the
waiting queue and it shortest job assign to the CPU [9]-[14],
[19]. The process will be terminated after the successful
execution of all the processes. Another improvement is the
combination of SJF and RR algorithms [1]. This algorithm runs
as normal RR in the first cycle and then selects the SJF from
waiting for the queue and so on. From a number of experiments
present in this paper, it is obvious that total waiting time and
average turnaround time both are reduced [16], [17], [20] . The
reduction of total waiting time and turnaround time shows
maximum CPU utilization and minimum response time [18].

Noon et. al [2] proposed the new concept of time quantum
which is based on dynamic allocation of time to processes. The
given time quantum allocated to process on their burst time. To
solve the problem of time quantum, AN algorithm is proposed
that adjusts the time quantum of processes which resides in
ready queue. Experimental evaluations claimed that the
efficiency of AN algorithm is higher than the existing RR
algorithm[10], [16]. In context of efficiency, the dynamic
scheduling algorithm is reliable and scalable for wide variety of
OS’s as it provides the support of self- adaptation OS. The self-
adaptation property automatically fills the requirement of end
user [17].

Above discussion can be summarized as many
improvements to RR have been already proposed. One question
that is important yet not answered is which algorithm provides
better results in terms of CPU performance. To answer this
question, we have performed simulations of various algorithms.
Further discussion about experimental setup, selected
algorithms and criterion for declaring best algorithm is part of
section III and results of our simulation are discussed in key
findings section.

TABLE I. PROCESSES ALONG WITH BURST TIME AND PRIORITY

PROCESS ID BURST TIME (ms)

P0 12

P1 49

P2 20

P3 60

P4 30

P5 9

TABLE II. PROCESSES ALONG WITH BURST TIME AND PRIORITY

PROCESS ID BURST TIME (ms)

P0 10

P1 2

P2 1

P3 15

III. EXPERIMENTAL SETUP AND ANALYSIS

In this section of the paper, different improved versions of
RR are compared to answer the question of the best scheduling
algorithm. Three most common known algorithms (2, 3, and 4)
are selected and best performance criterion is based on
turnaround and average waiting time. Turnaround time of a
process is defined as the time a process has to wait for getting
its turn so that its remaining execution can be completed and
the waiting time of a process is the time it has to wait in queue
before going into execution mode. To perform the simulations,
we have taken two examples. Details about processes included
in examples along with burst time are presented in Tables 1 and
2 and fixed time quantum respectively and simulation results
according to already selected algorithms are as follows.

We have tested three algorithms on the above two
examples. Each algorithm has the output in term of average
Turnaround time and the average waiting time. In these
examples, the overall waiting time for a process is too high in
such away the process has to wait for a log until its execution
time. To overcome these problems, we have proposed a new
algorithm named a novel: Ordering Divisional Scheduling
Algorithm (ODSA), in which we have achieved very low
throughput time as well as very low waiting time for a process
to be executed. In the following section IV, detailed
information ODSA is provided.

IV. ORDERING DIVISIONAL SCHEDULING ALGORITHM

(ODSA)

A new algorithm Ordering Divisional Scheduling
Algorithm (ODSA) is designed providing better efficiency as
compared to all discussed algorithms and also overcoming the
problems mentioned in introduction part. As the name depicts it
first arrange the processes in ascending order based on their
burst time and then divide the processes into two halves.
Complete steps involved in this algorithm are as follows:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

294 | P a g e

www.ijacsa.thesai.org

 First, arrange the processes as per ascending order of
burst time.

 Then divide the processes into two halves (In case of
odd values use ceiling in first half).

 First, run the process from second half having shortest
burst time.

 Then run all the first half processes using SJF algorithm.

 At the end run all the remaining processes of second
half using RR algorithm.

After dividing when we run the process from second half
then using two different algorithms i.e. SJF and RR this will
reduce the processes waiting time and response time hence
improving the efficiency.

A. Verification of ODSA

To validate our proposed algorithm, we have again used
example 1 and 2. This time these examples are scheduled
according to newly proposed ODSA algorithm. Results are
presented as follows.

1) Step – I & II:
Arrange the processes as per ascending order of burst time

and divide into two halves as presented in Table 3.

TABLE III. PROCESSES AFTER ORDERING AND DIVIDING

PROCESS ID

BURST TIME (ms)

P5 9

P0 12

P2 20

P4 30

P1 49

P3 60

2) Step – III, IV & V:

 First, run the process from second half having shortest
burst time i.e. P4.

 Then run all the first half processes using SJF algorithm.

 At the end run the remaining process of second half
using RR algorithm.

Results of example 3 after scheduling processes according
to ODSA are as following:

3) Step – I & II

 Arrange the processes as per ascending order of burst
time and divide into two halves as presented in Table 4.

TABLE IV. PROCESSES AFTER ORDERING AND DIVIDING

PROCESS ID BURST TIME(ms)

P2 1

P1 2

P0 10

P3 15

4) Step – III, IV & V

 First, run the process from second half having shortest
burst time i.e. P0.

 Then run all the first half processes using SJF algorithm.

 At the end run the remaining process of second half
using RR algorithm.

V. RESULTS – COMPARISON

Results obtained from simulations are compared with
existing algorithms are available in Tables 5 and 6.

It reveals that newly designed algorithm has less turnaround
as well as waiting time as compared to all the improvements
made in RR algorithm up till now. The number of context
switches is also less hence ODSA improves the efficiency and
throughput.

TABLE V. COMPARISONS OF ODSA WITH EXISTING ALGORITHM USING

EXAMPLE 3

Scheduling

Criteria

An Improved

RR

algorithm

AN

algorithm
PBDRR ODSA

Turnaround
time

99.33 119.33 106.16 85.1

Waiting time 69.33 89.33 76.16 55.1

Context

Switching
11 10 11 8

TABLE VI. COMPARISONS OF ODSA WITH EXISTING ALGORITHM USING

EXAMPLE 4

Scheduling

Criteria

An Improved

RR algorithm

AN

algorithm
PBDRR ODSA

Turnaround

time
17.5 17.25 23 15.5

Waiting time 10.5 10.25 18 8.5

Context

Switching
6 6 6 5

 ODSA is showing less turnaround / waiting time and also
less number of context switching. Graphical comparison of
ODSA with all discussed algorithm is shown in Fig. 2.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

295 | P a g e

www.ijacsa.thesai.org

Example 1

An improved RR algorithm [4]

P0 P1 P2 P3 P4 P5 P4 P1 P1 P3 P3

 0 12 32 52 72 92 101 111 131 140 160 180

Fixed Time Quantum = 20, Average Turnaround Time = 99.33ms, Average Waiting Time = 69.33ms

A New Round Robin Algorithm [2]

P0 P1 P2 P3 P4 P5 P1 P3 P4 P3
 0 12 46 66 95 117 126 141 161 171 180

Fixed Time Quantum = 20, Average Turnaround Time = 119.33ms, Average Waiting Time = 89.33ms

PBDRR algorithm [3]

P0 P1 P2 P3 P4 P5 P0 P1 P3 P1 P3

 0 6 16 36 46 76 85 91 106 121 145 180

Fixed Time Quantum = 20, Average Turnaround Time = 106.16ms, Average Waiting Time = 76.16ms

Example 2:

An improved RR algorithm [4]

P0 P1 P2 P3 P0 P3

 0 8 10 11 19 21 28
Fixed Time Quantum = 8, Average Turnaround Time = 17.5ms, Average Waiting Time = 10.5ms

A New Round Robin algorithm [2]

P0 P1 P2 P3 P0 P3
 0 7 9 10 19 22 28

Fixed Time Quantum = 8, Average Turnaround Time = 17.25ms, Average Waiting Time = 10.25ms

PBDRR algorithm [3]

P0 P1 P2 P3 P0 P3
 0 5 7 8 16 21 28

Fixed Time Quantum = 8, Average Turnaround Time = 23ms, Average Waiting Time = 18ms

Example 3:

P4 P5 P0 P2 P1 P3 P1 P3
 0 30 39 51 71 9 111 140 180

 Average Turnaround Time = 85.1ms, Average Waiting Time = 55.1ms

Example 4:

P0 P2 P1 P3 P3
0 10 11 13 21 28

Average Turnaround Time = 15.5ms, Average Waiting Time = 8.5ms

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

296 | P a g e

www.ijacsa.thesai.org

Fig. 2. Comparison of proposed and existing algorithms.

VI. CONCLUSION

Process scheduling is important in a multiprogramming
environment. Various algorithms have been designed so far for
better process management. Different researchers have made
improvements in RR algorithm to overcome the problems like
starvation, context switching etc. ODSA has been proposed in
this paper which fairly allocates the resources to CPU. This
algorithm is improving the CPU scheduling criteria and
processes turnaround time is very less. It is also improved the
efficiency in terms of response time and no of context
switches. Deficiencies in existing algorithms like context
switching, starvation, convoy effect etc. have also overcome by
ODSA. Therefore, we can say efficiency of proposed scheme
in terms of CPU scheduling criteria is better than all the
existing improvements made till now in RR algorithm. In
future, we are interested to enhance ODSA by considering
more performance parameters. Comparing ODSA with other
scheduling algorithms in terms of energy utilization and
management of hardware resources are future implications.

REFERENCES

[1] B. Alam, M. N. Doja, and R. Biswas, “Finding Time Quantum of Round
Robin CPU Scheduling Algorithm Using Fuzzy Logic,” IEEE
International Conference on Computer and Electrical Engineering
(ICCEE), pp. 795–798, 2008.

[2] A. Noon, A. Kalakech, and S. Kadry, “A New Round Robin Based
Scheduling Algorithm for Operating Systems : Dynamic Quantum Using
the Mean Average,” IJCSI International Journal of Computer Science
Issues, vol. 8, no. 3, pp. 224–229, 2011.

[3] P. R. Mohanty, P. H. S. Behera, K. Patwari, M. Dash, and M. L.
Prasanna, “Priority Based Dynamic Round Robin (PBDRR) Algorithm
with Intelligent Time Slice for Soft Real Time Systems,” vol. 2, no. 2,
pp. 46–50, 2011.

[4] W. Stallings, “Operating Systems: Internals and Design Principles,”
Pearson, vol. 8, 2014.

[5] L.-X. Wang, “A Course in Fuzzy Systems and Control,” Prentice-Hall,
Inc., 1997.

[6] A. S. Tanenbaum, A. S., & Woodhull, “Operating systems: design and
implementation,” Englewood Cliffs, NJ Prentice-Hall, vol. 2, 2006.

[7] S. Mamdani, E. H., & Assilian, “An Experiment in Linguistic Synthesis
with a Fuzzy Logic Controller,”International Journal of Man-Machine
Studies,vol. 7, no. 1, pp. 1–13, 1975.

[8] M. Sugeno, “Industrial applications of fuzzy control.,” Elsevier Sci. Inc.,
1985.

[9] J. R. Jang, “ANFIS : Adaptive Network Based Fuzzy Inference System,”
IEEE transactions on systems, man, and cybernetics, vol. 23, no. 3,
1993.

[10] D. J. Simon, “Training fuzzy systems with the extended Kalman filter,”
Fuzzy sets and systems, vol. 132, no. 2, pp. 189–199, 2002.

[11] W. Tong and J. Zhao, “Quantum Varying Deficit Round Robin
Scheduling Over Priority Queues,” IEEE International Conference on
Computational Intelligence and Security, pp. 252–256, 2007.

[12] R. J. Matarneh, “Self-adjustment time quantum in round robin algorithm
depending on burst time of the now running processes,” American
Journal of Applied Sciences, vol. 6, no. 10, pp. 1831–1837, 2009.

[13] T. Helmy, “Burst Round Robin as a Proportional-Share Scheduling
Algorithm.” IEEE International Conference on Grid and Cooperative
Computing, 2007

[14] S. M. Mostafa, S. Z. Rida, and S. H. Hamad, "Finding time quantum of
round robin CPU scheduling algorithm in general computing systems
using integer programming." International Journal of Research and
Reviews in Applied Sciences (IJRRAS), vol. 5, no. 1, pp. 64–71, 2010.

[15] Liu, C. L., & Layland, J. W “Scheduling Algorithms for
Multiprogramming in a Hard- Real-Time Environment Scheduling
Algorithms for Multiprogramming,” Journal of the ACM (JACM),
vol.20, no. 1, pp. 46–61, 1973.

[16] H. S. Behera, “A New Proposed Dynamic Quantum with Re-Adjusted
Round Robin Scheduling Algorithm and Its Performance Analysis,”
International Journal of Computer Applications, vol. 5, no. 5, pp. 10–15,
2010.

[17] Yang, L., Schopf, J. M., & Foster, I, "Conservative scheduling: Using
predicted variance to improve scheduling decisions in dynamic
environments" In Proceedings of the 2003 ACM/IEEE conference on
Supercomputing, pp. 1–16, 2003.

[18] R. K. Yadav, A. K. Mishra, N. Prakash, and H. Sharma, “An Improved
Round Robin Scheduling Algorithm for CPU scheduling ,” International
Journal on Computer Science and Engineering vol. 2, no. 4, pp. 1064–
1066, 2010.

[19] S. Suranauwarat, “A CPU Scheduling Algorithm Simulator,” IEEE
International Conference on Frontiers In Education Conference-Global
Engineering: Knowledge Without Borders, Opportunities Without
Passports,pp. 19–24, 2007.

[20] P. R. Mohanty, P. H. S. Behera, K. Patwari, M. R. Das, and M. Dash,
“Design and Performance Evaluation of a New Proposed Shortest
Remaining Burst Round Robin (SRBRR) Scheduling Algorithm,” In
Proceedings of International Symposium on Computer Engineering &
Technology (ISCET), Vol. 17, pp. 126-137.

0

5

10

15

20

25

An Improved RR
algorithm [4]

AN algorithm [2] PBDRR [3] ODSA

Turnaround time

Waiting time

