
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

314 | P a g e

www.ijacsa.thesai.org

Semantic based Data Integration in Scientific

Workflows

M. Abdul Rehman, Jamil Ahmed, Ahmed Waqas, Ajmal Sawand

Department of Computer Science, Sukkur IBA University

Sukkur, Pakistan

Abstract—Data Integration has become the most prominent

aspect of data management applications, especially in scientific

domains like ecology, biology, and geosciences. Today’s complex

scientific applications and the rise of diverse data generating

devices in scientific domains (e.g. sensors) have made data

integration a challenging task. In response to these types of

challenges, data management applications are providing ground-

breaking functionalities which come at the price of high

complexity. This paper presents a semantic data integration

framework which is based on the exploitation of ontologies.

Exploiting a Description Logics formalism and associated

reasoning procedures, the framework is able the handle

heterogeneous formats and different semantics. Besides an in-

depth discussion of the ontology-based integration capability, the

paper also discusses a brief overview of the system architecture

and its application in a real world scenario taken from ecological

research.

Keywords—Data integration; scientific workflows; ontology;

data semantics; data management

I. INTRODUCTION

In order to understand complex scientific scenarios such as
the world climate or the impact of the decreasing number of
one species on others [1] lots of data are required. These data
are usually not coming from one institution only but from
many heterogeneous sources that need to be integrated [2].
Indeed the problem is not the availability of data but how to
relate and interpret data correctly. The rise of data generating
devices in scientific applications such as sensor networks has
also made integration tasks more challenging. These sensors
produce streams of unstructured raw data at different temporal
and spatial granularities. Thus, before being used in any
climatic application, these data need to undergo several
processing steps of transformation and integration since such
datasets are highly heterogeneous in terms of format, syntax,
structure and semantics.

In such type of scenarios, besides a powerful semantic data
integration capability, integration systems must provide
comprehensive data management solutions that handle assorted
formats and cares about data structures when data flow from a
source to a sink. Furthermore besides the detection and
resolution of conventional semantic conflicts [3] these systems
must deal with issues like:

 Information transformation – Based on discovered
mappings, information expected by the sink does not
correspond to the information provided by the source.
For instance, the source stores a deviceId while the sink

requires deviceName; then these data must be
transformed such that the same information is dealt with
by both source and sink.

 Missing and incomplete data – when the target requires
information which is not available in the source. For
instance the source contains only a deviceId whereas the
target also expects information about the location of
that device (locationId, locationName).

The integration of data is often implemented in two ways
which are sometimes overlapping. First, the use of standards is
facilitated. Examples of such standards are the ABCD schema
(Access to Biological Collection Data, [1]), the SEEK
observation ontology [4], and biomedical ontologies [5]. A
common pitfall of standards lies in the standardization process
itself. Many stakeholders try to reflect their interests which can
either cause the standard to be very general or very specific. In
the first case it is hard to apply standards to specific problems
because they are getting too complex (hundreds of elements),
in the second case many competing standards arise. But
standards – and this is their main benefit – fix semantics and
syntax of data to a very high extend in a specification.

A second approach towards the data integration issue is the
provision of handwritten wrappers which perform integration
tasks on their own. This kind of a solution is still widespread
even scientists start to realize that these wrappers are only
useful as long as the corresponding developers are still
available. Wrappers also fix the syntax and semantics of data,
but unlike standards syntax and especially semantics are not
directly accessible because they are hard-coded into the
application. Looking up the syntax is possible by examining
data provided from the wrapper. But the meaning of data is still
hidden.

Both presented approaches work and provide some kind of
a solution – however they share a common pitfall; the syntax
and even more the semantics of data often depend on the
application or the users‟ perception. Thus a method for data
integration must provide the freedom of choosing one specific
semantic and should not require the user to change standards or
adapt wrappers permanently.

It is widely recognized that ontologies play a central role in
modern scientific applications [5] [6] since their use is
considered a possible solution for semantic based integration
[2] [7]. Nevertheless a clear methodology for setting up the
data integration task (cf. Section 2.2) also plays a vital role
since usability and adaptability are determined by it.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

315 | P a g e

www.ijacsa.thesai.org

Fig. 1. POPM workflow model for the acquisition of sensor data within BayCEER Lab.

Workflow technology has also contributed a lot towards the
integration of scientific data. In recent years many scientific
workflow systems like Kepler [8], Taverna [9] and Triana [10]
have come up with the capability to integrate scientific data
based on ontologies. The lack of a clear method as well as the
inability to separate integration steps from domain specific
analysis steps (cf. Section 2.1) makes these systems hard to be
utilized by a normal domain user. Data integration is
implemented in these systems as an atomic step within a
workflow – even though it can comprise very complex actions.

The proposed system promises to offer an end-to-end
solution (i.e. from data source to data sink) for the data
management issues discussed above including powerful and
real semantic data integration through the exploitation of
ontologies. Furthermore, a well-structured methodology
facilitates normal users to manage their specific data
integration scenario in a better manner. The main contribution
in this paper is to present the semantic integration feature of
DaltOn system as well as the methodology for setting up
integration tasks.

The remainder of this contribution is structured as follows:
Section 2 introduces the overall method which is already
applied in several real-world use cases. Section 3 discusses the
core algorithm of the semantic integration component of
DaltOn together with its foundations. Section 4 relates the
work to other approaches and Section 5 finally summarizes and
concludes the contribution.

II. METHOD AND ARCHITECTURE OF DALTON

In the following sections a method for data integration
within scientific workflows based on the DaltOn framework is
presented.

A. Overview and Motivating Scenario

POPM (Perspective Oriented Process Modelling) [11] is a
paradigm for modelling processes and/or workflows. Within
the POPM paradigm, each modelling construct comprises
several orthogonal building blocks, called perspectives. Thus, a
modelling construct can be specified by defining different

perspectives. There are five main perspectives (shown in Fig.
1) that provide a strong foundation for a process modelling
language. The Functional Perspective determines the existence
and purpose of a process step. The Operational Perspective is
used to specify the application, service or tool which is
required during enactment of a work step. The Behavioral
Perspective is a mean to determine the execution order of the
work steps. The Organizational Perspective is used to
introduce agents who are eligible or responsible for performing
certain work steps. The Data Perspective identifies data items
and their flow in a process. This latter perspective is of special
interest since all data management related issues are contained
within this perspective.

i>PM [12] is a graphical tool built upon the POPM
paradigm. It allows users to develop process / workflow
models by specifying the above discussed perspectives

A Motivating scenario is taken from meteorological
research and is currently carried out by The Data Group of the
Bayreuth Center of Ecology and Environmental Research [13].
The main purpose is to retrieve data from various sensor
devices, store it at an intermediate place for archival and finally
dump the data into a central database at the institute.

Fig. 1 shows a POPM-based workflow model composed by

a domain user for this scenario. The first two steps of the

workflow describe the generation of sensor data either in the

PWD (Present Weather Detector) or UA (Ultrasonic

Anemometer) format depending on the actual sensor. Then

these data are transmitted over a serial line to the archival step

Archive DataFile which is describing the process of storing

the sensor data in a file. After a successful data archival, data

are usually stored in the central database called EcoDB within

the Store Data work step. The work step Interpolation is

optional and manipulates data whenever needed. For

demonstrating the capabilities of the methodology, the main

focus would be on the management of data as it occurs in

between the two steps Archive DataFile and Store Data as

shown in Fig. 1.

Operational Perspective

Data Perspective

Behavioral Perspective

Functional Perspective

Store Data

Generate UA Data

Ultrasonic

Anemometer

PC005

PC005

btn4kj btn4kj

btn4nv13

Organizational Perspective

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

316 | P a g e

www.ijacsa.thesai.org

Fig. 2. Classification of work steps in a scientific workflow.

Before storing data in the database, it needs to be passed
through some preparation operations since the raw sensor data
does not fit in the structure and semantics of the database –
sensor devices generate data in their own proprietary formats
(here “PWD” or “UA”) and also might use different
interpretations. Thus the scenario poses many data
management related issues:

 Physical data transport from a source (here: file server)
to a sink (here: database

 Management of data formats (here PWD and AU

 Validation of data: Sometimes files are truncated due to
an interruption in the file transfer from a sensor to the
file server.

 Data filtering: This challenge belongs to the process of
discarding unwanted values from data files during data
transmission.

 Data integration: This is a major challenge since data
coming from various devices have completely assorted
structures and give different data interpretations.

Separation of workflow steps

In Fig. 2, the upper layer (denoted as „AWSs‟) shows an
extract of the workflow model of Fig. 1 including only the two
work steps „Archive DataFile‟ and „Store Data‟.

As stated in the previous section, several steps are needed
in order to make the data of „Archive DataFile‟ compatible to
‟Store Data‟. Hence, an application consists of two categories
of work steps. First, steps which enact domain operations such
as data acquisition, data analysis or data storage. Second, steps
which are only used for data integration. Up to now these data
related work steps were specified explicitly in the workflow,
making it more complex. But separating the steps of a process
into two categories assures the productivity of the scientific
community since normal domain users (scientists) really do not
desire to involve into data specific tasks.

The first layer of the approach is called Application Work
Steps (AWSs) layer and contains only those steps of the

scientific workflow which are specific to the application but
whose nature is not related to pure data management.
Examples are „Archive DataFile‟ and „Store Data‟. The Data
Logistic Work Steps (DLWSs) layer instead contains solely
data preparation tasks (such as data integration and
conversion). DLWSs are defined in terms of operations
provided by DaltOn and incorporated into the scientific
workflow instead of being explicitly modelled into it. Together
both layers describe a (executable) scientific application. The
AWSs layer can be controlled by a normal workflow
management system (WfMS); the DaLo-WFs are – due to their
nature – also controlled by a WfMS but the execution of these
processes is heavily supported by the DaltOn framework.

The data flow perspective of POPM directly corresponds
with the definition of DaLo-WFs. It thus wraps up all data
management functionality and provides means to define where
data resides, where it must be transported to and how it is
transformed within scientific workflows.

B. A Methodology for Data Integration within Scientific

Workflows

The methodology is shown in Fig. 3. It is itself described
by a process model. Together, this process describes how a
scientific application consisting of AWSs and DLWSs has to
be developed. Further, the method assigns clear
responsibilities: the application workflow with the scientific
analysis is defined by scientists (generally: the domain user)
and the DaLo-WFs with data integration tasks are set up by
data experts. A short description of each step of the process is
given in the following.

Define Application Process: The aim of this step is to
define the domain application by developing a workflow which
includes only domain specific work steps (as AWSs layer).
Domain users, e.g. scientists, are responsible for enacting or at
least for supervising the execution of this step. In general every
workflow modelling tool can be used to describe an application
process; however, i>PM [12] has been used in this work. In the
example scenario, the output of this process step is the
workflow model shown in Fig. 1.

Archive DataFile Store Data

Data Extraction

AWSs

DLWSs

Weather Data

Data Conversion Data Preparation

Semantic IntegrationData Conversion

Data Perspective

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

317 | P a g e

www.ijacsa.thesai.org

Fig. 3. POPM process of the methodology for the definition of scientific applications.

Define Semantics of Data: Data are described semantically
by developing ontologies. Ontologies for the use case are
shown in Section III. Both, domain users and data experts are
responsible for this step. Domain users because only they can
describe a common vocabulary and data experts because only
they know specific details about applications, data sources and
sinks. However, this step is optional since existing ontologies
can be re-used.

Specify IO Configuration: This step supports the generation
of DaLo-WFs taking place in the next step of the methodology.
The I/O specification may contain information about the exact
location and type of data sources/sinks, a description of data
formats for input and output data (for instance data schemata),
an assignment of the previously defined local ontologies to
steps, applications and agents and finally the definition of
criteria applied during extraction and insertion of data. Table 1
shows the specification of the „Weather Data‟ data container
for the example scenario.

Generate DaLo-WFs: In this step each data flow of the
application process is transformed into single DaLo-WFs that
specify single data integration tasks. A first version of a DaLo-
WF can automatically be derived by exploiting the
specifications provided in the previous step. The DaLo-WF
generation is supervised by a data expert and enacted by
DaltOn functions. As an output, this step delivers an executable
workflow containing both the AWSs and the DLWSs.

Review DaLo-WFs and Modify DaLo-WFs: As stated
earlier, the generated DaLo-WFs may not be sufficient for

special integration scenarios. Therefore, the DaLo-WFs might
have to be adjusted accordingly. Review and modification are
again enacted by data experts.

Execute Workflow: Finally, the workflow can be executed
by a suitable execution environment [14] for a description of
such an execution environment). Both types of steps, AWSs
and DLWSs, are executed by the same environment. Involving
human actors is possible for both types of steps since some
applications might require the interaction of process and
scientists.

1.1 Architecture of the DaltOn Integration Framework

The architecture of the DaltOn Integration Framework
[15][16] follows the approach of separating concerns into
single and independent functions. Thus, DaltOn has three
major conceptual abstractions, namely Data Provision, Data
Operation and Data Integration.

Data Provision bundles components which are used for
enacting physical data exchange between data sources (data
producing steps) and data sinks (data consuming steps). Each
of the sub-components of the Data Provision fulfils a specific
task: Data Extraction and Selection (DES) cares about the
extraction of a (sub-) set of data from a source based on user-
and application-specific criteria, Data Transportation (DT)
handles physical data transport and Data Insertion (DI)
performs insertion of data.

TABLE I. SPECIFICATION OF „WEATHER DATA‟ DATA CONTAINER

Configuration Value

 Source Sink

Location <IP address>:<Path to the File> <DB Connect String>

Format Pwd Xml

Criteria Null Visibility=<2000

Schema URI to Eco1.xsd (schema1) URI to Eco2.xsd (schema2)

Local Ontology
URI to LocOntoEco1.owl

(local ontology1)

URI to LocOntoEco2.owl

(local ontology2)

Mapping URI to mapEco1.rdf (mapping1) URI to mapEco2.rdf (mapping2)

Reference Ontology URI to RefOntoEco.owl

AWSs

Adjustment
Required?

DLWSs

DLWSs (modified)

YES

NO

Start
Define Application

Process

i>PM

Scientist

Define Semantic of Data

Protegé

Data Experts

AWSs

Semantic Data

AWSs

Semantic Data

IO Config. Data

AWSs

Semantic Data

IO Config. Data

DLWSs

Specify IO
Configuration

i>PM

Scientist

Generate DaLo-WFs

DaltOn

Review DaLo
Workflow

i>PM

Data Experts

Modify DaLo Wf

i>PM

Data Experts

End
AWSs

Semantic Data

IO Config. Data

DLWSs

Execute Workflow

i>PE

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

318 | P a g e

www.ijacsa.thesai.org

Fig. 4. Excerpt of instance data and schemas for both sides along with actual PWD dataset.

Data Operation encompasses Format Conversion (FC) and
Data Preparation (DP); the FC sub-component is carrying out
syntactic transformations of data, for instance the conversion of
data given in CSV (comma separated values) into a XML
representation and back. DP contains functions which can be
applied to data such as unit conversions or simple arithmetic
operations but is not meant to replace scientific analysis steps.

Data Integration finally is the heart of the DaltOn system
[17] that aims at the semantic integration of data. It comprises
only one sub-component so far, the Semantic Integration (SI).

Beside these main three abstractions, DaltOn is using
wrappers for accessing data sources through a unified interface
(but not for executing data integration tasks) and a RDF based
(triple) data store as repository.

Fig. 5. The architecture of the SI component

III. SEMANTIC BASED INTEGRATION

Schema mapping is a specification describing how data
from a source schema can be mapped to a sink (or target)
schema. This is usually considered an essential building block
of data exchange and integration solutions.

Schema mappings are usually discovered (semi-)
automatically using a match operation that can either
corresponds to a structure-based or a semantic-based approach.
The feasibility of later approach is supported by the design of
DLWSs which require that AWSs share a common domain of
discourse. In DaltOn, this aspect is represented with
ontologies. A first issue is that several applications may
interpret elements of the same domain differently. In such
situations, an alignment between the different interpretations
needs to be discovered. Based on discovered mappings, DaltOn
solves related issues. One of these concerns is information
integration. That is, the information expected from the source
document does not correspond to the information the source is
able to provide. Another important issue deals with missing or
incomplete information in the source instance document. Both
situations generally prevent the fulfilment of the generation of
a source instance document. In order to pursue the integration,
the paper proposes a solution based on the exploitation of a
repository. The repository is a central place which stores and
proposes query facilities to retrieve information related to the
domain of discourse.

The example scenario is interesting as it exploits an
important set of functionalities available in the SI component,
e.g. different kinds of mapping correspondences and repository
exploitation.

root records = (record)

elem record = (timeStamp, deviceCode, hardwareError,

visibilityAlarm, visibility, NWSCode,

PWCInstance, waterIntensity, …..)

elem timeStamp = xsd: string

elem deviceCode = xsd: int

elem hardwareError =xsd:int

elem visibilityAlarm = xsd:int

elem visibility = xsd:double

……..

root measurements = (measurement)

elem measurement = (timestamp, location, device, data)

elem location = (locationID, locationName)

elem device = (deviceID, deviceName)

elem data= (compartmentID, charactersiticID, value, status,

unitID)

elem timeStamp= xsd:string

elem locationID = xsd: int

elem locationName = xsd: string

elem deviceID = xsd: int

elem deviceName = xsd: string

…..

<records >

<record>

<timeStamp>01.03.2008 00:30:08</timeStamp>

<deviceCode>PW 1</deviceCode>

<hardwareError>1</hardwareError>

<visibilityAlarm>0</visibilityAlarm>

<visibility>902</visibility>

<NWSCode>R</NWSCode>

<PWCInstant>61</PWCInstant>

<PWCAt15Minutes>61</PWCAt15Minutes>

<PWCAtOneHour>62</PWCAtOneHour>

<waterIntensity>1.10</waterIntensity>

<cumulativeWater>89.77</cumulativeWater>

<cumulativeSnow>287</cumulativeSnow>

</record>

………..

</records>

<measurements>

<measurement>

<timeStamp>01.03.2008 00:30:08</timeStamp>

<location>

<locationID>6</locationID>

<locationName>Main Tower</locationName>

</location>

<device>

<deviceID>116363</deviceID>

<deviceName>Vaisala PWD11</deviceName>

</device>

<data>

<compartmentID>5</compartmentID>

<characteristicID>13</characteristicID>

<value>902</value>

<status>1</status>

<unitID>3</unitID>

</data>

<data>

…………………

b) Schema of PWD data (schema1) d) EcoDB Schema (schema2)

c) PWD data in XML (instance1)
e) Transformed dataset (instance2)

01.03.2008 00:30:08;PW 1;0;0;902;626;R-;61;61;62;1.10;89.77;287

29.02.2008 04:40:08;PW 1;0;0;2000;2000;C;0;0;0;0.00;86.40;287

29.02.2008 21:20:04;PW 1;0;0;2000;2000;R-;61;81;81;0.24;87.20;287

a) PWD Dataset

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

319 | P a g e

www.ijacsa.thesai.org

A. Basic Notions

Basically Ontologies are used to represent the knowledge
of a domain in a common way, enabling these to be shared
among machines and human beings [18]. Thus, an ontology
consists of concepts with relationships between them, which
provides a common vocabulary for knowledge to be exchanged
between machines and human beings. In order to support
reasoning within ontologies, a logical formalism is used, such
as Description Logics (DL) [19], as a mean to represent
ontologies. This family of formalisms allows the representation
and reasoning over domain knowledge in a formally and well-
understood way. Central DL notions are concepts (unary
predicates) and relationships, also called properties or roles
(binary predicates). A key notion in DL is the separation of the
terminological (or intensional) knowledge, called TBox, from
the assertional (or extensional) knowledge, called ABox. The
TBox contains the descriptions of concepts and their
relationships in the following form:

Device⊑∀situatedAt.Location⊓

∃situatedAt.Location⊓

∀hasDeviceName.String⊓

∃hasDeviceName.String

This description states that the Device concept is defined as
being situated in at least one location, and locations only, and
has at least one name which must be string of characters (in an
OWL serialization this is supported by XML Schema data
types). In contrast, ABoxes contain assertions of concepts and
their roles in the following form:

These assertions state that objects with identifiers

„device_116366‟ and „location_3‟ are instances of respectively
the 'Device' and 'Location' concepts. These two objects are
related by the 'situatedAt' object property. Finally, the
„device_116366‟ object is related to the value „Vaisala QLi50
2‟ via the „hasDeviceName‟ data type property.

A TBox and an ABox together denote a Knowledge Base
(KB), denoted as KB = < TBox, ABox >.

B. DaltOn SI Component Architecture

The main objective of SI is to generate a valid input
document for the target step of an Application Workflow. The
Fig. 5 presents the details of this component's architecture. This
architecture is based on the set of documents each DaLo-WF
application can access. This set comprises four kinds of
documents:

1) An instance document which corresponds to the output

document of Application1 (produced by the source step),

respectively the input document of Application2 (consumed

by the sink step).

2) A schema associated to each instance document.

3) A mapping between elements of the schema to

elements of a local ontology.

4) A local ontology which supports the particular

interpretation of each concept in an application.

Fig. 6. Concepts and roles of the reference ontology in the meteorological example.

Device(device_116366),

Location(location_3),

hasDeviceName(device_116366,

 “Vaisala QLi50 2”)

situatedAt(device_116366, location_3)*

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

320 | P a g e

www.ijacsa.thesai.org

The upper part of Fig. 5 emphasizes two other components:

1) A reference ontology which provides a common

vocabulary to the local ontology. This approach makes the

local ontologies comparable and enables to process matches

between concepts.

2) The repository is responsible for the storage of the

knowledge bases associated to the application domain. It also

stores the mappings that are being discovered by the matching

solution.
The role of an application instance and schema document is

obvious in the context of a DaLo-WF. They are usually created
by the application developer and come at no extra cost. These
documents are expressed in XML and XML Schema
(henceforth XSD) respectively. Fig. 4 presents an extract from
instance1, instance2, schema1 and schema2.

The mappings, ontologies and ABox assertions contained
in the repository impose extra work from the application
designers. Nevertheless, the task of developing these
documents is limited due to the following: (i) generation of a
single reference ontology is generally sufficient, (ii) reuse of
local ontologies among several DaLo-WFs is generally
possible, (iii) low expressivity of the reference ontology, (iv)
use of adapted tools which simplify the creation of these
documents.

Concerning aspects (i) and (ii), as per experiences in using
DaltOn in medicine, biological and ecological domains
emphasize that usually one unique reference ontology is
sufficient for all DaLo-WFs of an application. The design of
this reference ontology can be facilitated by exploiting existing
domain ontologies. The reference ontology does not need all
the expressiveness proposed by some well-known ontologies in
scientific domains.

Concerning (iii), the expressive power of the local and
reference ontologies are not the same. The reference ontology
provides a common vocabulary on the domain of discourse.
This common vocabulary enables schema mapping to be
generated. Fig. 6 presents a graph of the reference ontology in

the meteorological use case, developed using Protégé tool [25].
This graph presents concepts as nodes, roles as labeled edges.
For readability reasons, subsumption relationships are not
depicted.

A local ontology implements the local interpretation to the
concepts of the reference ontology and also provides the way
to include new concepts defined with respect to the concepts
and roles of the reference ontology. Example 1 presents an
extract of the concept definitions of local ontology1 in the
meteorological use case.

Example 1 Concept definitions of local ontology1

Concerning (iv), the design of the different ontologies

(reference and local ones) as well as the generation of reference
ontology concept and role assertions, stored in the repository,
are facilitated by the use of a Protégé plug-in named DBOM
[20], [21]. This plug-in eases the creation of knowledge bases
expressed in DL from relational databases. For instance, in the
meteorological use case, the meteorologists provided us with
databases containing domain specific information about
location of sensors, devices, units used by these devices, etc.
Using the DBOM plug-in the system is able to create a
reference ontology serialized in OWL and at the same time to
generate a valid ABox which was later integrated in the
repository.

Fig. 7. Excerpt of the graph of mapping1 in use case.

mappedToProperty

Schema1_record

loc1Eco_PresentWeatherData

mappedToConcept

Schema1_deviceCode

refEco_Device

mappedToConcept

refEco_hasDeviceCode

mappedToProperty

Schema1_cumulativeSnow

refEco_Characteristic

mappedToConcept

refEco_hasValue

refEco_Characteristic3

mappedToInstance

loc1.HardwareErrorCode ⊑ Status
loc1.TimeStamp ≡ TimeStamp
loc1.PresentWeatherData ⊑ SensorData
loc1.SensorData ⊑ Data ⊓
 ∀recordedAt.TimeStamp ⊓
∃recordedAt.TimeStamp
⊓ ∀collectedThrough.Sensor ⊓
∃collectedThrough.Sensor

⊓ ∀hasStatus.Status ⊓ ∃hasStatus.Status
loc1.CumulativeSnow ⊑ Characteristic
loc1.Status ≡ Status
loc1.NWS ≡ NWS
loc1.Sensor ≡ Sensor

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

321 | P a g e

www.ijacsa.thesai.org

C. Schema to Ontology Mapping

The mapping relates elements from schema1 (respectively
schema2) to concepts and roles of local ontology1 (resp.
ontology2). A schema mapping is generally represented as a
triple consisting of a schema, a local ontology, and a mapping
specifying relationships between them. The system uses this
representation and restricts the set of mapping relationships to:

 a mapping to an ontology concept (denoted
'mappedToConcept')

 a mapping to an ontology role (denoted
'mappedToRole')

 a mapping to a concept instance which is stored in the
repository (denoted 'mappedToIndividual').

The syntax of the mapping solution is restricted such that
not all combinations of the mapping relationships are accepted.
The restrictions and their associated semantics are
characterized in Table 2.

The simplest abstraction of an XML document is a labeled
ordered tree, possibly with data values associated to the leaves.
But for the mapping approach, the system takes advantage of
the object model view which can also be applied to an XML
document. Starting from this view, the system assumes that any
XML element is at least mapped to a DL concept or DL
individual. This first assumption enables the system to disallow
the mapping #1 and #3 which do not inform about an
associated DL concept nor DL individual. The purpose of
mapping #4 is to inform the system about the absence of
mapping for a given XML element. In fact, this most
effectively and rapidly performed by users by omitting such a
mapping for this element.

In cases where an XML element is not empty, i.e. it
contains a data value, it is necessary to map it to a DL property.
This is the case of mapping #5, #7 and #8 in Table 2 Mapping
#8 is a specialization of mapping #5 where extra information
about an associated concept individual is provided. Mapping
#7 can be viewed as being equivalent to #8 where the type
instance is not specified. In cases of an empty XML element,
no DL property needs to be attached to the mapping. Hence, it
corresponds to mappings #2 or #6. The latter being a
specialization of the former where extra information about a
DL concept instance is provided.

 Finally mapping #4 is considered as a shortcut of mapping
#6 where the DL concept is omitted. This kind of mapping is
supported if the processing of the DL realization reasoning
procedure, i.e. providing the most specific concept an
individual is an instance of, returns a single concept. Thus there
cannot be any ambiguities about the type of this individual.
Fig. 7 displays an extract of a graph representing the mapping
between the schema and the local ontology associated to
application1 in the meteorological use case. In this figure,
relations start from the XML element of a given schema
(pattern is “schemaName_elementName”) and points to an
ontology element, i.e. concept, property or individual, of a
given ontology (pattern is “ontologyName_elementName”).

This figure emphasizes mappings related to mapping #2, #5
and #8 of Table 2. For instance, the mapping of the 'record'
XML element, which is empty and root of the document, is
mapped, via 'mappedToConcept' to the 'PresentWeatherData'
DL concept. The 'deviceCode' XML element is non-empty and
mapped to the 'Device' DL concept and its 'hasDeviceCode'
property. Finally the 'cumulativeSnow' element, again a non-
empty element, is mapped to a concept ('Characteristic'), a
property ('hasValue') and a individual ('characteristic/3'). In
order to explain the integration methodology and present the
matching issues, it is necessary to present the mapping
associated to application2 as well (Fig. 8). Notably, only two
elements are mapped to a DL concept: 'measurement', the root
element of schema2 and 'data', an empty and nesting element.
All other elements are mapped to DL concepts and properties.
Finally, the mapping language is the same for the output and
input applications of a DaLo-WF.

D. Methodology and Heuristics

Generating the input document of a DaLo-WF's
Application2 is a multi-step process. These steps correspond to
(i) matching the local ontologies, (ii) matching the (XML)
schemata and (iii) generating the target instance document.

Matching local ontologies
This matching step searches for correspondences between

the DL concepts of both local ontologies. This operation is
supported by the existence of a common vocabulary, the
reference ontology. In order to discover as many matches as
possible, two techniques are considered to find
correspondences: DL-based and navigation-based mappings.

TABLE II. MAPPING POSSIBILITIES IN SI

mappedTo

Concept

mappedTo

Role

mappedTo

Individual
Semantics

1 Not accepted

2 X Empty XML element is mapped to an ontology concept

3 X Not accepted

4 X Equivalence to a concept instance

5 X X Non empty XML element is mapped to a concept and a role

6 X X
Empty XML element is mapped to an ontology concept and an

individual

7 X X Not empty XML element mapped to a role and a concept instance

8 X X X
Non empty XML element is mapped to a concept and role as well as a

concept instance

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

322 | P a g e

www.ijacsa.thesai.org

The DL-based approach is performed using a DL reasoner
and particularly its concept subsumption inference procedure.

In the navigation-based approach, an ontology is taken in
terms of a directed acyclic graph where nodes correspond to
DL concepts and the edges correspond to DL properties.
Basically, it searches for navigation paths between two
concepts. This is performed by exploiting the (SPARQL) query
facilities of the (triple store) repository. The navigation-based
approach also exploits a DL reasoner with its concept
subsumption, instance checking and realization inference
procedures. This approach is non-deterministic and may return
several different paths. So it is important for the algorithm to
qualify paths and to select the most appropriate one. This
qualification is based on several factors: the length (L) of each
path (i.e. the number of properties along a path) and the
characteristics of the properties used along a path, i.e.
functionality, inverse functionality.

As the implementation formalizes ontologies using
decidable species of OWL, i.e. OWL Lite and OWL DL, it is
possible to distinguish properties based on their functional
characteristics. As a functional property, denoted as „prop‟, is
defined as:

x, y1, y2 | ∃prop(x, y1) ∩

∃prop(x, y2) ⟹ y1 = y2

The decidability issue of DL reasoning tasks is a main
concern in the solution. For this reason, inverse functional
properties are not considered, which are supported in OWL,
but are only associated to decidable inferences for object
properties. Thus inverse functional properties on data type
properties yield an OWL Full ontology which is not decidable.

The system distinguishes between several navigation
approaches:

 L=1 and the property is functional:
'functionalNavigation'.

 L=1 and the property is not functional:
'nonFunctionalNavigation'.

 L>1: 'pathNavigation'.

The match operator applied in the DaLo context is able to
find several correspondences, usually belonging to the two
presented categories, between a given pair of DL concepts. In
order to deal with this issue, the system propose a heuristic to
select a preferred correspondence. This heuristic is based on a
total order of the DL-based and navigation-based categories.

Definition: For a given pair of DL concepts C1 and C2,
respectively from local ontologies 1 and 2, if a set of
correspondences are found between these two concepts: the
system knows that there must be at most one DL-based
correspondence between C1 and C2 but several navigation-
based mappings can coexist with it. For this reason, the system
ranks the navigation-based correspondences according to a
preference total order: functional Navigation > non-functional
Navigation > path Navigation.

Concerning navigation-based relationships, setting a
property to be functional is an important commitment for the
knowledge engineer. The system thus considers that a
functionalNavigation is preferred to a
nonFunctionalNavigation. Finally the system considers that
navigation with a single edge is more trustable than a path
made of several edges.

Fig. 8. Excerpt of the graph of mapping2 in the use case.

Schema2_measurement

loc1Eco_Data

mappedToConcept
Schema2_device

refEco_Device

mappedToConcept

refEco_hasDeviceName

mappedToProperty

Schema2_deviceName

mappedToConcept

Schema2_location

loc2Eco_Location

mappedToConcept

refEco_hashasLoctionID

mappedToProperty

Schema2_locationID

mappedToConcept

Schema2_data

loc2Eco_Data refEco_hasValue

mappedToProperty

Schema2_value

mappedToConcept

Schema2_charasteristicID

loc2Eco_Characteristic

mappedToConcept

refEco_hasCharacteristicID

mappedToProperty

Schema2_unitID

loc2Eco_Unit

mappedToConcept

refEco_hasUnitID

mappedToProperty

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

323 | P a g e

www.ijacsa.thesai.org

Thus the system obtains a partial order on the total set of
discovered correspondences. On the use cases which are
implemented with DaltOn so far, a heuristic has been added,
stating that functionalNavigation is preferred to concept
generalization which is preferred to nonFunctionalNavigation,
thus obtaining a total order on correspondence preferences:
concept equivalence > concept specialization >
functionalNavigation > concept generalization >
nonFunctionalNavigation > pathNavigation.

Other heuristics could also be applied, e.g. generalization >
functionalNavigation, and SI supports the definition of specific
preference orders.

Matching schemata

The purpose of this step is to discover mappings between
Schema1 and Schema2 from the mappings discovered in the
previous step, i.e. between local ontology1 and Local
ontology2 [Fig. 5]. This step can be easily performed using the
schema to ontology mapping, i.e. from schema 1 to local
ontology 1, respectively schema 2 and local ontology 2.

Finally, due to the dual matching solution (logic-based and
navigational-based), the accuracy of data stored in the
repository and the possibilities to adjust heuristics. These false
matches generally occur when local ontologies are modified
due to replacement or configuration modifications at the
sensors. In these cases, the adjustments need to be performed
on the local ontologies and, possibly in non-monotonicity
situations of the local ontologies, to the reference ontology
[Fig. 6].

Target instance generation

Starting from these mappings, it is possible to consider the
generation of data values for (non-empty) target elements. For
navigation-based correspondences, the processing is relatively
obvious as it is sufficient to follow the selected paths between
two concepts. This navigation is performed starting from a
specific node of the ontology graph. For instance, in the case of
the location sink element, the mapped source element is
'deviceCode' and the 'hasDeviceCode' DL property (Fig. 7).
For a given source instance which has 'PW1' as a value for
'deviceCode', SI will use methods of reference reconciliation
[22] to identify the associated graph node. Starting from this
node, it is possible to follow the path to the searched value.

For DL-based correspondences, it is required to inspect the
DL properties associated to each mapping in order to detect
possible transformations. For instance in Table 3, the sink
element 'deviceName' is related, via Concept equivalence, to
the 'deviceCode'. But the 'deviceCode' element is mapped to
the property 'hasDeviceCode' (Fig. 7) while 'deviceName' is
mapped to 'hasDeviceName'. Thus a transformation needs to be
performed.

A final step consists in enabling the integration of data
from application1's instance onto application2's instance

document. Different forms of mappings are available, e.g.
relational queries, relational view definitions, XQuery queries
or XSLT transformations, to perform this task. The system
opted for XSLT transformation since it does not need the
expressiveness and complexity of relation queries and views.

By selecting XSLT, the system also benefits from
procedural attachment possibilities when performing
transformations. That is SI includes a set of procedures,
developed in the Java language, to enable the retrieval of
values stored in the repository at runtime. Most of these
procedures generate, from predefined templates, SPARQL
queries and execute them on the repository's ABox.

IV. RELATED WORK

Kepler [8] is an open-source scientific workflow system

which is evolved from Ptolemy system [23]. Kepler‟s data

integration approach is based on a semantic mediation system

and utilizes the automated integration services from a

middleware called SEEK [4]. SEEK exploits ontological

information to support structural data transformation for

scientific workflow composition. The prerequisite of the

system is to define the structural and semantic type of input

and output ports of actors and services they represent. A user

then defines registration mappings to associate contextual

paths on the ontologies to data objects generated in response

to the queries on the service input/output, named ports. Then

these input and output registration mapping rules are

composed to construct correspondence mappings between

structural types of the source and those of the target; DaltOn‟s

SI implementation also generates correspondence mappings

and stores them for future use as well. The approaches of

Kepler and DaltOn are quite similar as they both aim at

transforming data semantically based on a semantic mediation

system. Although the objectives are almost identical, the

design of the solution is different as Kepler does not use the

semantic of the ontologies to generate mappings. Another

notable difference between Kepler and DaltOn is that SEEK

does not consider format conversion (syntax incompatibility)

and data transportation implicitly – which is beneficial for the

normal scientific user.

Triana [10][24] is a workflow-based, graphical problem

solving environment. Like Kepler, Triana also provides a rich

library of pre-configured and built-in tools. As far as semantic

integration is concerned, unlike Kepler, Triana does not

support semantic data integration. In Triana, domain users

need some pre-developed tools which can perform schema

transformation, generate mappings and correspondences and

finally integrate data. Also the users need to know how such

tools are developed, how these tools are used and in which

sequence they must be applied. With the approach, a standard

schema (DaLo-WF) is provided must fits most use cases but

which can be adjusted in case it does not fit the requirements

of an application.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

324 | P a g e

www.ijacsa.thesai.org

TABLE III. MAPPING POSSIBILITIES IN SI

Elements of XSD1 Elements of XSD2 Preferred correspondence

record measurement Concept specialization

deviceCode device

deviceName

location

locationID

Concept equivalence

Concept equivalence

nonFunctionalNavigation

nonFunctionalNavigation

cumulativeSnow

data

value

characteristicID

unitID

Concept generalization

Concept generalization

Concept generalization

nonFunctionalNavigation

Taverna [9], a scientific workflow management system, is
part of the myGrid project. In order to convert data formats,
Taverna provides “Shims”, which are used as web services.
DaltOn differs from Taverna in the way that it handles format
conversions (syntactical conversions) dynamically. In Taverna,
the domain user required some sort of specialized services that
convert schemas and performs mappings as well. DaltOn
instead provides a transparent way to deal with semantic
integration issues.

V. CONCLUSION

This contribution discussed in detail a method for
developing scientific applications. One of the main messages is
that separation of concerns can help to ease handling complex
application scenarios as they often occur in scientific domains.
This is achieved by applying POPM which already introduces a
separation of concerns and by further separating data
integration tasks from domain related tasks. Thus the
readability of a process is increased and domain users can
focus on their expertise – the scientific analysis.

The other main contribution is an ontology based data
integration framework called DaltOn; instead of fixing
transformation semantics in code, it is specified as a mapping
between ontologies. Since data transformation is specified on a
conceptual level, changing and adjusting these transformations
whenever schemas or ontologies evolve is rather easy.

REFERENCES

[1] ABCD Schema – Task Group on Access to Biological Collection,
Website: http://www.bgbm.org/TDWG/CODATA/, [May 2017].

[2] Cheatham, Michelle, and Catia Pesquita. "Semantic Data Integration." In
Handbook of Big Data Technologies, pp. 263-305. Springer
International Publishing, 2017.

[3] Ning, Z. H. A. O. "Semantic Conflict Resolution Scheme Based on
Ontology." DEStech Transactions on Engineering and Technology
Research sste (2016).

[4] SEEK Observation Ontology, draft design document, Website:
http://lists.admb-project.org/seek.ecoinformatics.org/,[May 2017].

[5] Groß, Anika, Cédric Pruski, and Erhard Rahm. "Evolution of biomedical
ontologies and mappings: Overview of recent approaches."
Computational and structural biotechnology journal 14 : 333-340, 2016

[6] Liu, Jia, et al. "Grid workflow validation using ontology-based tacit
knowledge: A case study for quantitative remote sensing applications."
Computers & Geosciences, 98 : 46-54, 2017

[7] Hitzler, P. "Ontology Design Patterns for Data Integration: The GeoLink
Experience." Ontology Engineering with Ontology Design Patterns:
Foundations and Applications, 25 : 267, 2016

[8] Crawl, Daniel, Alok Singh, and Ilkay Altintas. "Kepler WebView: A
Lightweight, Portable Framework for Constructing Real-time Web
Interfaces of Scientific Workflows." Procedia Computer Science, 80 :
673-679, 2016

[9] Katherine Wolstencroft, Robert Haines, Donal Fellows, Alan Williams,
David Withers, Stuart Owen, Stian Soiland-Reyes, Ian Dunlop,
Aleksandra Nenadic, Paul Fisher, Jiten Bhagat, Khalid Belhajjame, Finn
Bacall, Alex Hardisty, Abraham Nieva de la Hidalga, Maria P. Balcazar
Vargas, Shoaib Sufi, and Carole Goble: “The Taverna workflow suite:
designing and executing workflows of Web Services on the desktop,
web or in the cloud”, Nucleic Acids Research, 41(W1): W557-W561,
2013.

[10] Vahi, Karan, et al. "A case study into using common real-time workflow
monitoring infrastructure for scientific workflows." Journal of grid
computing 11.3 : 381-406, 2013

[11] Jablonski, S.; Bussler, C.: Workflow Management – Modeling
Concepts, Architecture and Implementation. London: Int. Thomson
Computer Press, 1996

[12] ProDatO Integration Technology GmbH: Handbuch iPM Integrated
Process Manager. Softwaredocumentation (in German), Erlangen,
Germany, www.prodato.de [May 2017]

[13] Website BayCEER, http://www.bayceer.uni-bayreuth.de/, [May 2017].

[14] Jablonski, S.; Faerber, M.; Götz, M.; Volz, B.; Dornstauder, S.; Müller,
S.: Configurable Execution Environments for Medical Processes, 4th
Int‟l Conference on Business Process Management (BPM), Vienna
Austria, 2006.

[15] Jablonski, S.; Rehman, M.A.; Volz, B.; Curé, O.: Architecture of the
DaltOn Data Integration System for Scientific Applications. 3rd
International Workshop on Workflow Systems in e-Science (WSES 08),
Lyon, France, 2008

[16] Jablonski, S.; Rehman, M.A.; Volz, B.; Curé, O.: DaltOn: An
Infrastructure for Scientific Data Management. Proc. of the Int‟l
Workshop on Applications of Workflows in Computational Science
(AWCS), pp.520-529, Krakow, Poland, 2008.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

325 | P a g e

www.ijacsa.thesai.org

[17] Jablonski S.; Curé O.; Jochaud F.; Rehman M. A.; Volz B. : Semantic
Data Integration in the DaltOn System. Workshop Information
Integration Methods, Architectures and Systems (IIMAS) at 24th Int‟l
Conference on Data Engineering, Cancún, México, 2008.

[18] Staab, S.; Studer, R.: Handbook of Ontologies. Springer, Germany.
2004.

[19] Baader, F.; Calvanese, D.; McGuinness, D.L.; Nardi, D.; Patel-
Schneider, P.F.: The Description Logic Handbook: Theory,
Implementation, and Applications, New York, USA: Cambridge
University Press, 2003.

[20] Cure, O.; Jochaud, F.: Preference-Based Integration of Relational
Databases into Description Logic. in Proc.DEXA‟07, 2007, pp. 854-863.

[21] Cure, O.; Bensaid, J.D.: Integration of relational databases into OWL
knowledge bases: demonstration of the DBOM system in Proc. ICDE
Workshops pp 230-233, 2008

[22] Saïs, Fatiha, and Rallou Thomopoulos. "Ontology-aware prediction
from rules: A reconciliation-based approach." Knowledge-Based
Systems 67 : 117-130, 2014.

[23] Ptolemaeus, Claudius: System design, modeling, and simulation: using
Ptolemy II, Vol. 1. Berkeley: Ptolemy.org, 2014.

[24] Website myGrid, http://www.mygrid.org.uk, [May 2017]

[25] Website Protégé, http://protege.stanford.edu/, [May 2017]

