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Abstract—Data Integration has become the most prominent 

aspect of data management applications, especially in scientific 

domains like ecology, biology, and geosciences. Today’s complex 

scientific applications and the rise of diverse data generating 

devices in scientific domains (e.g. sensors) have made data 

integration a challenging task. In response to these types of 

challenges, data management applications are providing ground-

breaking functionalities which come at the price of high 

complexity. This paper presents a semantic data integration 

framework which is based on the exploitation of ontologies. 

Exploiting a Description Logics formalism and associated 

reasoning procedures, the framework is able the handle 

heterogeneous formats and different semantics. Besides an in-

depth discussion of the ontology-based integration capability, the 

paper also discusses a brief overview of the system architecture 

and its application in a real world scenario taken from ecological 

research.  
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I. INTRODUCTION 

In order to understand complex scientific scenarios such as 
the world climate or the impact of the decreasing number of 
one species on others [1] lots of data are required. These data 
are usually not coming from one institution only but from 
many heterogeneous sources that need to be integrated [2]. 
Indeed the problem is not the availability of data but how to 
relate and interpret data correctly. The rise of data generating 
devices in scientific applications such as sensor networks has 
also made integration tasks more challenging. These sensors 
produce streams of unstructured raw data at different temporal 
and spatial granularities. Thus, before being used in any 
climatic application, these data need to undergo several 
processing steps of transformation and integration since such 
datasets are highly heterogeneous in terms of format, syntax, 
structure and semantics. 

In such type of scenarios, besides a powerful semantic data 
integration capability, integration systems must provide 
comprehensive data management solutions that handle assorted 
formats and cares about data structures when data flow from a 
source to a sink. Furthermore besides the detection and 
resolution of conventional semantic conflicts [3] these systems 
must deal with issues like: 

 Information transformation – Based on discovered 
mappings, information expected by the sink does not 
correspond to the information provided by the source. 
For instance, the source stores a deviceId while the sink 

requires deviceName; then these data must be 
transformed such that the same information is dealt with 
by both source and sink. 

 Missing and incomplete data – when the target requires 
information which is not available in the source. For 
instance the source contains only a deviceId whereas the 
target also expects information about the location of 
that device (locationId, locationName). 

The integration of data is often implemented in two ways 
which are sometimes overlapping. First, the use of standards is 
facilitated. Examples of such standards are the ABCD schema 
(Access to Biological Collection Data, [1]), the SEEK 
observation ontology [4], and biomedical ontologies [5]. A 
common pitfall of standards lies in the standardization process 
itself. Many stakeholders try to reflect their interests which can 
either cause the standard to be very general or very specific. In 
the first case it is hard to apply standards to specific problems 
because they are getting too complex (hundreds of elements), 
in the second case many competing standards arise. But 
standards – and this is their main benefit – fix semantics and 
syntax of data to a very high extend in a specification. 

A second approach towards the data integration issue is the 
provision of handwritten wrappers which perform integration 
tasks on their own. This kind of a solution is still widespread 
even scientists start to realize that these wrappers are only 
useful as long as the corresponding developers are still 
available. Wrappers also fix the syntax and semantics of data, 
but unlike standards syntax and especially semantics are not 
directly accessible because they are hard-coded into the 
application. Looking up the syntax is possible by examining 
data provided from the wrapper. But the meaning of data is still 
hidden. 

Both presented approaches work and provide some kind of 
a solution – however they share a common pitfall; the syntax 
and even more the semantics of data often depend on the 
application or the users‟ perception. Thus a method for data 
integration must provide the freedom of choosing one specific 
semantic and should not require the user to change standards or 
adapt wrappers permanently. 

It is widely recognized that ontologies play a central role in 
modern scientific applications [5] [6] since their use is 
considered a possible solution for semantic based integration 
[2] [7]. Nevertheless a clear methodology for setting up the 
data integration task (cf. Section 2.2) also plays a vital role 
since usability and adaptability are determined by it. 
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Fig. 1. POPM workflow model for the acquisition of sensor data within BayCEER Lab.

Workflow technology has also contributed a lot towards the 
integration of scientific data. In recent years many scientific 
workflow systems like Kepler [8], Taverna [9] and Triana [10] 
have come up with the capability to integrate scientific data 
based on ontologies. The lack of a clear method as well as the 
inability to separate integration steps from domain specific 
analysis steps (cf. Section 2.1) makes these systems hard to be 
utilized by a normal domain user. Data integration is 
implemented in these systems as an atomic step within a 
workflow – even though it can comprise very complex actions.  

The proposed system promises to offer an end-to-end 
solution (i.e. from data source to data sink) for the data 
management issues discussed above including powerful and 
real semantic data integration through the exploitation of 
ontologies. Furthermore, a well-structured methodology 
facilitates normal users to manage their specific data 
integration scenario in a better manner. The main contribution 
in this paper is to present the semantic integration feature of 
DaltOn system as well as the methodology for setting up 
integration tasks. 

The remainder of this contribution is structured as follows: 
Section 2 introduces the overall method which is already 
applied in several real-world use cases. Section 3 discusses the 
core algorithm of the semantic integration component of 
DaltOn together with its foundations. Section 4 relates the 
work to other approaches and Section 5 finally summarizes and 
concludes the contribution. 

II. METHOD AND ARCHITECTURE OF DALTON 

In the following sections a method for data integration 
within scientific workflows based on the DaltOn framework is 
presented. 

A. Overview and Motivating Scenario 

POPM (Perspective Oriented Process Modelling) [11] is a 
paradigm for modelling processes and/or workflows. Within 
the POPM paradigm, each modelling construct comprises 
several orthogonal building blocks, called perspectives. Thus, a 
modelling construct can be specified by defining different 

perspectives. There are five main perspectives (shown in Fig. 
1) that provide a strong foundation for a process modelling 
language. The Functional Perspective determines the existence 
and purpose of a process step. The Operational Perspective is 
used to specify the application, service or tool which is 
required during enactment of a work step. The Behavioral 
Perspective is a mean to determine the execution order of the 
work steps. The Organizational Perspective is used to 
introduce agents who are eligible or responsible for performing 
certain work steps. The Data Perspective identifies data items 
and their flow in a process. This latter perspective is of special 
interest since all data management related issues are contained 
within this perspective. 

i>PM [12] is a graphical tool built upon the POPM 
paradigm. It allows users to develop process / workflow 
models by specifying the above discussed perspectives 

A Motivating scenario is taken from meteorological 
research and is currently carried out by The Data Group of the 
Bayreuth Center of Ecology and Environmental Research [13]. 
The main purpose is to retrieve data from various sensor 
devices, store it at an intermediate place for archival and finally 
dump the data into a central database at the institute.  

Fig. 1 shows a POPM-based workflow model composed by 

a domain user for this scenario. The first two steps of the 

workflow describe the generation of sensor data either in the 

PWD (Present Weather Detector) or UA (Ultrasonic 

Anemometer) format depending on the actual sensor. Then 

these data are transmitted over a serial line to the archival step 

Archive DataFile which is describing the process of storing 

the sensor data in a file. After a successful data archival, data 

are usually stored in the central database called EcoDB within 

the Store Data work step. The work step Interpolation is 

optional and manipulates data whenever needed. For 

demonstrating the capabilities of the methodology, the main 

focus would be on the management of data as it occurs in 

between the two steps Archive DataFile and Store Data as 

shown in Fig. 1. 
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Fig. 2. Classification of work steps in a scientific workflow. 

Before storing data in the database, it needs to be passed 
through some preparation operations since the raw sensor data 
does not fit in the structure and semantics of the database – 
sensor devices generate data in their own proprietary formats 
(here “PWD” or “UA”) and also might use different 
interpretations. Thus the scenario poses many data 
management related issues: 

 Physical data transport from a source (here: file server) 
to a sink (here: database 

 Management of data formats (here PWD and AU 

 Validation of data: Sometimes files are truncated due to 
an interruption in the file transfer from a sensor to the 
file server. 

 Data filtering: This challenge belongs to the process of 
discarding unwanted values from data files during data 
transmission.  

 Data integration: This is a major challenge since data 
coming from various devices have completely assorted 
structures and give different data interpretations. 

Separation of workflow steps 

In Fig. 2, the upper layer (denoted as „AWSs‟) shows an 
extract of the workflow model of Fig. 1 including only the two 
work steps „Archive DataFile‟ and „Store Data‟. 

As stated in the previous section, several steps are needed 
in order to make the data of „Archive DataFile‟ compatible to 
‟Store Data‟. Hence, an application consists of two categories 
of work steps. First, steps which enact domain operations such 
as data acquisition, data analysis or data storage. Second, steps 
which are only used for data integration. Up to now these data 
related work steps were specified explicitly in the workflow, 
making it more complex. But separating the steps of a process 
into two categories assures the productivity of the scientific 
community since normal domain users (scientists) really do not 
desire to involve into data specific tasks. 

The first layer of the approach is called Application Work 
Steps (AWSs) layer and contains only those steps of the 

scientific workflow which are specific to the application but 
whose nature is not related to pure data management. 
Examples are „Archive DataFile‟ and „Store Data‟. The Data 
Logistic Work Steps (DLWSs) layer instead contains solely 
data preparation tasks (such as data integration and 
conversion). DLWSs are defined in terms of operations 
provided by DaltOn and incorporated into the scientific 
workflow instead of being explicitly modelled into it. Together 
both layers describe a (executable) scientific application. The 
AWSs layer can be controlled by a normal workflow 
management system (WfMS); the DaLo-WFs are – due to their 
nature – also controlled by a WfMS but the execution of these 
processes is heavily supported by the DaltOn framework. 

The data flow perspective of POPM directly corresponds 
with the definition of DaLo-WFs. It thus wraps up all data 
management functionality and provides means to define where 
data resides, where it must be transported to and how it is 
transformed within scientific workflows. 

B. A Methodology for Data Integration within Scientific 

Workflows 

The methodology is shown in Fig. 3. It is itself described 
by a process model. Together, this process describes how a 
scientific application consisting of AWSs and DLWSs has to 
be developed. Further, the method assigns clear 
responsibilities: the application workflow with the scientific 
analysis is defined by scientists (generally: the domain user) 
and the DaLo-WFs with data integration tasks are set up by 
data experts. A short description of each step of the process is 
given in the following. 

Define Application Process: The aim of this step is to 
define the domain application by developing a workflow which 
includes only domain specific work steps (as AWSs layer). 
Domain users, e.g. scientists, are responsible for enacting or at 
least for supervising the execution of this step. In general every 
workflow modelling tool can be used to describe an application 
process; however, i>PM [12] has been used in this work. In the 
example scenario, the output of this process step is the 
workflow model shown in Fig. 1. 

Archive DataFile Store Data

Data Extraction
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Data Conversion Data Preparation

Semantic IntegrationData Conversion
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Fig. 3. POPM process of the methodology for the definition of scientific applications. 

Define Semantics of Data: Data are described semantically 
by developing ontologies. Ontologies for the use case are 
shown in Section III. Both, domain users and data experts are 
responsible for this step. Domain users because only they can 
describe a common vocabulary and data experts because only 
they know specific details about applications, data sources and 
sinks. However, this step is optional since existing ontologies 
can be re-used. 

Specify IO Configuration: This step supports the generation 
of DaLo-WFs taking place in the next step of the methodology. 
The I/O specification may contain information about the exact 
location and type of data sources/sinks, a description of data 
formats for input and output data (for instance data schemata), 
an assignment of the previously defined local ontologies to 
steps, applications and agents and finally the definition of 
criteria applied during extraction and insertion of data. Table 1 
shows the specification of the „Weather Data‟ data container 
for the example scenario. 

Generate DaLo-WFs: In this step each data flow of the 
application process is transformed into single DaLo-WFs that 
specify single data integration tasks. A first version of a DaLo-
WF can automatically be derived by exploiting the 
specifications provided in the previous step. The DaLo-WF 
generation is supervised by a data expert and enacted by 
DaltOn functions. As an output, this step delivers an executable 
workflow containing both the AWSs and the DLWSs. 

Review DaLo-WFs and Modify DaLo-WFs: As stated 
earlier, the generated DaLo-WFs may not be sufficient for 

special integration scenarios. Therefore, the DaLo-WFs might 
have to be adjusted accordingly. Review and modification are 
again enacted by data experts. 

Execute Workflow: Finally, the workflow can be executed 
by a suitable execution environment [14] for a description of 
such an execution environment). Both types of steps, AWSs 
and DLWSs, are executed by the same environment. Involving 
human actors is possible for both types of steps since some 
applications might require the interaction of process and 
scientists. 

1.1 Architecture of the DaltOn Integration Framework 

The architecture of the DaltOn Integration Framework 
[15][16] follows the approach of separating concerns into 
single and independent functions. Thus, DaltOn has three 
major conceptual abstractions, namely Data Provision, Data 
Operation and Data Integration. 

Data Provision bundles components which are used for 
enacting physical data exchange between data sources (data 
producing steps) and data sinks (data consuming steps). Each 
of the sub-components of the Data Provision fulfils a specific 
task: Data Extraction and Selection (DES) cares about the 
extraction of a (sub-) set of data from a source based on user- 
and application-specific criteria, Data Transportation (DT) 
handles physical data transport and Data Insertion (DI) 
performs insertion of data. 

TABLE I. SPECIFICATION OF „WEATHER DATA‟ DATA CONTAINER 

Configuration Value 

 Source Sink 

Location <IP address>:<Path to the File> <DB Connect String> 

Format Pwd Xml 

Criteria Null Visibility=<2000 

Schema URI to Eco1.xsd (schema1) URI to Eco2.xsd (schema2) 

Local Ontology 
URI to LocOntoEco1.owl  

(local ontology1) 

URI to LocOntoEco2.owl  

(local ontology2) 

Mapping URI to mapEco1.rdf (mapping1) URI to mapEco2.rdf (mapping2) 

Reference Ontology URI to RefOntoEco.owl 

AWSs

Adjustment 
Required?

DLWSs

DLWSs (modified)

YES

NO

Start
Define Application 

Process

i>PM
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Define Semantic of Data

Protegé

Data Experts
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Fig. 4. Excerpt of instance data and schemas for both sides along with actual PWD dataset.

Data Operation encompasses Format Conversion (FC) and 
Data Preparation (DP); the FC sub-component is carrying out 
syntactic transformations of data, for instance the conversion of 
data given in CSV (comma separated values) into a XML 
representation and back. DP contains functions which can be 
applied to data such as unit conversions or simple arithmetic 
operations but is not meant to replace scientific analysis steps. 

Data Integration finally is the heart of the DaltOn system 
[17] that aims at the semantic integration of data. It comprises 
only one sub-component so far, the Semantic Integration (SI). 

Beside these main three abstractions, DaltOn is using 
wrappers for accessing data sources through a unified interface 
(but not for executing data integration tasks) and a RDF based 
(triple) data store as repository. 

 

Fig. 5. The architecture of the SI component 

III. SEMANTIC BASED INTEGRATION 

Schema mapping is a specification describing how data 
from a source schema can be mapped to a sink (or target) 
schema. This is usually considered an essential building block 
of data exchange and integration solutions. 

Schema mappings are usually discovered (semi-) 
automatically using a match operation that can either 
corresponds to a structure-based or a semantic-based approach. 
The feasibility of later approach is supported by the design of 
DLWSs which require that AWSs share a common domain of 
discourse.  In DaltOn, this aspect is represented with 
ontologies. A first issue is that several applications may 
interpret elements of the same domain differently. In such 
situations, an alignment between the different interpretations 
needs to be discovered. Based on discovered mappings, DaltOn 
solves related issues. One of these concerns is information 
integration. That is, the information expected from the source 
document does not correspond to the information the source is 
able to provide. Another important issue deals with missing or 
incomplete information in the source instance document. Both 
situations generally prevent the fulfilment of the generation of 
a source instance document. In order to pursue the integration, 
the paper proposes a solution based on the exploitation of a 
repository. The repository is a central place which stores and 
proposes query facilities to retrieve information related to the 
domain of discourse. 

The example scenario is interesting as it exploits an 
important set of functionalities available in the SI component, 
e.g. different kinds of mapping correspondences and repository 
exploitation. 

root records = (record)

elem record = (timeStamp, deviceCode, hardwareError, 

visibilityAlarm, visibility, NWSCode, 

PWCInstance, waterIntensity, …..)

elem timeStamp = xsd: string

elem deviceCode = xsd: int

elem hardwareError =xsd:int

elem visibilityAlarm = xsd:int

elem visibility = xsd:double

……..

root measurements = (measurement)

elem measurement = (timestamp, location, device, data)

elem location = (locationID, locationName)

elem device = (deviceID, deviceName) 

elem data= (compartmentID, charactersiticID, value, status, 

unitID)

elem timeStamp= xsd:string

elem locationID = xsd: int

elem locationName = xsd: string

elem deviceID = xsd: int

elem deviceName = xsd: string

…..

<records >

<record>

<timeStamp>01.03.2008 00:30:08</timeStamp>

<deviceCode>PW 1</deviceCode>

<hardwareError>1</hardwareError>

<visibilityAlarm>0</visibilityAlarm>

<visibility>902</visibility>

<NWSCode>R</NWSCode>

<PWCInstant>61</PWCInstant>

<PWCAt15Minutes>61</PWCAt15Minutes>

<PWCAtOneHour>62</PWCAtOneHour>

<waterIntensity>1.10</waterIntensity>

<cumulativeWater>89.77</cumulativeWater>

<cumulativeSnow>287</cumulativeSnow>

</record>

………..

</records>

<measurements>

<measurement>

<timeStamp>01.03.2008 00:30:08</timeStamp>

<location>

<locationID>6</locationID>

<locationName>Main Tower</locationName>

</location>

<device>

<deviceID>116363</deviceID>

<deviceName>Vaisala PWD11</deviceName>

</device>

<data>

<compartmentID>5</compartmentID>

<characteristicID>13</characteristicID>

<value>902</value>

<status>1</status>

<unitID>3</unitID>

</data>

<data>

…………………

b) Schema of PWD data (schema1) d) EcoDB Schema (schema2)

c) PWD data in XML (instance1) 
e) Transformed dataset (instance2)

01.03.2008 00:30:08;PW 1;0;0;902;626;R-;61;61;62;1.10;89.77;287

29.02.2008 04:40:08;PW 1;0;0;2000;2000;C;0;0;0;0.00;86.40;287

29.02.2008 21:20:04;PW 1;0;0;2000;2000;R-;61;81;81;0.24;87.20;287

a) PWD Dataset
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A. Basic Notions 

Basically Ontologies are used to represent the knowledge 
of a domain in a common way, enabling these to be shared 
among machines and human beings [18]. Thus, an ontology 
consists of concepts with relationships between them, which 
provides a common vocabulary for knowledge to be exchanged 
between machines and human beings. In order to support 
reasoning within ontologies, a logical formalism is used, such 
as Description Logics (DL) [19], as a mean to represent 
ontologies. This family of formalisms allows the representation 
and reasoning over domain knowledge in a formally and well-
understood way. Central DL notions are concepts (unary 
predicates) and relationships, also called properties or roles 
(binary predicates). A key notion in DL is the separation of the 
terminological (or intensional) knowledge, called TBox, from 
the assertional (or extensional) knowledge, called ABox. The 
TBox contains the descriptions of concepts and their 
relationships in the following form: 

Device⊑∀situatedAt.Location⊓ 

∃situatedAt.Location⊓ 

∀hasDeviceName.String⊓ 

∃hasDeviceName.String 

This description states that the Device concept is defined as 
being situated in at least one location, and locations only, and 
has at least one name which must be string of characters (in an 
OWL serialization this is supported by XML Schema data 
types). In contrast, ABoxes contain assertions of concepts and 
their roles in the following form: 

 
These assertions state that objects with identifiers 

„device_116366‟ and „location_3‟ are instances of respectively 
the 'Device' and 'Location' concepts. These two objects are 
related by the 'situatedAt' object property. Finally, the 
„device_116366‟ object is related to the value „Vaisala QLi50 
2‟ via the „hasDeviceName‟ data type property. 

A TBox and an ABox together denote a Knowledge Base 
(KB), denoted as KB = < TBox, ABox >. 

B. DaltOn SI Component Architecture 

The main objective of SI is to generate a valid input 
document for the target step of an Application Workflow. The 
Fig. 5 presents the details of this component's architecture. This 
architecture is based on the set of documents each DaLo-WF 
application can access. This set comprises four kinds of 
documents: 

1) An instance document which corresponds to the output 

document of Application1 (produced by the source step), 

respectively the input document of Application2 (consumed 

by the sink step). 

2) A schema associated to each instance document. 

3) A mapping between elements of the schema to 

elements of a local ontology.  

4) A local ontology which supports the particular 

interpretation of each concept in an application. 

 
Fig. 6. Concepts and roles of the reference ontology in the meteorological example.

Device(device_116366),  

Location(location_3), 

hasDeviceName(device_116366, 

 “Vaisala QLi50 2”) 

situatedAt(device_116366, location_3)* 
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The upper part of Fig. 5 emphasizes two other components: 

1) A reference ontology which provides a common 

vocabulary to the local ontology. This approach makes the 

local ontologies comparable and enables to process matches 

between concepts. 

2) The repository is responsible for the storage of the 

knowledge bases associated to the application domain. It also 

stores the mappings that are being discovered by the matching 

solution. 
The role of an application instance and schema document is 

obvious in the context of a DaLo-WF. They are usually created 
by the application developer and come at no extra cost. These 
documents are expressed in XML and XML Schema 
(henceforth XSD) respectively. Fig. 4 presents an extract from 
instance1, instance2, schema1 and schema2. 

The mappings, ontologies and ABox assertions contained 
in the repository impose extra work from the application 
designers. Nevertheless, the task of developing these 
documents is limited due to the following: (i) generation of a 
single reference ontology is generally sufficient, (ii) reuse of 
local ontologies among several DaLo-WFs is generally 
possible, (iii) low expressivity of the reference ontology, (iv) 
use of adapted tools which simplify the creation of these 
documents. 

Concerning aspects (i) and (ii), as per experiences in using 
DaltOn in medicine, biological and ecological domains 
emphasize that usually one unique reference ontology is 
sufficient for all DaLo-WFs of an application. The design of 
this reference ontology can be facilitated by exploiting existing 
domain ontologies. The reference ontology does not need all 
the expressiveness proposed by some well-known ontologies in 
scientific domains. 

Concerning (iii), the expressive power of the local and 
reference ontologies are not the same. The reference ontology 
provides a common vocabulary on the domain of discourse. 
This common vocabulary enables schema mapping to be 
generated. Fig. 6 presents a graph of the reference ontology in 

the meteorological use case, developed using Protégé tool [25]. 
This graph presents concepts as nodes, roles as labeled edges. 
For readability reasons, subsumption relationships are not 
depicted. 

A local ontology implements the local interpretation to the 
concepts of the reference ontology and also provides the way 
to include new concepts defined with respect to the concepts 
and roles of the reference ontology. Example 1 presents an 
extract of the concept definitions of local ontology1 in the 
meteorological use case. 

Example 1 Concept definitions of local ontology1 

 
Concerning (iv), the design of the different ontologies 

(reference and local ones) as well as the generation of reference 
ontology concept and role assertions, stored in the repository, 
are facilitated by the use of a Protégé plug-in named DBOM 
[20], [21]. This plug-in eases the creation of knowledge bases 
expressed in DL from relational databases. For instance, in the 
meteorological use case, the meteorologists provided us with 
databases containing domain specific information about 
location of sensors, devices, units used by these devices, etc. 
Using the DBOM plug-in the system is able to create a 
reference ontology serialized in OWL and at the same time to 
generate a valid ABox which was later integrated in the 
repository. 

 
Fig. 7. Excerpt of the graph of mapping1 in use case.

mappedToProperty

Schema1_record

loc1Eco_PresentWeatherData

mappedToConcept

Schema1_deviceCode

refEco_Device

mappedToConcept

refEco_hasDeviceCode

mappedToProperty

Schema1_cumulativeSnow

refEco_Characteristic

mappedToConcept

refEco_hasValue

refEco_Characteristic3

mappedToInstance

loc1.HardwareErrorCode ⊑ Status 
loc1.TimeStamp ≡ TimeStamp 
loc1.PresentWeatherData ⊑ SensorData 
loc1.SensorData ⊑ Data ⊓ 
 ∀recordedAt.TimeStamp ⊓  
∃recordedAt.TimeStamp   
⊓ ∀collectedThrough.Sensor ⊓ 
∃collectedThrough.Sensor  

⊓ ∀hasStatus.Status ⊓ ∃hasStatus.Status 
loc1.CumulativeSnow ⊑ Characteristic 
loc1.Status ≡ Status 
loc1.NWS ≡ NWS 
loc1.Sensor ≡ Sensor 
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C. Schema to Ontology Mapping 

The mapping relates elements from schema1 (respectively 
schema2) to concepts and roles of local ontology1 (resp. 
ontology2). A schema mapping is generally represented as a 
triple consisting of a schema, a local ontology, and a mapping 
specifying relationships between them. The system uses this 
representation and restricts the set of mapping relationships to: 

 a mapping to an ontology concept (denoted 
'mappedToConcept') 

 a mapping to an ontology role (denoted 
'mappedToRole') 

 a mapping to a concept instance which is stored in the 
repository (denoted 'mappedToIndividual'). 

The syntax of the mapping solution is restricted such that 
not all combinations of the mapping relationships are accepted. 
The restrictions and their associated semantics are 
characterized in Table 2. 

The simplest abstraction of an XML document is a labeled 
ordered tree, possibly with data values associated to the leaves. 
But for the mapping approach, the system takes advantage of 
the object model view which can also be applied to an XML 
document. Starting from this view, the system assumes that any 
XML element is at least mapped to a DL concept or DL 
individual. This first assumption enables the system to disallow 
the mapping #1 and #3 which do not inform about an 
associated DL concept nor DL individual. The purpose of 
mapping #4 is to inform the system about the absence of 
mapping for a given XML element. In fact, this most 
effectively and rapidly performed by users by omitting such a 
mapping for this element. 

In cases where an XML element is not empty, i.e. it 
contains a data value, it is necessary to map it to a DL property. 
This is the case of mapping #5, #7 and #8 in Table 2 Mapping 
#8 is a specialization of mapping #5 where extra information 
about an associated concept individual is provided. Mapping 
#7 can be viewed as being equivalent to #8 where the type 
instance is not specified. In cases of an empty XML element, 
no DL property needs to be attached to the mapping. Hence, it 
corresponds to mappings #2 or #6. The latter being a 
specialization of the former where extra information about a 
DL concept instance is provided. 

 Finally mapping #4 is considered as a shortcut of mapping 
#6 where the DL concept is omitted. This kind of mapping is 
supported if the processing of the DL realization reasoning 
procedure, i.e. providing the most specific concept an 
individual is an instance of, returns a single concept. Thus there 
cannot be any ambiguities about the type of this individual. 
Fig. 7 displays an extract of a graph representing the mapping 
between the schema and the local ontology associated to 
application1 in the meteorological use case. In this figure, 
relations start from the XML element of a given schema 
(pattern is “schemaName_elementName”) and points to an 
ontology element, i.e. concept, property or individual, of a 
given ontology (pattern is “ontologyName_elementName”).   

This figure emphasizes mappings related to mapping #2, #5 
and #8 of Table 2. For instance, the mapping of the 'record' 
XML element, which is empty and root of the document, is 
mapped, via 'mappedToConcept' to the 'PresentWeatherData' 
DL concept.  The 'deviceCode' XML element is non-empty and 
mapped to the 'Device' DL concept and its 'hasDeviceCode' 
property. Finally the 'cumulativeSnow' element, again a non-
empty element, is mapped to a concept ('Characteristic'), a 
property ('hasValue') and a individual ('characteristic/3'). In 
order to explain the integration methodology and present the 
matching issues, it is necessary to present the mapping 
associated to application2 as well (Fig. 8). Notably, only two 
elements are mapped to a DL concept: 'measurement', the root 
element of schema2 and 'data', an empty and nesting element. 
All other elements are mapped to DL concepts and properties. 
Finally, the mapping language is the same for the output and 
input applications of a DaLo-WF. 

D. Methodology and Heuristics 

Generating the input document of a DaLo-WF's 
Application2 is a multi-step process. These steps correspond to 
(i) matching the local ontologies, (ii) matching the (XML) 
schemata and (iii) generating the target instance document. 

Matching local ontologies 
This matching step searches for correspondences between 

the DL concepts of both local ontologies. This operation is 
supported by the existence of a common vocabulary, the 
reference ontology. In order to discover as many matches as 
possible, two techniques are considered to find 
correspondences:  DL-based and navigation-based mappings. 

TABLE II. MAPPING POSSIBILITIES IN SI 

# 
mappedTo 

Concept 

mappedTo 

Role 

mappedTo 

Individual 
Semantics 

1    Not accepted 

2 X   Empty XML element is mapped to an ontology concept 

3  X  Not accepted 

4   X Equivalence to a concept instance 

5 X X  Non empty XML element is mapped to a concept and a role 

6 X  X 
Empty XML element is mapped to an ontology concept and an 

individual 

7  X X Not empty XML element mapped to a role and a concept instance 

8 X X X 
Non empty XML element is mapped to a concept and role as well as a 

concept instance 
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The DL-based approach is performed using a DL reasoner 
and particularly its concept subsumption inference procedure. 

In the navigation-based approach, an ontology is taken in 
terms of a directed acyclic graph where nodes correspond to 
DL concepts and the edges correspond to DL properties. 
Basically, it searches for navigation paths between two 
concepts. This is performed by exploiting the (SPARQL) query 
facilities of the (triple store) repository. The navigation-based 
approach also exploits a DL reasoner with its concept 
subsumption, instance checking and realization inference 
procedures.  This approach is non-deterministic and may return 
several different paths. So it is important for the algorithm to 
qualify paths and to select the most appropriate one. This 
qualification is based on several factors: the length (L) of each 
path (i.e. the number of properties along a path) and the 
characteristics of the properties used along a path, i.e. 
functionality, inverse functionality. 

As the implementation formalizes ontologies using 
decidable species of OWL, i.e. OWL Lite and OWL DL, it is 
possible to distinguish properties based on their functional 
characteristics. As a functional property, denoted as „prop‟, is 
defined as: 

x, y1, y2 | ∃prop(x, y1) ∩  

∃prop(x, y2) ⟹ y1 = y2 

The decidability issue of DL reasoning tasks is a main 
concern in the solution. For this reason, inverse functional 
properties are not considered, which are supported in OWL, 
but are only associated to decidable inferences for object 
properties. Thus inverse functional properties on data type 
properties yield an OWL Full ontology which is not decidable.  

The system distinguishes between several navigation 
approaches: 

 L=1 and the property is functional: 
'functionalNavigation'. 

 L=1 and the property is not functional: 
'nonFunctionalNavigation'. 

 L>1: 'pathNavigation'. 

The match operator applied in the DaLo context is able to 
find several correspondences, usually belonging to the two 
presented categories, between a given pair of DL concepts. In 
order to deal with this issue, the system propose a heuristic to 
select a preferred correspondence. This heuristic is based on a 
total order of the DL-based and navigation-based categories. 

Definition: For a given pair of DL concepts C1 and C2, 
respectively from local ontologies 1 and 2, if a set of 
correspondences are found between these two concepts: the 
system knows that there must be at most one DL-based 
correspondence between C1 and C2 but several navigation-
based mappings can coexist with it. For this reason, the system 
ranks the navigation-based correspondences according to a 
preference total order: functional Navigation > non-functional 
Navigation > path Navigation. 

Concerning navigation-based relationships, setting a 
property to be functional is an important commitment for the 
knowledge engineer. The system thus considers that a 
functionalNavigation is preferred to a 
nonFunctionalNavigation. Finally the system considers that 
navigation with a single edge is more trustable than a path 
made of several edges. 

 

Fig. 8. Excerpt of the graph of mapping2 in the use case.

Schema2_measurement

loc1Eco_Data

mappedToConcept
Schema2_device

refEco_Device

mappedToConcept

refEco_hasDeviceName

mappedToProperty

Schema2_deviceName

mappedToConcept

Schema2_location

loc2Eco_Location

mappedToConcept

refEco_hashasLoctionID

mappedToProperty

Schema2_locationID

mappedToConcept

Schema2_data

loc2Eco_Data refEco_hasValue

mappedToProperty

Schema2_value

mappedToConcept

Schema2_charasteristicID

loc2Eco_Characteristic

mappedToConcept

refEco_hasCharacteristicID

mappedToProperty

Schema2_unitID

loc2Eco_Unit

mappedToConcept

refEco_hasUnitID

mappedToProperty



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No.7, 2017 

323 | P a g e  

www.ijacsa.thesai.org 

Thus the system obtains a partial order on the total set of 
discovered correspondences. On the use cases which are 
implemented with DaltOn so far, a heuristic has been added, 
stating that functionalNavigation is preferred to concept 
generalization which is preferred to nonFunctionalNavigation, 
thus obtaining a total order on correspondence preferences: 
concept equivalence > concept specialization > 
functionalNavigation > concept generalization > 
nonFunctionalNavigation > pathNavigation. 

Other heuristics could also be applied, e.g. generalization > 
functionalNavigation, and SI supports the definition of specific 
preference orders. 

Matching schemata 

The purpose of this step is to discover mappings between 
Schema1 and Schema2 from the mappings discovered in the 
previous step, i.e. between local ontology1 and Local 
ontology2 [Fig. 5]. This step can be easily performed using the 
schema to ontology mapping, i.e. from schema 1 to local 
ontology 1, respectively schema 2 and local ontology 2. 

Finally, due to the dual matching solution (logic-based and 
navigational-based), the accuracy of data stored in the 
repository and the possibilities to adjust heuristics. These false 
matches generally occur when local ontologies are modified 
due to replacement or configuration modifications at the 
sensors. In these cases, the adjustments need to be performed 
on the local ontologies and, possibly in non-monotonicity 
situations of the local ontologies, to the reference ontology 
[Fig. 6]. 

Target instance generation 

Starting from these mappings, it is possible to consider the 
generation of data values for (non-empty) target elements. For 
navigation-based correspondences, the processing is relatively 
obvious as it is sufficient to follow the selected paths between 
two concepts. This navigation is performed starting from a 
specific node of the ontology graph. For instance, in the case of 
the location sink element, the mapped source element is 
'deviceCode' and the 'hasDeviceCode' DL property (Fig. 7). 
For a given source instance which has 'PW1' as a value for 
'deviceCode', SI will use methods of reference reconciliation 
[22] to identify the associated graph node. Starting from this 
node, it is possible to follow the path to the searched value. 

For DL-based correspondences, it is required to inspect the 
DL properties associated to each mapping in order to detect 
possible transformations. For instance in Table 3, the sink 
element 'deviceName' is related, via Concept equivalence, to 
the 'deviceCode'. But the 'deviceCode' element is mapped to 
the property 'hasDeviceCode' (Fig. 7) while 'deviceName' is 
mapped to 'hasDeviceName'. Thus a transformation needs to be 
performed. 

A final step consists in enabling the integration of data 
from application1's instance onto application2's instance 

document. Different forms of mappings are available, e.g. 
relational queries, relational view definitions, XQuery queries 
or XSLT transformations, to perform this task. The system 
opted for XSLT transformation since it does not need the 
expressiveness and complexity of relation queries and views. 

By selecting XSLT, the system also benefits from 
procedural attachment possibilities when performing 
transformations. That is SI includes a set of procedures, 
developed in the Java language, to enable the retrieval of 
values stored in the repository at runtime. Most of these 
procedures generate, from predefined templates, SPARQL 
queries and execute them on the repository's ABox. 

IV. RELATED WORK 

Kepler [8] is an open-source scientific workflow system 

which is evolved from Ptolemy system [23]. Kepler‟s data 

integration approach is based on a semantic mediation system 

and utilizes the automated integration services from a 

middleware called SEEK [4]. SEEK exploits ontological 

information to support structural data transformation for 

scientific workflow composition. The prerequisite of the 

system is to define the structural and semantic type of input 

and output ports of actors and services they represent. A user 

then defines registration mappings to associate contextual 

paths on the ontologies to data objects generated in response 

to the queries on the service input/output, named ports. Then 

these input and output registration mapping rules are 

composed to construct correspondence mappings between 

structural types of the source and those of the target; DaltOn‟s 

SI implementation also generates correspondence mappings 

and stores them for future use as well. The approaches of 

Kepler and DaltOn are quite similar as they both aim at 

transforming data semantically based on a semantic mediation 

system. Although the objectives are almost identical, the 

design of the solution is different as Kepler does not use the 

semantic of the ontologies to generate mappings. Another 

notable difference between Kepler and DaltOn is that SEEK 

does not consider format conversion (syntax incompatibility) 

and data transportation implicitly – which is beneficial for the 

normal scientific user.  

Triana [10][24] is a workflow-based, graphical problem 

solving environment. Like Kepler, Triana also provides a rich 

library of pre-configured and built-in tools. As far as semantic 

integration is concerned, unlike Kepler, Triana does not 

support semantic data integration. In Triana, domain users 

need some pre-developed tools which can perform schema 

transformation, generate mappings and correspondences and 

finally integrate data. Also the users need to know how such 

tools are developed, how these tools are used and in which 

sequence they must be applied. With the approach, a standard 

schema (DaLo-WF) is provided must fits most use cases but 

which can be adjusted in case it does not fit the requirements 

of an application. 
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TABLE III. MAPPING POSSIBILITIES IN SI 

Elements of XSD1 Elements of XSD2 Preferred correspondence 

record measurement Concept specialization 

deviceCode device 

 
deviceName 

 

location 
 

locationID 

Concept equivalence 

 
Concept equivalence 

 

nonFunctionalNavigation 
 

nonFunctionalNavigation 

 
cumulativeSnow 

 
data 

 

value 
 

characteristicID 

 
unitID 

 
Concept generalization 

 

Concept generalization 
 

Concept generalization 

 
nonFunctionalNavigation 

Taverna [9], a scientific workflow management system, is 
part of the myGrid project. In order to convert data formats, 
Taverna provides “Shims”, which are used as web services. 
DaltOn differs from Taverna in the way that it handles format 
conversions (syntactical conversions) dynamically. In Taverna, 
the domain user required some sort of specialized services that 
convert schemas and performs mappings as well. DaltOn 
instead provides a transparent way to deal with semantic 
integration issues. 

V. CONCLUSION 

This contribution discussed in detail a method for 
developing scientific applications. One of the main messages is 
that separation of concerns can help to ease handling complex 
application scenarios as they often occur in scientific domains. 
This is achieved by applying POPM which already introduces a 
separation of concerns and by further separating data 
integration tasks from domain related tasks. Thus the 
readability of a process is increased and domain users can 
focus on their expertise – the scientific analysis.  

The other main contribution is an ontology based data 
integration framework called DaltOn; instead of fixing 
transformation semantics in code, it is specified as a mapping 
between ontologies. Since data transformation is specified on a 
conceptual level, changing and adjusting these transformations 
whenever schemas or ontologies evolve is rather easy. 
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